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Chapitre 1

Abstract

The model of the IEML language and of its semantic variables is presented in
Chapter 2. We show that IEML is a regular language, a class of languages that is
extremely efficient at computational tasks involving sequencing and repetition,
and is furthermore recognized by finite state machines.

The group structure describes the mathematical concept of symmetry, where
symmetry can be understood as invariance under some transformations. Sym-
metry allows the recognition of similarities, and to discover which properties
of elements do not change under transformations. We show in Chapter 3 that
IEML semantic variables possess characteristics of groups and rings.

We consider the computability of transformations applied to the IEML lan-
guage in Chapter 4. Using finite state machines as the underlying computational
model, we show that transformations defined for the semantic variables of the
IEML language are computable.

While IEML language is used to create IEML expressions, semantic graphs
are a representation of the semantic relations occurring within IEML expres-
sions. The model of IEML relations is presented in Chapter 5. Combination
of a plurality of semantic relations results in semantic circuits. In Chapter 6,
we show that semantic circuits form a groupoid, and present algorithms for
functions applicable to rhizomes, a type of semantic circuits.

Chapter 7 introduces quantitative criteria used to compare any two semantic
circuits. These criteria can be used as a basis for defining a notion of semantic
distance between two semantic circuits.

Acknowledgments The research that led to IEML semantic topology has
been funded by the Canada Research Chair federal program and by the Social
Sciences and Humanities Research Council of Canada. I would like to thank
Andrew Roczniak, PhD, who worked with me to formalize IEML during seven
years and Nick Soveiko, PhD, who reviewed the final version of this text and
is the main contributor of chapter 7. I am nevertheless the sole responsible for
any error or inconsistency.
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Chapitre 2

Model

2.1 Model of IEML Language
Let Σ be a nonempty and finite set of symbols, Σ = {S,B, T, U,A,E}. Let

a string s be a finite sequence of symbols chosen from Σ. The length of this
string is denoted by |s|. An empty string ε is a a string with zero occurrence of
symbols and its length is |ε| = 0. The set of all strings of length k composed
with symbols fromΣis defined as Σk , {s : |s| = k}. The set of all strings over
Σ is defined as :

Σ∗ , Σ0 ∪ Σ1 . . . (2.1)

The IEML language over Σ is a subset of Σ∗, LIEML ⊆ Σ∗ where L = 6 :

LIEML ,
{
s ∈ Σ∗ | 0 ≤ l ≤ L, |s| = 3l

}
(2.2)

Proposition 2.1.1. IEML language given in equation 2.2 is a regular language
[14].

Démonstration. Consider the definition of regular languages :
– L = {∅} and L = {ε} are regular languages,
– L = {σ | σ ∈ Σ} are regular languages,
– if L1 and L2 are regular languages, then so are L1∪L2 and L1 ·L2 (conca-
tenation).

Since LIEML can be constructed from its alphabet Σ = {S,B, T, U,A,E} and
using only statements from the above definition, it is a regular language.

We note that any string belonging to the LIEML language can be also obtai-
ned from the Σ alphabet by the application of the triplication function. String
concatenation takes two strings and produces a third string which is compo-
sed of symbols of the first string followed by the symbols of the second string.
The IEML triplication function is a specialization of the string concatenation,
where three strings (a, b, c) belonging to LIEML and of the same length are
concatenated and where the length of each string is at most 3L−1 :

ft(a, b, c) , (abc : |a| ≤ 3L−1 ∧ |a| = |b| = |c| ∧ a, b, c ∈ LIEML) (2.3)

6



CHAPITRE 2. MODEL 7

Regular languages are extremely efficient at computational tasks involving
sequencing and repetition and can be recognized by finite state machines, which
are discussed in section 4.1.1.

2.2 Model of Semantic Sequences
Definition 2.2.1. A string s is a semantic sequence if and only if s ∈ LIEML.

Unless otherwise specified, ‘sequence’ and ‘semantic sequence’ are used in-
terchangeably in the remainder of the text. To denote the pn’th primitive of a
sequence s, we use a superscript n where 1 ≤ n ≤ 3l and write sn. Note that
for any sequence s of layer l, sn is undefined for any n > 3l. Two semantic
sequences are distinct if and only if either of the following holds : a) their layers
are different, b) they are composed from different primitives, c) their primitives
do not follow the same order : for any sa and sb,

sa = sb ⇐⇒ ∀n, sna = snb ∧ |sa| = |sb| (2.4)

Let’s now consider binary relations between semantic sequences in general.
These are obtained by performing a Cartesian product of two sets 1. For any
set of semantic sequences X, Y where sa ∈ X, sb ∈ Y and using equation
2.4, we define four binary relations whole ⊆ X × Y , substance ⊆ X × Y ,
attribute ⊆ X × Y and mode ⊆ X × Y as follows :

whole , {(sa, sb) | sa = sb} (2.5)

substance , {(sa, sb) | 1 ≤ n ≤ |sb|, sna = snb ∧ |sa| = 3|sb|} (2.6)

attribute , {(sa, sb) | 1 ≤ n ≤ |sb|, sn+|sb|
a = snb ∧ |sa| = 3|sb|} (2.7)

mode , {(sa, sb) | 1 ≤ n ≤ |sb|, sn+2|sb|
a = snb ∧ |sa| = 3|sb|} (2.8)

Equation 2.5 states that any two semantic sequences that are equal are in a
whole relationship (we can also write sb whole sa). Equations 2.6, 2.7 and 2.8
state that any two semantic sequences that share specific subsequences may be
in substance, attribute or mode relationship. For any two semantic sequences
sa and sb, if they are in one of the above relations, then we say that sb plays a
role w.r.t sa and we call sb a seme of sequence :

Definition 2.2.2. For any semantic sequence sa and sb, if

(sa, sb) ∈ whole ∪ substance ∪ attribute ∪ mode

then sb plays a role w.r.t sa and sb is called a seme.

We can now group distinct semantic sequences together into sets. A useful
grouping is based on the layer of those semantic sequences, as discussed in
section 2.3.

1. A Cartesian product of two sets X and Y is written as follows : X × Y = {(x, y) | x ∈
X, y ∈ Y }
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2.3 Model of Semantic Categories
A category of LIEML of layer l, is a subset of LIEML such that all semantic

sequences of that subset have the same length :

cl ,
{
s | s ∈ LIEML ∧ |s| = 3l

}
(2.9)

Definition 2.3.1. A semantic category c is a set containing semantic sequences
at the same layer.

Unless otherwise specified, ‘category ’ and ‘semantic category ’ are used inter-
changeably in the remainder of the text. The layer of any category c is exactly
the same as the layer of the semantic sequences included in that category. The
set of all categories of layer L is given as the powerset 2 of the set of all strings
of layer L of LIEML :

CL , P({cL}) (2.10)

Two categories are distinct if and only if they differ by at least one element.
For any ca and cb :

ca = cb ⇐⇒ ca ⊆ cb ∧ cb ⊆ ca (2.11)

A weaker condition can be applied to categories of distinct layers (since two
categories are different if their layers are different) and is written as :

`(ca) 6= `(cb) =⇒ ca 6= cb (2.12)

where `(·) denotes the layer of a category.
Analogously to sequences, we consider binary relations between any cate-

gories ci and cj where `(ci), `(cj) ≥ 1. For any set of categories X, Y where
ca ∈ X, cb ∈ Y and using equations 2.11, 2.6, 2.7 and 2.8 we define four binary
relations wholeC ⊆ X × Y , substanceC ⊆ X × Y , attributeC ⊆ X × Y and
modeC ⊆ X × Y as follows :

wholeC , {(ca, cb) | ca = cb} (2.13)

substanceC , {(ca, cb) | ∀ sa ∈ ca,∃sb ∈ cb, (sa, sb) ∈ substance} (2.14)

attributeC , {(ca, cb) | ∀ sa ∈ ca,∃sb ∈ cb, (sa, sb) ∈ attribute} (2.15)

modeC , {(ca, cb) | ∀ sa ∈ ca,∃sb ∈ cb, (sa, sb) ∈ mode} (2.16)

For any two categories ca, cb, if they are in one of the above relations, then
we say that cb plays a role with respect to ca and cb is called a seme of category :

Definition 2.3.2. For any category ca and cb, if

(ca, cb) ∈ wholeC ∪ substanceC ∪ attributeC ∪ modeC
then cb plays a role with respect to ca and we call cb a seme.

2. A powerset of S is the set of all subsets of S, including the empty set ∅
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2.3.1 Types of semantic categories
Categories will usually be generated using the following approach. Taking the

powerset of Σ (the set of all subsets of Σ, including the empty set ∅), we represent
it by : ΣIEML , P(Σ). ΣIEML contains sets such as {S}, {A}, {U,A}, {E},
{S,B, T}, {∅}. We note that the order within the members of the set ΣIEML is
irrelevant, so for example symbols {U,A} and {A,U} are considered to be one
and the same. ΣIEML is the set of all IEML semantic characters and we define
the category language as the language over :

Σ̄ , ΣIEML\{∅} (2.17)

Let a string s be a finite sequence of symbols chosen from Σ̄. The length of
this string is denoted by |s|. An empty string ε is a a string with zero occurrence
of symbols and its length is |ε| = 0. The set of all strings of length k composed
with symbols from Σ̄ is defined as Σ̄k , {s : |s| = k}. The set of all strings over
Σ̄ is defined as :

Σ∗cat , Σ̄0 ∪ Σ̄1 . . . (2.18)

The category language over Σ̄ is a subset of Σ∗cat, Lcat ⊆ Σ∗cat where L = 6 :

Lcat ,
{
s ∈ Σ∗cat | 0 ≤ l ≤ L, |s| = 3l

}
(2.19)

IEML sequences are obtained from any sequence s ∈ Lcat by performing a
Cartesian product between all the symbols of that sequence s. For instance, the
sequence {S,B, T}{U,A}{E} gives the IEML set of sequences s̄ :

s̄ = {SUE, SAE,BUE,BAE, TUE, TAE} (2.20)

We now introduce the following category types :

Definition 2.3.3. A category c of layer l is singular if the following holds :
|c| = 1 and the sequence s ∈ c is composed by symbols sn where sn ∈ Σ̄ ∧ |sn| = 1
for 1 ≤ n ≤ 3l.

All categories that are not singular are plural.

Definition 2.3.4. A category c of layer l is simple if the following holds : |c| = 1
and the sequence s ∈ c is composed by symbols sn where sn ∈ Σ̄ for 1 ≤ n ≤ 3l.

All categories that are not simple are complex. We note that all singular
categories are also simple, since Σ̄ contains all symbols which contain only one
member ({S}, {B}, {T}, {U}, {A}, {E}).

2.4 Model of Catsets and USLs
A catset is a set of distinct categories of the same layer :

Definition 2.4.1. A catset κ is a set containing categories κl = {c | l(c) = l}
such that ∀a, b ∈ κl, a 6= b
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The layer of a catset 3 is given by the layer of any of its members : if some
c ∈ κ, then `(κ) = `(c). A USL is composed of up to seven catsets of different
layers:

Definition 2.4.2. A USL u is a set containing catsets of different layers :
u = {κ} such that ∀a, b ∈ u, l(a) 6= l(b)

Note that since there are 7 distinct layers, a USL can have at most seven
members. All standard set operations on USLs are always performed on sets of
categories (and therefore on sets of sequences), layer by layer.

3. Note that a category c can be written as c ∈ CL, while a catset κ can be written as
κ ⊆ CL



Chapitre 3

Symmetry Properties

3.1 Generalities
The mathematical concept of group consists of a set, of a binary operation,

and some properties when the operation is applied to members of the set. The
binary operation ~ on some set S associates to elements x and y of S a third
element x ~ y of S. Properties are associativity (∀x, y, z ∈ S, (x ~ y) ~ z =
x~ (y~z)), existence of an identity element and existence of an inverse element
for each element of S.

By denoting the identity element of a group S as x1 and inverse element x−1

for each x ∈ S , the following are the basic properties of groups :

Proposition 3.1.1. A group (S,~) has exactly one identity element x1 satis-
fying ∀x ∈ S, x~ x1 = x1 ~ x = x

Démonstration. Assume that some i ∈ S, has the property i ~ x = x, ∀x ∈ S.
Then we have i = i ~ x1 = x1. Similarly, if i ∈ S has the property x ~ i =
x, ∀x ∈ S, then we have i = x1 ~ i = x1.

Proposition 3.1.2. A group (S,~) has exactly one inverse element x−1 for
each x ∈ S.

Démonstration. From the group properties, there exists an element x−1 ∈ S
with the property x ~ x−1 = x−1 ~ x = x1, ∀x ∈ S. For any i ∈ S with the
property x~ i = x1, then i = x1 ~ i = (x−1 ~x)~ i = x−1 ~(x~ i) = x−1 ~x1 =
x−1. Similarly for any element with the property i~x = x1, then i = x−1, which
implies that the inverse of any x ∈ S is uniquely determined.

Proposition 3.1.3. For any elements x, y of a group (S,~), (x ~ y)−1 =
y−1 ~ x−1

Démonstration. We verify that (x~ y) ~ (y−1 ~x−1) = x~ (y~ (y−1 ~x−1)) =
x~ (y~y−1(~x−1)) = x~ (x1 ~x−1) = x~x−1 = x1. Similar result is obtained
for (y−1~x−1)~(x~y), which implies that the inverse of (x~y) is y−1~x−1.

The group structure can be extended by adding operations, leading to a
two-operation structure called a ring ; or by adding properties (for example, the
addition of the commutativity property - x~ y = y ~ x, ∀x, y ∈ S - creates an
abelian group). Removing properties leads to simpler structures called groupoids.

11
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3.2 Semantic Categories
For any category c we can define a function f : c→ c that is injective, ∀x, y ∈

c, f(x) = f(y) → x = y (one-to-one function) and total, ∀x ∈ c, f(x) ∈ c. We
gather all distinct functions in a set :

Fc = {fi |∃x ∈ c, i 6= j, fi(x) 6= fj(x)} (3.1)

There are |c|! such functions, and they represent all the possible permutations
of the set c. For any functions fi,fj ∈ Fc the output of one can be used as input
to the other, resulting in function composition : (fi ◦fj)(s) , fi(fj(s)). We now
consider symmetry groups [4].

Proposition 3.2.1. The group G = (Fc, ◦), where the group operation is the
function composition, is a symmetry group.

Démonstration. Closure : clearly, successive applications of any f ∈ Fc is a one-
to-one mapping from the set c to the set c. Since Fc contains all one-to-one
functions for the set c, then fi ◦ fj = fk ∈ Fc.

Associativity : using the definition of function composition, ∀fi, fj , fk ∈
Fc, ((fi ◦ fj) ◦ fk)(s) = (fi(fj(fk(s)))). On the other hand, (fi ◦ (fj ◦ fk))(s) =
(fi(fj(fk(s)))).

Identity : let f0(s) = s,∀s ∈ c. Clearly f0 ∈ Fc. We now have (f0 ◦ fi)(s) =
f0(fi(s)) = fi(s), and on the other hand (fi ◦ f0)(s) = fi(f0(s)) = fi(s).

Inverse : let fi(s) = z,∀fi ∈ Fc We define f−1
i (z) = s. Then, (fi ◦ f−1

i )(z) =
fi(f−1

i (z)) = z = f0(z) and on the other hand, (f−1
i ◦fi)(s) = f−1

i (fi(s)) = s =
f0(s). Since f−1

i (z) is a one-to-one function on c, then f−1
i (z) ∈ Fc.

3.3 Catsets and USLs
From definition 2.4.1, a catset contains distinct categories of the same layer.

Since the language LIEML is finite, the number of distinct categories of the same
layer are given by the size of the set CL. In general then, by considering CL as
a group, we obtain a special type called a ring [4] as shown in the following
proposition :

Proposition 3.3.1. The group G = (CL,⊕,⊗) with the set difference (∆) and
the set intersection (∩) operations, is a ring.

Démonstration. Symmetric set difference results in members which are in either
set, but not in both : for sets A and B, it is (A\B)∪(B\A). Then ∀A,B,C ⊆ CL :

The group (CL,⊕) is an Abelian group since ∀ci, cj ∈ CL, ci ⊕ cj ∈ CL by
the powerset definition (closure), (A⊕B)⊕C = A⊕ (B⊕C) by associativity of
the set union operation (associativity), A⊕B = B⊕A by commutativity of the
set union operation (commutativity), ∃c0 ∈ CL, ∀ci ∈ CL, ci⊕ c0 = c0⊕ ci = ci
where c0 = ∅ (identity), ∃c−1

i ∈ CL, ∀ci ∈ CL, ci ⊕ c
−1
i = c−1

i ⊕ ci = c0 where
c−1
i = ci (inverse) .

The group (CL,⊗) is a monoid since ∀ci, cj ∈ CL, ci ⊗ cj ∈ CL by the
powerset definition (closure), (A⊗B)⊗C = A⊗(B⊗C) by associativity of the set
intersection operation (associativity), ∃c0 ∈ CL, ∀ci ∈ CL, ci⊗c0 = c0⊗ci = ci
where c0 = ∅ (identity).
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The multiplication distributes over the addition operation : ∀ci, cj , ck ∈
CL, ci⊗(cj⊕ck) = (ci⊗cj)⊕(ci⊗ck) and (ci⊕cj)⊗ck = (ci⊗ck)⊕(cj⊗ck) by
distributivity of the set intersection operation over the set symmetric difference
operation.

From definition 2.4.2, a USL is a set of catsets of different layers. Since at
each layer L there is |CL| distinct catsets, the whole semantic space is defined
by the tuple

USL = C0 × C1 × C2 × C3 × C4 × C5 × C6 (3.2)

Considering USL as a group, we obtain the following proposition :

Proposition 3.3.2. The group GUSL = (USL,⊕,⊗) with the symmetric set
difference (∆) and the set intersection (∩) operations applied at each layer, is a
ring [4].

Démonstration. The proof follows the proof for proposition 3.3.1.

3.4 Transformational Symmetry
We describe transformational symmetries using the concept of categories [1],

C = (O,M, ◦) (3.3)

where O is a collection of objects, M a collection of morphisms between two
members of the objects’ collection, and a binary composition operation between
compatible morphisms. The following also holds : ∀a, b, c ∈ O, if u = (a→ b) ∈
M and v = (b → c) ∈ M then ∃w = u ◦ v = (a → c) ∈ M ; ∀u, v, w ∈ M , if
(u ◦ v) ◦w ∈M then (u ◦ v) ◦w = u ◦ (v ◦w) ∈M ; ∀a ∈ O, ∃ia ∈M such that
∀u = (a→ b), ia ◦ u = u ∧ u ◦ ia = u.

3.4.1 IEML language as a category
If we consider objects in the collection O to be subsets of LIEML from

equation 2.2 as an example, O = {oi | oi ⊂ LIEML;∀s ∈ oi, |s| = 3i; 0 ≤ i ≤ 6}
then morphisms are given by M = {mi | mi = (oi → oi+1); 0 ≤ i ≤ 5}. The
specific function represented by the morphism is the triplication total function,
ft : oi → oi+1 defined in equation 2.3.

3.4.2 Role permutation symmetry
The collectionM in equation 3.3 also contains an automorphismmr = (oi →

oi) represented by an unary operation acting on specified roles of each sequence
of a semantic category (see section 2.3).

3.4.3 Seme permutation symmetry
The collectionM in equation 3.3 also contains an automorphismms = (oi →

oi) represented by an binary operation acting on the specified role and specified
semes of each sequence of a semantic category (see section 2.3).



Chapitre 4

Computability

4.1 Generalities
In order to demonstrate the computability of semantic transformations f :

S → S where S represents semantic variables (either categories, catsets or
USLs), we will use the finite state machine formalism. All operations based on
transformations of semantic variables are computable following the properties
of finite state machines.

4.1.1 Finite state machines
A finite state machine (FSM) can be defined [8] as :

Definition 4.1.1. (FSM) A finite state machine M is a synchronous system
represented by a quintuple M = (Σ,Γ, Q, δ, ω) with a finite input alphabet Σ =
{σ1, . . . , σi}, a finite output alphabet Γ = {γ1, . . . , γj}, a finite state set Q =
{q1, . . . , qn} and a pair of characterizing functions δ and ω given by qv+1 =
δ(qv, σv), γv = ω(qv, σv) where σv, γv, qv are the input symbol, output symbol
and state of M at v = 1, 2, . . .

Thus the input to the machine is a sequence of symbols σ1 . . . σk, and the
output of a machine is a sequence of symbols γ1 . . . γk.

In general, machines may change state even if there is no input, may have
multiple starting states and there may be none or more executable transition
rules. To accommodate those differences a transition mapping is defined as δn :
Q×Σ∗ → P(Q), where the return value is represented as a powerset of Q. The
output mapping can similarly be defined as ωn : Q × Σ∗ × Q → Γ∗. In those
nondeterministic cases, an alternative notation is more convenient, and instead
of the mappings δn and ωn, the transition relation ∆ is used :

Definition 4.1.2. (NFSM) A nondeterministic finite state machine M is a
tuple M = (Σ,Γ, Q,Q0,∆, F ) where Σ is a finite input alphabet, Γ is a finite
output alphabet, Q is a finite set of states, Q0 ⊆ Q are the initial states of the
machine, ∆ ⊂ Q × Σ∗ × Γ∗ × Q is the transition relation and F represent the
acceptance condition where F ⊆ Q.

Each transition relation (p, σ, γ, q) ∈ ∆, or edge from state p to state q can

be represented as p
σ|γ−→ q, where σ and γ play the role of input and output

14
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Condition Result
State Input State Output
i i+ 1
q0 - q2 1
q1 - q0 0
q2 0 q3 0
q2 1 q1 0
q3 0 q0 0
q3 1 q1 0

Table 4.1 – Representation of a machine using a transition table

labels of the edge respectively. Each input to the machine given an initial state
will describe a path which is a finite sequence [3] of relations represented as :

q0
σ1|γ1−→ q1

σ2|γ2−→ q2 · · ·
σn|γn−→ qn.

The input and output labels of the path are

σin = σ1σ2 . . . σn (4.1)

and

γout = γ1γ2 . . . γn (4.2)

respectively. The machine thus computes the relation (σin, γout) on Σ∗ × Γ∗. A
path is called successful if it starts from an initial state qs ∈ Q0 and ends in some
state qf that fulfills an acceptance condition, usually defined as qf ∈ F ⊆ Q.
In general then, and in contrast to deterministic machines, a nondeterministic
machine can have multiple successful paths for the same input label σin resulting
in a set of relations

R = {(σin, γout), (σin, κout) . . . (σin, ηout)} (4.3)

The description of a finite state machine is usually given in a transition
table (table 4.1) or transition graph (figure 4.1) [11] from which the δ and ω
functions can be obtained. For example, the same machine can be represented
by a transition table where rows are a subset of (Q×Σ×Q×Γ) relations, or a
transition graph where edges are labeled with a subset of (Σ× Γ) relations.

4.1.2 Finite state automata
A special form of the finite state machine is a deterministic automaton AD =

(Σ, Q, q0, δ, F ). An extended transition function δ̂ that returns a state p when
starting from any state q given any valid input sequence w is given by :

δ̂(q, w) = p (4.4)

where q ∈ Q and w ∈ Σ∗. This function is defined for all automata and we
show this by induction on the length of the input string :

Basis : q = δ̂(q, ε), which ensures that there is no state transition when there
is no input ;
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Figure 4.1 – Representation of a machine using a graph

Induction : set w as ua, where a is the last symbol and u is the original
string without the last symbol. Then,

δ̂(q, ua) = δ(δ̂(q, u), a) (4.5)

A language 1 L of AD denoted L(AD) [12] then is :

L(AD) = {w | δ̂(q0, w) ∈ F} (4.6)

We can define the state equivalence 2 in terms of the set F and equation 4.4
as follows. Two states p, q ∈ Q are equivalent if and only if ∀s ∈ Σ∗, δ̂(p, s) ∈
F ∧ δ̂(q, s) ∈ F . In general, two automata are equivalent iff L(Ai) = L(Aj),
that is, L(Ai) ⊆ L(Aj) and L(Aj) ⊆ L(Ai). Looking forward, state equivalence
gives us a method to determine if USLs are equivalent.

Languages accepted by finite-state automata are called regular languages.
Given two languages L(Ai) and L(Aj), then the operations shown in Table
4.2 result in some other regular language accepted by automaton Ak [10]. The
Kleene-star of a language represents the set of those strings that can be obtained
by taking any number of strings from that language and concatenating them.

4.1.3 Finite state transducers
Depending on the problem at hand, finite-state transducers can be interpre-

ted in the following ways [16]. We can view finite-state transducers as finite-state
automata with an alphabet Σ = Σ1×Σ2, accepting or rejecting string pairs (a, b)
where a ∈ Σ∗1 and b ∈ Σ∗2. This automaton is given by A = (Σ, Q, q0, δ, F ) where
F ⊆ Q represents some acceptance condition consistent with the problem at

1. A regular expression can also be used to specify all regular languages. Algorithmic
procedures exists to convert from a regular expression to a finite state automaton and vice
versa.

2. If R is a relation on S × S, then R is reflexive if (a, a) ∈ R ∀ a ∈ S, R is symmetric if
(b, a) ∈ R then (a, b) ∈ R and R is transitive if (a, b) ∈ R and (b, c) ∈ R then (a, c) ∈ R. An
equivalence relation (≡) is reflexive, symmetric and transitive. Equivalence relations give rise
to equivalence classes that contain all and only related members.
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Operation Representation
Union L(Ak) = L(Ai) ∪ L(Aj)
Intersection L(Ak) = L(Ai) ∩ L(Aj)
Difference L(Ak) = L(Ai)− L(Aj)
Complementing L(Ak) = Σ∗ − L(Aj)
Concatenation L(Ak) = L(Ai)L(Aj)
Kleene-star L(Ak) = L(Ai)∗

Table 4.2 – Operations that result in regular languages

hand, and 3

δ = {(p, (a, b), q) | (p, a, b, q) ∈ Q× Σ∗1 × Σ∗2 ×Q} (4.7)

We can view finite-state transducers as translators when we consider a class
of mappings from strings defined on Σ∗ to sets of strings P(Γ∗). This mapping
is rational if it can be realized by some finite-state transducer. Assuming that
δ(q, σ) may return a set of states and using

ω̂(q, s) = ω̂(q, σs′) = ω(q, σ)ω̂(δ(q, σ), s′) = s′′ (4.8)

we can define a rational transduction t : Σ∗ → P(Γ∗) such that

t(si) = {so | ∃ ω̂(q0, si), si ∈ Σ∗} (4.9)

and a rational function if |t(si)| ≤ 1,∀si ∈ Σ∗(|t(s)| represents the number of
mappings for an input s.)

Finally, a finite-state transducer can be viewed as computing relations bet-
ween sets of strings 4. By analogy with finite-state automata accepting languages
if and only if they are regular, transducers accept (compute) relations if and only
if they are regular.

Regular relations are defined as [13] : {∅} and {(ai, aj) | ai, aj ∈ A}, where A
is some automata and a are strings. Furthermore, if Ra, Rb and Rc are regular
relations, then the following also describe regular relations :

1. Ra ·Rb = {(aibn, ajbm) | (ai, aj) ∈ Ra ∧ (bn, bm) ∈ Rb}
2. Ra ∪Rb = {(ri, rj) | (ri, rj) ∈ Ra ∨ (ri, rj) ∈ Rb}
3. ∪∞k=0R

k
c = ∅ ∪Rc ∪Rc ·Rc ∪Rc ·Rc ·Rc . . .

where Rk are k concatenations of R. By definition, thus, regular relations are
closed under the concatenation, union and Kleene-star operations. Operations
on regular relations that result in other regular relations are presented in Table
4.3. In contrast to the intersection operation on regular languages, regular rela-
tions are generally not closed under intersection. To use an oft-cited example,
two regular relations 5 R1 = (anb∗, cn) and R2 = (a∗bn, cn) relate a regular

3. This can also be seen as a class of directed graphs where states are vertices and labeled
edges are given by E ⊆ Q× Σ∗

1 × Σ∗
2 ×Q

4. Any subset of the cross-product (including the empty set) between two sets, A × B =
{(a, b) | a ∈ A, b ∈ B}, is a binary relation over A×B

5. where the superscript n denotes n-repetitions of a given symbol, and ∗ denotes an infinite
repetition of a given symbol
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Operation Representation
Union R(Mk) = R(Mi) ∪R(Mj)
Complementing Generally not closed
Difference Generally not closed
Concatenation R(Mk) = R(Mi)R(Mj)
Kleene-star R(Mk) = R(Mi)∗

Intersection Generally not closed
Cross product R(Mk) = L(Ai)× L(Aj)
Composition R(Mk) = R(Mi) ◦R(Mj)

Table 4.3 – Operations that result in regular relations

language into another regular language, however R1 ∩R2 = (anbn, cn) relates a
non-regular language into a regular language.

If we use the output of one machine as the input into another, the machines
are then connected in series (or cascade). It is possible to combine the individual
machines into one equivalent machine through the composition operation. Using
the definitions for the finite-state machines Mi = (Σ, H,Qi, δi, ωi) and Mj =
(H,Γ, Qj , δj , ωj), then we obtain Mk = (Σ,Γ, Qi ×Qj , δk, ωk) where,

δk((p, q), σ) = {(p′
, q

′
) | δi(σ, p) = p

′
, δj(ωi(σ, p), q) = q

′}
ωk((p, q), σ) = {σ′ | σ′ = ωj(ωi(σ, p), q)}

(4.10)

The input strings LI(M) = {s ∈ Σ∗ | ∃(s, z) ∈ R(M)} and output strings
LO(M) = {z ∈ Γ∗ | ∃(s, z) ∈ R(M)} (and thus the input and output automata)
can be retrieved from transducer M through projection operations.

We can also combine machines in parallel. Using definitions for the finite-
state machines Mi = (Σ,Γ, Qi, δi, ωi) and Mj = (Σ,Γ, Qj , δj , ωj), we obtain
Mk = (Σ,Γ, Qi ×Qj , δk, ωk) where,

δk((p, q), σ) = {(p′
, q

′
) | δi(p, σ) = p

′ ∧ δj(q, σ) = q
′ ∧ ∃ ωk((p, q), σ)}

ωk((p, q), σ) = {σ′ | ωi(p, σ) = σ′ ∧ ωj(q, σ) = σ′}
(4.11)

Parallel connection is associative and commutative and is only defined in
case all machines are ε-free 6, and the number of resulting states is in practice
less than the product of the number of states of the component machines since
many states are undefined or unreachable.

4.2 Transformations of Categories
This section is concerned with showing that any category can be transfor-

med into anther category (including itself). Our inputs and outputs are regular
languages (the set of all strings recognized by some finite state automaton), and
the space of all possible combinations consists of each and every input matched
to each and every output. If a machine is presented with any pair of input and
output strings and eventually halts in an accepting state, then we have shown

6. Machines that are ε-free do not have transitions without a labelling symbol, as would
be the case in a spurious transition
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that any category can indeed be transformed into any other category. The proof
that transformation of a category into another category is computable, is based
on the construction of an appropriate transducer. To show that a transducer
can be created that recognizes L(A1) × L(A2) relations, we use the following
reasoning : as our starting point, we use definitions of L(A1)and L(A2) to define
the transducer T . We then show that this transducer has the property that it
maps every word in L(A1) to a word in L(A2). We do this by showing that T is
in a final state if and only if both automata representing L(A1) and L(A2) are
also in final states. We conclude that a transducer T that computes any valid
input/output pair exists, unless L(A1) or L(A2) are themselves badly defined.

Theorem 4.2.1. Given any category c 6= ∅, there exists a finite state transducer
T that maps it to a subset of CL : ∀c ∈ CL ∃T | c′ = T (c), c′ ⊆ CL. The com-
putability of this mapping follows directly from the existence of the transducer
T .

Démonstration. Representing categories as languages (equation 4.6), we need
to show that L(A1)× L(A2) relations are recognized by some transducer T . In
this case, L(A1) is the language of the automaton A1 = (Σ, Q1, q1, F1, δ1) re-
presenting the category c and L(A2) is the language of the automaton A2 =
(Σ, Q2, q2, F2, δ2) representing the category c′. We set T = (Σ ∪ {ε} , Q1 ×
Q2, (q1, q2), F1 × F2, δT ). The transition function δT is defined as :

δT ((q1, q2), a, b) = δ1(q1, a)× δ2(q2, b) (4.12)
where q1 ∈ Q1; q2 ∈ Q2; a, b ∈ Σ∪{ε} and we need to show that that for any

pair (u, v) where u, v ∈ Σ∗, T is in a final accepting state (fn, fm) ∈ F1 × F2 if
and only if machines A1 and A2 are in accepting states fn and fm respectively.
To achieve this, we must show that the following equation holds :

δ̂T ((q1, q2), x, y) = δ̂1(q1, x)× δ̂2(q2, y) (4.13)
By induction on the number of transitions (or length of input string if the

transducer is deterministic) we have :
Basis : δ̂T ((q1, q2), ε, ε) = δT ((q1, q2), ε, ε) = δ1(q1, ε)× δ2(q2, ε) = δ̂1(q1, ε)×

δ̂2(q2, ε) ;
Induction : δ̂T ((q1, q2), ua, vb) = δT (δ̂T ((q1, q2), u, v), a, b) using equation

4.5 ; δT (δ̂T ((q1, q2), u, v), a, b) = δT (δ̂1(q1, u)× δ̂2(q2, v), a, b) is the inductive step
from equation 4.13 ; δT (δ̂1(q1, u)×δ̂2(q2, v), a, b) = δ1(δ̂1(q1, u), a)×δ2(δ̂2(q2, v), b)
using equation 4.12 ; and finally, δ1(δ̂1(q1, u), a)× δ2(δ̂2(q2, v), b) = δ̂1(q1, ua)×
δ̂2(q2, vb) using equation 4.5. The transducer T is therefore in accepting state if
and only if both A1 and A2 are also in accepting states.

4.3 Transformations of Catsets and USLs
Since catsets are sets of categories and USLs are sets of catsets, we use

Theorem 4.2.1 to show that the transformation of catsets and USLs is also
computable..

Theorem 4.3.1. Given any catset κi 6= ∅, there exists a finite state transducer
T that maps κi to some catset κo. The computability of this mapping follows
directly from the existence of the transducer T .
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0 1 2 3
s/s b/t t/b

Figure 4.2 – Seme exchange (attribute ⇔ mode) operation for the category
{s, b, t}

Démonstration. The transformation of a catset κi into a catset κo implies that
each category in the catset ci ∈ κi is transformed into some category co ∈ κo.
Both ci and co represent languages, and we can represent catsets in terms of
languages : Lκ =

⋃m
n=0, cn∈κ cn . Setting Lκi

and Lκo
to be languages of the

catsets κi and κo respectively, where both Lκi
and Lκo

are subsets of LIEML by
equation 2.9, we first obtain two automata recognizing Lκi

and Lκo
and then

we follow the same reasoning as in Theorem 4.2.1 to show the existence of a
transducer T which encodes the relation between Lκi and Lκo .

Theorem 4.3.2. Given any USL ui 6= ∅, there exists a finite state transducer T
that maps ui to some USL uo. The computability of this mapping follows directly
from the existence of the transducer T .

Démonstration. To show the existence of a transducer T which performs the
mapping uo = T (ui), theorem 4.3.1 is used : since a transducer which performs
the mapping κo = t(κi) exists for every κi ∈ ui and κo ∈ uo, and transducers
are closed under union operation (see table 4.3), then T =

⋃6
n=0 tn, where tn is

the transducer which performs the mapping κno = tn(κni ).

4.4 Examples of Transformational Operations
This section discusses operations on IEML categories and is grounded in the

result of Theorem 4.2.1. Although that theorem ensures that there is a machine
for a particular operation, it does not detail how to create that machine. The
following examples show machines performing a given operation.

4.4.1 Seme exchange
The following machine performs a simple seme exchange on a category :

Σ = Γ = {s, b, t}
Q = {0, 1, 2, 3}
Q0 = {0}
∆ = {(0, s, s, 1), (1, b, t, 2), (2, t, b, 3)}
F = {3}

(4.14)

The machine defined by equation 4.14 takes as input a category {s, b, t} and
outputs the {s, t, b} category, and is shown in figure 4.2.
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0

1

2

3

4

s/s

b/b

t/t

b/b

t/t

t/t

Figure 4.3 – Powerset operation for the category {s, b, t}

4.4.2 Powerset operation
Considering the category Power Set function, we can readily construct a

finite state machine using definition 4.1.2 to represent it :

Σ = Γ = {s, b, t}
Q = {0, 1, 2, 3, 4}
Q0 = {0}
∆ = {(0, s, s, 1), (0, b, b, 2), (0, t, t, 3), (1, b, b, 2), (1, t, t, 4), (2, t, t, 4)}
F = {1, 2, 3, 4}

(4.15)

The machine defined by equation 4.15 produces/recognizes the set s̄ :

s̄ = {{s}, {b}, {t}, {s, b}, {s, t}, {b, t}, {s, b, t}} (4.16)

, and is shown in figure 4.3. In that figure, the state 0 is the starting state and
the double circles represent final - or accepting - states. As an example, if the
input to the machine is s while the machine is in the starting state, the machine
will output s and move to state 1. In this state it only accepts b and t which
move the machine to states 2 and 4 respectively. At this point the machine
produced/recognized the set s̄ :

s̄ = {{s}, {s, b}, {s, t}} (4.17)

4.4.3 Partition operation
The partition operation requires a basis, role address and a partitioner. In

mathematical terms, the basis is a set S (possibly of other sets), the role address
is an expression of which part of any s ∈ S partition occurs, and the partitioner
specifies the exact partition to perform. This operation maps sets of layer l to
sets of layer l, Sl → P l such that s ∈ S ⇐⇒ s ∈

⋃
i pi where pi ∈ P and⋂

i pi = ∅.
A finite state machine that represents this operation is a non-deterministic

transducer. For example, one partition of a category

f = {u, a, s, b, t} (4.18)
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f/s
f/b

f/u

f/t

f/a

5

Figure 4.4 – Partition operation for the category f = {u, a, s, b, t}

is the set {{s}, {b}, {t}, {u}, {a}} which is represented by the following machine :

Σ = {s, b, t, u, a}
Γ = {s, b, t, u, a}
Q = {0, 1, 2, 3, 4, 5}

Q0 = {0}
∆ = {(0, f, s, 1), (0, f, b, 2), (0, f, t, 3), (0, f, u, 4), (0, f, a, 5)}

F = {1, 2, 3, 4, 5}

(4.19)

The machine defined by equation 4.19 produces/recognizes the set s̄ :

s̄ = {{s}, {b}, {t}, {u}, {a}} (4.20)

, and is shown in figure 4.4. In that figure, the state 0 is the starting state and
the double circles represent final - or accepting - states.

4.4.4 Rotation operation
The rotation operation requires a basis, role address and a rotor. In mathe-

matical terms, the basis is a set S, the role address is an expression on which
part of any s ∈ S the rotation occurs, and the rotor specifies the exact rotation
to perform. In general, this operation maps sets of layer l to sets of layer l,
Sl → P l.

A finite state machine that represents this operation is a non-deterministic
transducer. One rotation of a category {s, b, t} is the set s̄ :

s̄ = {{s, s, t}, {s, b, t}, {s, t, t}} (4.21)

assuming the rotor is given by {{s}, {b}, {t}} and the role address is the attri-
bute, which is represented by the following machine :
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s/s

b/s

b/t

t/tb/b

t/t
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t/t

Figure 4.5 – Rotation operation for the category {s, b, t} with {{s}, {b}, {t}}
rotor

Σ = Γ = {s, b, t}
Q = {0, 1, 2, 3, 4, 5}

Q0 = {0}
∆ = {(0, s, s, 1), (1, b, s, 2), (1, b, b, 3), (1, b, t, 4), (2, t, t, 5), (3, t, t, 5), (4, t, t, 5)}

F = {5}
(4.22)

It is to be noted that the role address will decide where the non-determinism
will occur : in the given example, it is on the second state. The machine defined
by equation 5.4 produces/recognizes the set s̄ :

s̄ = {{s, s, t}, {s, b, t}, {s, t, t}} (4.23)

and is shown in figure 4.5. In that figure, the state 0 is the starting state and
the double circle represents final - or accepting - state.

4.4.5 Supertriplication operation
The supertriplication operation is the union of all applicable triplication

operations (see equation 2.3). Once transducers for triplication operations are
defined, a union operation on those transducers is performed, which results in
another transducer (transducers are closed under union operation, see Table
4.3) The supertriplication operation is thus also represented by a (composite)
transducer.

4.4.6 Superselection operation
For any given layer, assigning a particular order to sets, allows us to perform

a superselection operation on those sets. In mathematical terms, given two orde-
red sets A and B where |A| = |B|, A×B → C, where ∀cij ∈ C, ai ∈ cij∧bj ∈ cij .
The superselection operation results in a regular IEML matrix.
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4.4.7 Matrix concatenation operation
Matrices can be concatenated together and is obtained by the union of sets

representing the matrices. Note that this is not the same as a union operation
on the underlying sets. Assume that A × B → C, A

′ × B
′ → C

′
, then in

the former case we have C ∪ C ′
= C

′′
whereas in the latter we would obtain

(A ∪A′
)× (B ∪B′

) = C ∪ C ′ ∪A×B′ ∪A′ ×B.
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Relations Model

5.1 Generalities
Relations are modeled with graphs. A graph is a tuple G = (V,E) of two

sets, such that E is the set of two-element subsets of V : E ⊆ [V ]2. For instance,
if V = {a, b, c, d} then [V ]2 = {{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d} and E
can be represented by {{a, b}, {b, c}}. In general, the number of members of
the set [V ]k (k-element subsets of V ) is a combination of n elements picked k
at-a-time without repetition and can be expressed as n!

k!(n−k)! .
If the vertices are the categories of a set, and the edges represent relations

between those categories, the resulting graph models the network of relations
between categories of a particular set. Similarly, if the vertices represent sets of
categories, and the edges represent relations between those sets, the resulting
graph models the network of relations between sets of categories.

The number of vertices of a graph is its order and is represented as |G|, while
the number of edges is represented as ||G||. Graphs can be finite, denumerable
or infinite, depending on its order. Edges connect vertices, and two vertices a,
b are said to be adjacent if the edge ab ∈ G.

5.1.1 Relation similarity and nesting
Two graphs are isomorphic if there exists a bijection φ : V → V ′ with

ab ∈ E ⇐⇒ φ(a)φ(b) ∈ E′ for all a, b ∈ V . In essence there must exist a
mapping between vertices of the two graphs such that all the edges are preserved.
Existence of isomorphism signifies that the structure of a particular relation is
similar to the structure of another relation.

A subgraph G′ of G is denoted G′ ⊆ G and requires that V ′ ⊆ V and
E′ ⊆ E. For a subgraph G′, if it contains all edges ab ∈ E with a, b ∈ V ′ then it
is an induced subgraph of G and is denoted G′ = G [V ′]. Subgraphs efficiently
represent nesting of relations.

5.1.2 Connectedness of relations
The degree d(v) of a vertex v is the number of edges at v. The mini-

mum and maximum degree (not order) of a graph is represented as δ(G) ,

25
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min {d(v)|v ∈ V } and ∆(G) , max {d(v)|v ∈ V } respectively, while the ave-
rage degree of a graph is given by : 1

|V |Σv∈V d(v). If all the vertices have the
same degree, then the graph is regular (e.g. cubic graph, for degree 3).

5.1.3 Hierarchical relations and trees
A relation may represent some hierarchy, which is represented as a tree.

A graph G not containing any cycles is a forest. If such graph is furthermore
connected, then it is called a tree. Some general properties of trees are as follows,
and hold for any type of semantic relation that is represented as a tree :

Proposition 5.1.1. For a graph G, if any two vertices are connected by a
unique path, then G is a tree.

Démonstration. The graph is connected since there is a path between any two
vertices. A cycle requires two paths between the same vertices. A unique path
between any two vertices in a graph therefore implies that there are no cycles
in the graph.

Proposition 5.1.2. For a tree T , the path connecting any two vertices of T is
unique.

Démonstration. All vertices are connected, and since there are no cycles in T ,
the path connecting any two vertices must be unique.

Proposition 5.1.3. If a new edge joins two vertices in a tree T, then a cycle
is formed.

Démonstration. Since T is a tree, then there is a unique path from c to u and
from c to v, ∀ c, u, v ∈ T . If a new edge joins u and v, a cycle c . . . uv . . . c is
formed.

Proposition 5.1.4. A tree T with n vertices has n− 1 edges.

Démonstration. (informal) A tree with one vertex has no edges. Adding a second
and subsequent vertex to the tree results in the addition of exactly one edge : it
cannot be less since the graph would not be connected, and it cannot be more
since a cycle would be created.

5.1.4 Basic relation operations
Union of two graphs G and G′ is, by definition, G∪G′ , (V ∪V ′, E∪E′), that

is, the union of the graphs respective vertices and edges. Similarly, intersection
of two graphs is, by definition, G ∩ G′ , (V ∩ V ′, E ∩ E′). Difference between
two graphs is obtained by deleting all common vertices and their incident edges
. Many other operations on graphs exist. For example, if G and G′ are disjoint
graphs (where V ∩ V ′ = ∅), then G ∗ G′ is the graph obtained from G ∪ G′
after joining all vertices of G with all vertices in G′. Another example is the
complement on G, denoted Ḡ, which is the graph on V with Ē = [V ]2\E.
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sbt bbb

sss

ttt

ssb

bbs

sst

bbt

tts

Figure 5.1 – Graphical representation of some relation. The highlighted portion
is a path between sbt and sst and can be viewed as a category {sbt, sss, bbs, sst}.

5.1.5 Relation paths
A path is a graph P = (V,E) such that

V = {x1, x2, . . . , xn} (5.1)

and

E = {x1x2, x2x3, . . . xn−1xn} (5.2)

and can be represented as a sequence of vertices, x1x2 . . . xn. A graph G is
connected if any two of its vertices are linked by some path in G. Paths can
represent IEML categories (see figure 5.1) and such a representation provides
an interesting manner to describe catsets and USLs.

5.1.6 Relation cycles
Given a path P = x1x2 . . . xn−1 where n > 3 then the graph C = P+xn−1x1

is a cycle (two edges connecting the same vertices in an undirected graph is
treated as one edge). The minimum and maximum length of a cycle contained
in a graph G are called girth and circumference respectively. In the case of a
tree (see section 5.1.3), the girth is set to ∞ and the circumference to 0.

5.1.7 Relation distances
The distance between two vertices x and y of a graph G, dG(x, y) is the

length of the shortest path between x and y. If no such path exists, the distance
is ∞.

The eccentricity of any vertex x is the maximum distance between x and
any other vertex in the graph G. A graph’s diameter is given by the maximum
of its vertice eccentricities, diamG = maxy∈V (G)(dG(x, y)) and its radius by the
minimum of its vertice eccentricities, radG = minx∈V (G)(diamG) . A vertex
in a graph whose distance to any other vertex is less or equal to the graph’s
radius is central in that graph. Radius and minimum degree of a graph that
represents any type of semantic relation can be used for classification purposes.
For example, a graph G of radius at most k and of degree d ≥ 3 representing
any type of semantic relation has less than d

d−2 (d− 1)k vertices.
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Démonstration. Let z be a central vertex in G and Di the set of vertices of G
at a distance of i from z. The total number of vertices in G is given by V (G) =⋃k
i=0Di. The following is true: for i = 0, |D0| = 1 since it contains only the

vertex z, for i = 1, |D1| 6 d since it cannot exceed the graph’s maximum degree.
For i > 1, the following holds, |Di+1| 6 (d − 1)|Di| since each vertex in Di+1

shares at least one edge with a vertex inDi. We obtain |Di+1| 6 d(d−1)i, ∀i < k.
The number of vertices in G is therefore |V (G)| 6

∑k
i=0 |Di| = 1+

∑k−1
i=0 |Di+1|.

The sum sk =
∑k−1
i=0 (d−1)i can be rewritten as sk = 1+(d−1)+(d−1)2 + . . .+

(d − 1)k−1 and can be subtracted from sk(d − 1) which gives sk(d − 1) − sk =
(d − 1)k − 1. Solving for sk gives (d−1)k−1

d−2 . Replacing this in the previous

equation, we obtain |V (G)| 6 1 + d (d−1)k−1
d−2 < d

d−2 (d− 1)k since d
d−2 > 1

5.2 Relations and Semantic Graphs
Semantic graphs are a representation of the semantic relations found between

IEML expressions : categories, catsets and USLs.

5.2.1 Linear order relations
Any graph G = (V,E) that is a tree (see section 5.1.3) and where ∀v ∈ V ,

the degree (see section 5.1.2) always conforms to 0 < d(v) ≤ 2, describes a path
(see section 5.1.5). The edges E of those graphs define a linear-order relation
between categories, catsets and USLs. Many such graphs can exist, depending
on the exact ordering criteria.

5.2.2 Set-subset relations
This type of relation occurs only between categories of the same layer. In

the general case all categories that are in a set-subset relation are given by
CrL ⊆ CL × CL where CrL is given by :

CrL = {{ci, cj} | ci, cj ∈ CL, ci ⊆ cj} (5.3)

The graph G = (V,E) is given by :

V = CL
E = CrL

(5.4)

Set-subset relations can also be constructed for particular cases by obtaining
the powerset of the category of interest which defines vertices V , and applying
the formula in equation 5.4. A representation for the category {sbt, sbb, sss} is
shown in figure 5.2.

Set-subset relations are also applicable to catsets and USLs : two different
catsets are in a set-subset relation if and only if there exists a category in both
catsets that are in a set-subset relation ; two different USL are in a set-subset
relation if and only if there exists a catset in both USLs that are in a set-subset
relation.

In the general case, all catsets that are in a set-subset relation are given by
κrL ⊆ CL × CL where κrL is given by :
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{sbt,
sbb,
sss}

{sbt,
sss}

{sbt,
sbb}

{sbb,
sss}

{sbt}{sss}

{sbb}

Figure 5.2 – Graphical representation of set-subset relation for the category
{sbt, sbb, sss}.

κrL = {{κ, κj} | ∃ci ∈ κi,∃cj ∈ κj , {ci, cj} ∈ CrL} (5.5)

Similarly, all USLs that are in a set-subset relation are given by USLr ⊆
USL × USL where USLr is given by :

USLr = {{ui, uj} | ∃κi ∈ ui,∃κj ∈ uj , {κi, κj} ∈ κrL} (5.6)

5.2.3 Symmetric relations
This type of relation occurs between categories c and c′ of the same layer and

of the same cardinality (categories must contain the same number of sequences),
whenever there exists an automaton (see section 4.1.1) A which recognizes some
sub-sequence s ∈ LIEML in both c and c′, and a transducer (see section 4.1.3)
T which computes some relation cTc′ (transforms c into c′). The automaton A
describes a similarity at the level of symbolic arrangement (or syntactic level)
and is a necessary condition for the assertion of a semantic symmetry, while
the transducer T describes some semantic invariance combined to a semantic
variation. Both the A and T machines can be derived from the specific directory
(see section 6.4.5) containing categories of interest.

Catsets are in a symmetric relation if and only if there exists a category
in both catsets that are in a symmetric relation and USLs are in a symmetric
relation if and only if there exists a catset in both USLs that are in a symmetric
relation.

5.2.4 Etymological relations
An etymologic relation is in general a relation between a category at layer n

and one of its semes at layer n–n′ where 1 ≤ n′ < n. Depending on the directory
containing categories of interest, an etymological relation may or may not be
present. The graph representation of these relations has a tree structure.



Chapitre 6

Semantic Circuits

6.1 Paradigmatic Characters and Sequences
Using the alphabet defined by equation 2.17, we distinguish ten symbols in

Σ̄: {T}, {B}, {S}, {A}, {U}, {E}, {S,B, T, U,A,E}, {S,B, T, U,A}, {S,B, T}
and {U,A} which are a subset of the category language alphabet (see equation
2.17). These symbols, and only these symbols are called paradigmatic charac-
ters and form the paradigmatic alphabet Σ̄P . Usage of the Σ̄P alphabet allows
us to differentiate paradigmatic sequences among the sequences of the category
language (see section 2.3.1). IEML sequences are obtained from paradigmatic
sequences by performing a Cartesian product between all the sets of the paradig-
matic sequence. For instance, the paradigmatic sequence {S,B, T}{U,A}{E}
gives the IEML set of sequences {SUE, SAE, BUE, BAE, TUE, TAE}. Using
the definition in 2.1, paradigmatic sequences for 0 ≤ l ≤ 6 are given by the ge-
neral expression :

LPIEML = {s ∈ Σ̄∗P | |s| = 3l} (6.1)

where LPIEML ⊆ LIEML.

6.2 Paradigmatic Distance
Using Equation 3.2 we consider a set of functions F = {f1, f2, · · · , fn} where

∀f ∈ F, f : USL → USL (6.2)

and a directed graph Gp = (USL, E) where :

E = {(µi, µo) | (µi, µo) ∈ [USL]2 ∧ µo = f(µi), f ∈ F} (6.3)

The paradigmatic path between any two nodes a, b ∈ USL of the graph Gp
is a path on Gp (see Section 5.1.5), which leads to the following definition of a
paradigmatic distance :

Definition 6.2.1. The shortest path between any two vertices a, b of Gp is the
paradigmatic distance between a and b.

The shortest path can be calculated by algorithms presented in Section 7.2.

30
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6.3 Semantic circuits
Semantic circuits Sω are labeled and directed graphs G = (V,E) where

V ⊆ LIEML and all e ∈ E are a ternary relation (s,m, d) where (s, d) ∈ [V ]2

and m ∈ LIEML. We can show that the set of all semantic circuits Oc forms a
groupoid, capturing symmetries described in section 3.4.3 by the following proof:

Démonstration. The binary permutation operation ⊗ is partial 1 implying that
it is defined for some, but not all, members of Oc. The following properties hold :

– ∀a, b, c ∈ Oc, (a⊗ b)⊗ c→ a⊗ (b⊗ c)
– ∀a ∈ Oc, ∃a−1 ∈ Oc, a⊗ a−1 = ia
– ∀a, b ∈ Oc, a⊗ b→ a⊗ b⊗ b−1 = a
– a⊗ a−1 ⊗ b = b ; ∀a ∈ Oc, a⊗ a−1 ∈ Oc

These properties are necessary and sufficient to characterize a groupoid.

A particularly important subset of semantic circuits is the subset that pre-
serves the category (see section 3.4) structure given by equation 3.3. Consider
a subset of Oc such that ∀a ∈ Olc ⊂ Oc, s = m = d = 3l, 0 ≤ l ≤ 6.
The collection of Olc for 0 ≤ l ≤ 6, together with a collection of morphisms
Mc = {mc | mc = (olc → ol+1

c ); 0 ≤ l ≤ 5} and the triplication function
from equation 2.3 applied to (s,m, d) form the category S. We then can show
that the functor F from category C to S is a mapping from C to S such that :
ac ∈ Oc : F (ac) ∈ Os ; (xc → yc) ∈ Mc : (F (xc) → F (yc)) ∈ Os where
∀a ∈ Oc, F (1a) = 1F (a) and ∀a, b ∈ Mc, F (a ◦ b) = F (a) ◦ F (b). This is fun-
damental since it states that the category of IEML language can be mapped to
the category of semantic circuits.

6.4 Rhizomes
A rhizome Gρ(V,E) is a type of semantic circuit where V =

⋃
i Vi and

∀m,n ∈ Vi, ∃(m,n) ∈ E ∧ ∃(n,m) ∈ E. This type of semantic circuit is thus
composed of fully-connected subgraphs, or cliques.

6.4.1 Serial rhizome
A serial rhizome is a rhizome Gs = (Vs, Es) with the following properties :

Gs is a path (see section 5.1.5), Vs ⊆ LPIEML, ∀vi, vj , vk ∈ Vs, |vi| = |vj |, and
there is a binary relation ≤ on Vs such that : vi ≤ vj ∧ vj ≤ vi → vi = vj ,
vi ≤ vj ∧ vj ≤ vk → vi ≤ vk, vi ≤ vj ∨ vj ≤ vi.

6.4.2 Etymological rhizome
A etymological rhizome is a rhizome Ge = (Ve, Ee) with the following pro-

perties : Ge has a tree structure (see section 5.1.3), Ve ⊆ LPIEML, ∀ei, ej ∈ Ee,
ei 6= ej , ei ∈ substance ∪ attribute ∪ mode of equations 2.6, 2.7 and 2.8.

1. Weisstein, Eric W. "Partial Function." From MathWorld, A Wolfram Web Resource.
http ://mathworld.wolfram.com/PartialFunction.html
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6.4.3 Taxonomic rhizome
A taxonomic rhizome is a rhizome Gt = (Vt, Et) with the following pro-

perties : Gt is a tree (see section 5.1.3), Vt ⊆ LPIEML and ∀ei ∈ Et, ei =
{(vi, vj) | ∀j, vi =

⋃
j vj ∧

⋂
j vj = ∅}.

6.4.4 Paradigms
A paradigm P is the result of a union, intersection or symmetric difference

of taxonomic, etymological or serial rhizomes (see section 5.1.4).

6.4.5 Dictionary
A dictionary D is a paradigm where vertices have a one-to-one mapping to

natural languages.

6.5 Rhizomatic Operations
Algorithm 1 presents the general form of rhizomatic operations. The input

to the algorithm is a paradigmatic rhizome of degree n 2, and the output is
a paradigmatic rhizome of degree n + 1. The following terms are used in the
algorithm and are listed with explanatory notes :

– f(u) is one of the operations in section 4.4,
– cast promotes one parameter to the degree of the other parameter.

The complexity of algorithm is linear and proportional to the number of vertices
in the input rhizome. Purpose-designed algorithms for a specific operation from
section 4.4 may exhibit better performance characteristics.

6.6 Dialectic Function
A dialectical function zd : Sω×USL→ P (see section 4.4) returns a paradigm

given a semantic circuit and an USL.

6.7 Paradigmatic Function
A paradigmatic function zp : Sω × USL → Sω (see section 6.3) returns a

semantic circuit given a semantic circuit and an USL.

6.8 Syntagmatic Function
A syntagmatic function zs : D × USL → Gs (see section 6.4) returns a

rhizome given a dictionary (see section 6.4.5) and an USL. This function is
composed of sub-functions described in following sections.

2. A rhizome of degree n means that the longest path in its graph Gρ(V,E) is given by a
sequence of n+1 nodes (see section 5.1.5).
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Algorithme 1 : rhizomatic
input : Paradigmatic rhizome of degree n, Gns (V,E) (see section 6.4)
output : Paradigmatic rhizome of degree n+1, Gn+1

s (V,E)

begin
for all i do

Vi −→ U | |U | = |Vi| − 1;1

for all u,w ∈ U do
if |u| 6= |w| then

u←− cast(|w|);2

if f ∈ triplication (see equation 2.3) then
|U∗| = |u|+ 1;3

f(u) −→ U∗;4

for all x ∈ U∗ do
Ei ←− (u, x), (x, u);5

for all y ∈ U∗\x do
Ei ←− (x, y), (y, x);6

Gs(V,E)←− G(V,E);7

end

6.8.1 Morphogenetic function
Morpheme creation is implemented by Algorithm 2 and based on a set of

strings Sn where Sn = {s | s ∈ Lcat} (see equation 2.19). This algorithm is
recursive and takes as input D a state of the dictionary represented by S1, X
the category representedby S2 and outputsM , the set of morphemes represented
by S3. Note that given D and X, there is only one M . The following functions
are used :

– break which exits the enclosing loop,
– max which returns the longest string,
– cut which returns the remaining portion, or portions, of the string x after
the substring x∗ is removed from it. This function can be implemented
using standard regular expressions 3,

– comp which compares substrings and returns the longest common sub-
string 4.

The complexity of the algorithm is polynomial in the size of the set X.

6.8.2 Propositional genealogy function
Propositional genealogies are constructed by Algorithm 3. This algorithm

takes as the input the output of algorithm 2 and produces a semantic circuit re-
presenting the syntagmatic structure of a proposition (propositional genealogy).
The following functions are used :

– group method which groups together morphemes of same layer l,
– Algorithm 1 to create rhizomes of successive degree.

3. http ://en.wikipedia.org/wiki/Regular_expression
4. http ://en.wikipedia.org/wiki/Longest_common_substring_problem
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Algorithme 2 : morphogenetic
input : Set of sequences D and X
output : Set of sequences M
begin
|x∗| ←− 0;1

for all x ∈ X do
if |x| = 0 then

break;2

else
for all d ∈ D do

x∗ ←− max(x∗, comp(x, d));3

if |x∗| 6= 0 then
break;4

if |x∗| 6= 0 then
M ←− x∗;5

morphogenetic(cut(x, x∗), D);6

end

The complexity of the algorithm is linear in the size of the input set.

Algorithme 3 : propositional genealogy
input : Set of sequences M (see algorithm 2)
output : Graph Gs = (V,E) (see section 6.4)
begin

Ml ←− group(M, l);1

for all l do
V ←−

⋃
(∀m ∈Ml);2

for all k = |Ml − 1| do
E ←− {(a, b) | a 6= b, a, b ∈Ml};3

G0
s(V,E)←− rhizomatic(V,E) (see algorithm 1);4

for i = 1...7 do
Gis(V,E)←− rhizomatic(Gi−1

s (V,E));5

Gs(V,E)←− Gs(V,E) ∪Gis(V,E)) (see section 5.1.4);6

end

6.8.3 Capillarity construction function
Construction of capillarities 5 is performed by Algorithm 4. This algorithm

takes as input the output of Algorithm 3 and its output is a rhizome. It uses
the following functions :

– subgraph method which finds all graphs of degree n,

5. Given a root node, capillarities are the relations between all the leaves of that root node.
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– fill method which alternates source and destination of words, phrases,
etc.,

– isunivoque determines if a clause/period is univoque or not,
– clique creates a complete graph respectively.

The complexity of the algorithm is polynomial in the size of the input graph
Gi(V,E).

Algorithme 4 : capillarity construction
input : Degree n, Graph Gi(V,E) (see section 6.4)
output : Graph Go(V,E)
begin

Gn ←− subgraph(Gi(V,E)) ;1

for all g ∈ Gn do
E ←− E : g(V,E) ;2

if n = 0 then
for all v ∈ V do

if v 6= ∅ then
E ←− {(a, ∅, b) | a 6= b, a, b ∈ V };3

else
if n = 1 then

for all v, w ∈ V do
if v ∈ mode ∧ (w ∈ substance ∨ w ∈ attribute) then

E ←− {(a, ∅, b) | a 6= b, a, b ∈ V };4

else
for all v ∈ V do

if v = isunivoque then
vT ←− substance(v) ∧ attribute(v);5

vA ←− mode(v);6

E ←− fill{(vT , vA, vT )};7

else
vT ←− clique(v);8

vA ←− ∅;9

E ←− fill{(vT , vA, vT )};10

Go(V,E)←− g ∪Go(V,E);11

end



Chapitre 7

Quantitative Criteria for
Semantic Circuits

7.1 Structural Similarity Criterion

7.1.1 Generalities
Definition 7.1.1. Matrix A is a 2 dimensional array of objects of the same
class over a field 1 Ψ :

A = [aij ] =



a11 · · · a1j · · · a1N

...
...

...
ai1 · · · aij · · · aiN
...

...
...

aM1 · · · aMi · · · aMN

 , (7.1)

∀
{
i = 1 . . . N, j = 1 . . .M ;M,N ∈ Z

}
: aij ∈ Ψ ∴ A ∈ ΨN×M , (7.2)

where M,N are called matrix dimensions.

As long as the matrix entries aij have operations of addition and multipli-
cation defined on field Ψ, we can define matrix addition and multiplication over
matrices of compatible dimensions as follows.

Definition 7.1.2. For A ∈ ΨN×M and B ∈ ΨN×M :

A + B = [aij + bij ] . (7.3)

Definition 7.1.3. For A ∈ ΨN×M , B ∈ ΨM×K and C ∈ ΨN×K , C = AB
means that

[cij ] =

[
M∑
m=1

aimbmj

]
. (7.4)

1. A field is a ring (see 3.1) equipped with the operations of addition, substraction, multi-
plication and division that satisfy the axioms of closure, associativity, commutativity, identity,
inverse, and distributivity [17].

36
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It can be shown that matrix multiplication defined this way satisfies the
usual multiplication properties of associativity [19] :

(AB)C = A (BC) , (7.5)

and both left and right distributivity :

(A + B)C = AC + BC (7.6)

C (A + B) = CA + CB. (7.7)

As for the commutativity, even if BA exists, in general case commutativity does
not hold [18] :

AB 6= BA. (7.8)

One can also define another two useful concepts : identity matrix and matrix
inverse.

Definition 7.1.4. An identity matrix I is a matrix that satisfies Proposition
3.1.2 :

∀A ∈ ΨN×M∃I ∈ ΨM×M : AI = A (7.9)

Lemma 7.1.1. If Ψ is equipped with a scalar null element 0 :

∀a ∈ Ψ ∃0 ∈ Ψ : a+ 0 = a ∧ 0 · a = 0, (7.10)

and a scalar identity element 1 :

∀a ∈ Ψ ∃1 ∈ Ψ : 1 · a = a, (7.11)

the identity matrix I = [ιij ] ∈ ΨM×M for a matrix A ∈ ΨN×M can then be
computed as

ιij =

{
1 ⇔ i = j

0 ⇔ i 6= j
(7.12)

Démonstration. Substituting properties (7.10) and (7.11) into equation (7.4)
according to rule (7.12), we obtain

AI =

[
M∑
m=1

aimιmj

]
= [aijιjj ] = [aij · 1] = [aij ] = A (7.13)

It is trivial to also show that identity matrix multiplication is one of those
special cases where commutativity property does hold as long as the underlying
scalar multiplication on Ψ is commutative :

AI = IA = A. (7.14)

For the sake of simplicity, we will only define inverse of a square matrix
A ∈ ΨN×N . For a generalized treatment, the interested reader can be referred
to the Moore-Penrose pseudoinverse in e.g. [9].
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Definition 7.1.5. Matrix A−1 ∈ ΨN×N is called an inverse of A ∈ ΨN×N if
the following property holds :

AA−1 = A−1A = I. (7.15)

If A−1 does not exist, A is called a singular matrix.

Another useful concept in matrix algebra is a permutation matrix that allows
to identify matrices whose differences can be expressed as permutations of their
columns and rows.

Definition 7.1.6. Matrix P is called a permutation matrix if it satisfies the
following conditions :

1. P is a square binary matrix : P ∈ BN×N , B := {0, 1}.
2. P has exactly one identity entry per each row and each column and null

entries elsewhere : ∀i, j = 1 . . . N :
∑N
i=0 pij = 1 ∧

∑N
j=0 pij = 1.

7.1.2 Adjacency matrix
Matrices provide a convenient representation for the manipulation and study

of graphs. One of such matrices is the adjacency matrix of a graph representing
its connectivity [5].

Definition 7.1.7. For a graph G = (V,E), |E| = N its adjacency matrix is
a unique matrix A ∈ RN×N , where R is the set of real numbers. For a simple
graph G adjacency matrix A is computed the following way :

aij =

{
|vivj | ⇔ i 6= j

κ|vivi| ⇔ i = j
(7.16)

where |vivj | is the number of edges from vertex i to vertex j, and κ = 1 for
directed graphs and κ = 2 otherwise.

7.1.3 Graph isomorphism
Graphs that have the same structure and differ only in insignificant details,

such as numbering on vertices and edges, are studied using the notion of iso-
morphism [7].

Definition 7.1.8. Two graphs G1 and G2 with adjacency matrices A1 and A2

are called isomorphic if and only if there exists a permutation matrix P such
that

PA1P−1 = A2 (7.17)

Such definition of isomorphism naturally lends itself to testing if a particular
graph transformation is isomorphic. If the transform operator generates a matrix
that satisfies Definition 7.1.6, then the matrix is a permutation matrix and
condition (7.17) is satisfied automatically. On the other hand, proving a negative
proposition (i.e. that two graphs G1 and G2 are not isomorphic) requires a proof
of a negative proposition that there exist no such permutation that transforms
G1 into G2. A solution to this dilemma will be provided below in Section 7.1.4
(Lemma 7.1.3).
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7.1.4 Graph spectral theory
Definition 7.1.8, although mathematically rigorous, is not very practical.

More practical ways of studying graph isomorphisms, among other graph pro-
perties, are one of many applications of the spectral graph theory. Spectral
graph theory studies properties of graphs in relation to the eigenvalues [9] of
the matrices that completely describe the graph, such as the adjacency matrix,
the distance matrix, or admittance matrix (also called graph Laplacian, [19]).

Definition 7.1.9. A scalar λ ∈ C is an eigenvalue of a square matrix A if it
satisfies the following equation :

(A− λI ) q = 0, (7.18)

where A ∈ RN×N , I ∈ RN×N and q ∈ CN×1. The column vector q associated
with that eigenvalue is called an eigenvector.

In scalar terms, system (7.18) has N equations for N + 1 unknowns, so its
solution (λ,q) is not necessarily unique. It rather has up to N distinct solutions
which form multisets {λ1, . . . , λN} and {q1, . . . ,qN}.

Definition 7.1.10. A multiset of eigenvalues {λ1, . . . , λN} ∈ C of a matrix
A ∈ RN×N is called spectrum of A.

Lemma 7.1.2. If A ∈ RN×N is symmetrical, then all of its eigenvalues are real
numbers :

∀(i, j) = 1 . . . N : aij = aji ⇔ {λ1, . . . , λN} ∈ R (7.19)

and have an orthogonal set of eigenvectors :

∀(i, j) = 1 . . . N :
〈
q(i), q(j)

〉
6= 0⇔ i = j (7.20)

Corollary 7.1.1. Undirected graphs have real spectra (immediately follows from
(7.16)).

Definition 7.1.11. Two graphs G1 and G2 are called isospectral (cospectral)
if and only if they have identical spectra Λ(G1) = Λ(G2).

Lemma 7.1.3. Non-isospectral graphs are necessarily not isomorphic :

Λ(G1) 6= Λ(G2)⇒ @P : PA1P−1 = A2 (7.21)

Matrix spectra can be efficiently computed using the QR algorithm for re-
latively small matrices or the Lanczos algorithm for large sparse matrices [9].
Together with the result of Lemma 7.1.3 this provides a practical way of testing
for the absence of isomorphism between different graphs.

Spectral graph theory is currently a very active area of research in mathema-
tics, particularly for undirected graphs. Interested reader can be further referred
to [6] for an extensive review of the field.
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7.2 Shortest Path Criterion

7.2.1 Shortest path problem for unweighted graphs
In exploring graphs it is often interesting to compute the length of a shortest

path between a certain pair of vertices or, more generally, between all pairs of
vertices.

Definition 7.2.1. A graph G = (V,E) is called unweighted if distances between
every pair of adjacent vertices (i, j) are set to be the same ∀(i, j) = 1 . . . N : dij =
const. Otherwise, we will call the graph weighted.

Without loss of generality, it is often convenient to assume the basic distance
in an unweighted graph to be 1.

For unweighted graphs, this problem can be solved in a rather elegant way
by computing power series An of the adjacency matrix. An has an interesting
property as its entries a(n)

ij are equal to the number of paths of length n between
vertices i and j [5]. The following algorithm computes the distance matrix D ∈
ZN×N containing distances dij between vertices i and j.

Algorithme 5 : Computing distance matrix for unweighted graphs
input : Adjacency matrix A ∈ ZN×N
output : Distance matrix D ∈ ZN×N

begin
B← IN ∈ ZN×N ;1

D←∞N ∈ ZN×N ;2

for n = 1 to N do
C← BA ;3

for i = 1 to N do
for j = 1 to N do

if cij > 0 and bij = 0 then
dij ← n ;4

end

It follows rather obviously that Algorithm 5 has computational complexity
of N matrix multiplications or O(N3). It works for both directed and undirected
graphs and computes a complete set of all-pairs shortest path lengths measured
in terms of number of steps between the vertices.

7.2.2 Generalized shortest path problem
Semantic circuits (Section 6.3), however can be much more accurately re-

presented by weighted graphs where weights lij are assigned in an inversely
proportional way to the importance of connection between particular USLs. In
order to solve the all-pairs shortest path problem for the weighted graphs let
us define the fundamental distance matrix D(0) ∈ RN×N containing lengths of
all the paths of the first order, where arc denotes a function that checks if two
vertices are adjacent.
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Definition 7.2.2.

∀(i, j) = 1 . . . N : d(0)
i,j :=


0 ⇐ i = j

lij ⇐ ∃ arc(i, j)
∞ ⇐ @ arc(i, j)

(7.22)

The following iterative algorithm [2] is attributed to Floyd and Warshall and
is widely used in numerous applied fields, such as comparative genetics, circuit
analysis and operations research [15].

Algorithme 6 : Computing distance matrix for weighted graphs

input : P(0) ∈ RN×N , D(0) ∈ RN×N according to (7.22)
output : D(N), P(N)

begin
for i, j = 1 . . . N do

if i = j then
p
(0)
ij ← NaN (IEEE not-a-number value) ;1

else
p
(0)
ij ← i ;2

k ← 1 ;3

repeat
for all i, j = 1 . . . N do

d
(k)
ij ← min

[(
d
(k−1)
ij

)
,
(
d
(k−1)
ik + d

(k−1)
kj

)]
;4

if d(k)
ij 6= d

(k−1)
ij then

p
(k)
ij ← p

(k−1)
kj ;5

else
p
(k)
ij ← p

(k−1)
ij ;6

k ← k + 1 ;7

until k > N ;
end

On completion Algorithm 6 returns matrices D(N) and P(N) with d
(N)
ij

containing length of the shortest path between vertices i and j, while matrix
P(N) contains information that makes possible to trace these shortest paths.
Computational complexity of the algorithm is equal to N+1 iterations of O(N2)
each or O(N3) in total.
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