

Praise for this book

“Software Requirements, Third Edition, is the most valuable requirements guidance you will find.
Wiegers and Beatty cover the entire landscape of practices that today’s business analyst is expected
to know. Whether you are a veteran of requirements specification or a novice on your first project,
this is the book that needs to be on your desk or in your hands.”

—Gary K. Evans, Agile Coach and Use Case Expert, Evanetics, Inc.

“It’s a three-peat: Karl Wiegers and Joy Beatty score again with this third edition. From the first
 edition in 1999 through each successive edition, the guidance that Software Requirements provides
has been the foundation of my requirements consulting practice. To beginning and experienced
 practitioners alike, I cannot recommend this book highly enough.”

—Roxanne Miller, President, Requirements Quest

“The best book on requirements just got better! The third edition’s range of new topics expands
the project circumstances it covers. Using requirements in agile environments is perhaps the most
 significant, because everyone involved still needs to understand what a new system must do—and
agile developers are now an audience who ought to have a good grasp of what’s in this book.”

—Stephen Withall, author of Software Requirement Patterns

“The third edition of Software Requirements is finally available—and it was worth waiting so long. Full
of practical guidance, it helps readers identify many useful practices for their work. I particularly enjoy
the examples and many hands-on solutions that can be easily implemented in real-life scenarios.
A must-read, not only for requirements engineers and analysts but also for project managers.”

—Dr. Christof Ebert, Managing Director, Vector Consulting Services

“Karl and Joy have updated one of the seminal works on software requirements, taking what
was good and improving on it. This edition retains what made the previous versions must-have
 references for anyone working in this space and extends it to tackle the challenges faced in today’s
complex business and technology environment. Irrespective of the technology, business domain,
 methodology, or project type you are working in, this book will help you deliver better outcomes for
your customers.”

—Shane Hastie, Chief Knowledge Engineer, Software Education

“Karl Wiegers’s and Joy Beatty’s new book on requirements is an excellent addition to the literature.
Requirements for large software applications are one of the most difficult business topics of the century.
This new book will help to smooth out a very rough topic.”

—T. Capers Jones, VP and CTO, Namcook Analytics LLC

“Simply put, this book is both a must-read and a great reference for anyone working to define and
manage software development projects. In today’s modern software development world, too often
sound requirements practices are set aside for the lure of “unencumbered” agile. Karl and Joy have
detailed a progressive approach to managing requirements, and detailed how to accommodate the
ever-changing approaches to delivering software.”

—Mark Kulak, Software Development Director, Borland, a Micro Focus company

“I am so pleased to see the updated book on software requirements from Karl Wiegers and Joy
 Beatty. I especially like the latest topic on how to apply effective requirements practices to agile
projects, because it is a service that our consultants are engaged in more and more these days. The
practical guide and real examples of the many different requirement practices are invaluable.”

—Doreen Evans, Managing Director of the Requirements and Business Analysis Practice for Robbins Gioia Inc.

“As an early adopter of Karl’s classic book, Software Requirements, I have been eagerly awaiting his
new edition—and it doesn’t disappoint. Over the years, IT development has undergone a change of
focus from large, new, ‘green-field’ projects towards adoption of ready-made off-the-shelf solutions
and quick-release agile practices. In this latest edition, Karl and Joy explore the implications of these
new developments on the requirements process, with invaluable recommendations based not on
dogma but on what works, honed from their broad and deep experience in the field.”

—Howard Podeswa, CEO, Noble Inc., and author of The Business Analyst’s Handbook

“If you are looking for a practical guide into what software requirements are, how to craft them, and
what to do with them, then look no further than Software Requirements, Third Edition. This usable and
readable text walks you through exactly how to approach common requirements-related scenarios.
The incorporation of multiple stories, case studies, anecdotes, and examples keeps it engaging to
read.”

—Laura Brandenburg, CBAP, Host at Bridging the Gap

“How do you make a good requirements read better? You add content like Karl and Joy did to
 address incorporating product vision, tackling agility issues, covering requirements reuse, tackling
packaged and outsourced software, and addressing specific user classes. You could take an outside
look inside of requirements to address process and risk issues and go beyond just capturing
 functionality.”

—Donald J. Reifer, President, Reifer Consultants LLC

“This new edition keeps pace with the speed of business, both in deepening the foundation of the
second edition and in bringing analysts down-to-earth how-to’s for addressing the surge in agile
 development, using features to control scope, improving elicitation techniques, and expanding
 modeling. Wiegers and Beatty have put together a must-read for anyone in the profession.”

—Keith Ellis, President and CEO, Enfocus Solutions Inc., and author of Business Analysis Benchmark

Software Requirements,
Third Edition

Karl Wiegers and Joy Beatty

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2013 Karl Wiegers and Seilevel

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2013942928
ISBN: 978-0-7356-7966-5

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related to this
book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of this book at
http://www.microsoft.com/learning/booksurvey.

“Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.”

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions Editor: Devon Musgrave
Developmental Editors: Devon Musgrave and Carol Dillingham
Project Editor: Carol Dillingham
Editorial Production: Christian Holdener, S4Carlisle Publishing Services
Copyeditor: Kathy Krause
Indexer: Maureen Johnson
Cover: Twist Creative • Seattle

[LSI]
[2013-09-06]

http://www.microsoft.com/learning/booksurvey
mailto:mspinput@microsoft.com
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

For Chris, yet again. Eighth time’s the charm.

—K.W.

For my parents, Bob and Joanne, for a lifetime of encouragement.

—J.B.

Contents at a glance

Introduction xxv
Acknowledgments xxxi

PART I SOFTWARE REQUIREMENTS: WHAT, WHY, AND WHO

CHAPTER 1 The essential software requirement 3

CHAPTER 2 Requirements from the customer’s perspective 25

CHAPTER 3 Good practices for requirements engineering 43

CHAPTER 4 The business analyst 61

PART II REQUIREMENTS DEVELOPMENT

CHAPTER 5 Establishing the business requirements 77

CHAPTER 6 Finding the voice of the user 101

CHAPTER 7 Requirements elicitation 119

CHAPTER 8 Understanding user requirements 143

CHAPTER 9 Playing by the rules 167

CHAPTER 10 Documenting the requirements 181

CHAPTER 11 Writing excellent requirements 203

CHAPTER 12 A picture is worth 1024 words 221

CHAPTER 13 Specifying data requirements 245

CHAPTER 14 Beyond functionality 261

CHAPTER 15 Risk reduction through prototyping 295

CHAPTER 16 First things first: Setting requirement priorities 313

CHAPTER 17 Validating the requirements 329

CHAPTER 18 Requirements reuse 351

CHAPTER 19 Beyond requirements development 365

PART III REQUIREMENTS FOR SPECIFIC PROJECT CLASSES

CHAPTER 20 Agile projects 383

CHAPTER 21 Enhancement and replacement projects 393

CHAPTER 22 Packaged solution projects 405

CHAPTER 23 Outsourced projects 415

viii Contents at a glance

CHAPTER 24 Business process automation projects 421

CHAPTER 25 Business analytics projects 427

CHAPTER 26 Embedded and other real-time systems projects 439

PART IV REQUIREMENTS MANAGEMENT

CHAPTER 27 Requirements management practices 457

CHAPTER 28 Change happens 471

CHAPTER 29 Links in the requirements chain 491

CHAPTER 30 Tools for requirements engineering 503

PART V IMPLEMENTING REQUIREMENTS ENGINEERING

CHAPTER 31 Improving your requirements processes 517

CHAPTER 32 Software requirements and risk management 537

Epilogue 549
Appendix A 551
Appendix B 559
Appendix C 575
Glossary 597
References 605

Index 619

 ix

Contents

Introduction .xxv

Acknowledgments . xxxi

PART I SOFTWARE REQUIREMENTS: WHAT, WHY, AND WHO

Chapter 1 The essential software requirement 3
Software requirements defined . 5

Some interpretations of ”requirement” . 6

Levels and types of requirements . 7

Working with the three levels .12

Product vs. project requirements .14

Requirements development and management .15

Requirements development .15

Requirements management . 17

Every project has requirements .18

When bad requirements happen to good people .19

Insufficient user involvement .20

Inaccurate planning .20

Creeping user requirements .20

Ambiguous requirements .21

Gold plating .21

Overlooked stakeholders .22

Benefits from a high-quality requirements process22

Chapter 2 Requirements from the customer’s perspective 25
The expectation gap .26

Who is the customer? .27

The customer-development partnership .29

Requirements Bill of Rights for Software Customers 31

Requirements Bill of Responsibilities for Software Customers33

x Contents

Creating a culture that respects requirements .36

Identifying decision makers .38

Reaching agreement on requirements .38

The requirements baseline .39

What if you don’t reach agreement? .40

Agreeing on requirements on agile projects 41

Chapter 3 Good practices for requirements engineering 43
A requirements development process framework .45

Good practices: Requirements elicitation .48

Good practices: Requirements analysis .50

Good practices: Requirements specification . 51

Good practices: Requirements validation .52

Good practices: Requirements management .53

Good practices: Knowledge .54

Good practices: Project management .56

Getting started with new practices .57

Chapter 4 The business analyst 61
The business analyst role .62

The business analyst’s tasks .63

Essential analyst skills .65

Essential analyst knowledge .68

The making of a business analyst .68

The former user .68

The former developer or tester .69

The former (or concurrent) project manager70

The subject matter expert .70

The rookie .71

The analyst role on agile projects .71

Creating a collaborative team .72

 Contents xi

PART II REQUIREMENTS DEVELOPMENT

Chapter 5 Establishing the business requirements 77
Defining business requirements .78

Identifying desired business benefits .78

Product vision and project scope .78

Conflicting business requirements .80

Vision and scope document .81

1. Business requirements .83

2. Scope and limitations .88

3. Business context .90

Scope representation techniques .92

Context diagram .92

Ecosystem map .94

Feature tree .95

Event list .96

Keeping the scope in focus .97

Using business objectives to make scoping decisions97

Assessing the impact of scope changes .98

Vision and scope on agile projects .98

Using business objectives to determine completion99

Chapter 6 Finding the voice of the user 101
User classes .102

Classifying users .102

Identifying your user classes .105

User personas .107

Connecting with user representatives .108

The product champion .109

External product champions .110

Product champion expectations .111

Multiple product champions .112

xii Contents

Selling the product champion idea .113

Product champion traps to avoid .114

User representation on agile projects .115

Resolving conflicting requirements .116

Chapter 7 Requirements elicitation 119
Requirements elicitation techniques .121

Interviews .121

Workshops .122

Focus groups .124

Observations .125

Questionnaires .127

System interface analysis .127

User interface analysis .128

Document analysis .128

Planning elicitation on your project .129

Preparing for elicitation .130

Performing elicitation activities .132

Following up after elicitation .134

Organizing and sharing the notes .134

Documenting open issues .135

Classifying customer input .135

How do you know when you’re done? .138

Some cautions about elicitation .139

Assumed and implied requirements .140

Finding missing requirements .141

Chapter 8 Understanding user requirements 143
Use cases and user stories .144

The use case approach .147

Use cases and usage scenarios .149

Identifying use cases .157

 Contents xiii

Exploring use cases .158

Validating use cases .160

Use cases and functional requirements .161

Use case traps to avoid .163

Benefits of usage-centric requirements .164

Chapter 9 Playing by the rules 167
A business rules taxonomy .169

Facts .170

Constraints. .170

Action enablers .171

Inferences .173

Computations .173

Atomic business rules . 174

Documenting business rules .175

Discovering business rules .177

Business rules and requirements .178

Tying everything together .180

Chapter 10 Documenting the requirements 181
The software requirements specification .183

Labeling requirements .186

Dealing with incompleteness .188

User interfaces and the SRS .189

A software requirements specification template .190

1. Introduction .192

2. Overall description .193

3. System features .194

4. Data requirements .195

5. External interface requirements .196

6. Quality attributes .197

7. Internationalization and localization requirements198

8. [Other requirements] .199

xiv Contents

Appendix A: Glossary .199

Appendix B: Analysis models .199

Requirements specification on agile projects .199

Chapter 11 Writing excellent requirements 203
Characteristics of excellent requirements .203

Characteristics of requirement statements .204

Characteristics of requirements collections .205

Guidelines for writing requirements .207

System or user perspective .207

Writing style .208

Level of detail .211

Representation techniques .212

Avoiding ambiguity .213

Avoiding incompleteness .216

Sample requirements, before and after .217

Chapter 12 A picture is worth 1024 words 221
Modeling the requirements .222

From voice of the customer to analysis models .223

Selecting the right representations .225

Data flow diagram .226

Swimlane diagram .230

State-transition diagram and state table .232

Dialog map .235

Decision tables and decision trees .239

Event-response tables .240

A few words about UML diagrams .243

Modeling on agile projects .243

A final reminder .244

 Contents xv

Chapter 13 Specifying data requirements 245
Modeling data relationships .245

The data dictionary .248

Data analysis .251

Specifying reports .252

Eliciting reporting requirements .253

Report specification considerations .254

A report specification template .255

Dashboard reporting .257

Chapter 14 Beyond functionality 261
Software quality attributes .262

Exploring quality attributes .263

Defining quality requirements .267

External quality attributes .267

Internal quality attributes .281

Specifying quality requirements with Planguage .287

Quality attribute trade-offs .288

Implementing quality attribute requirements .290

Constraints .291

Handling quality attributes on agile projects .293

Chapter 15 Risk reduction through prototyping 295
Prototyping: What and why .296

Mock-ups and proofs of concept .297

Throwaway and evolutionary prototypes .298

Paper and electronic prototypes .301

Working with prototypes. .303

Prototype evaluation .306

xvi Contents

Risks of prototyping .307

Pressure to release the prototype .308

Distraction by details .308

Unrealistic performance expectations .309

Investing excessive effort in prototypes .309

Prototyping success factors .310

Chapter 16 First things first: Setting requirement priorities 313
Why prioritize requirements? .314

Some prioritization pragmatics .315

Games people play with priorities .316

Some prioritization techniques .317

In or out .318

Pairwise comparison and rank ordering .318

Three-level scale .319

MoSCoW .320

$100 .321

Prioritization based on value, cost, and risk .322

Chapter 17 Validating the requirements 329
Validation and verification .331

Reviewing requirements .332

The inspection process .333

Defect checklist .338

Requirements review tips .339

Requirements review challenges .340

Prototyping requirements .342

Testing the requirements .342

Validating requirements with acceptance criteria .347

Acceptance criteria .347

Acceptance tests .348

 Contents xvii

Chapter 18 Requirements reuse 351
Why reuse requirements? .352

Dimensions of requirements reuse .352

Extent of reuse .353

Extent of modification .354

Reuse mechanism .354

Types of requirements information to reuse .355

Common reuse scenarios .356

Software product lines .356

Reengineered and replacement systems .357

Other likely reuse opportunities .357

Requirement patterns .358

Tools to facilitate reuse .359

Making requirements reusable .360

Requirements reuse barriers and success factors .362

Reuse barriers .362

Reuse success factors .363

Chapter 19 Beyond requirements development 365
Estimating requirements effort .366

From requirements to project plans .369

Estimating project size and effort from requirements 370

Requirements and scheduling .372

From requirements to designs and code .373

Architecture and allocation .373

Software design .374

User interface design .375

From requirements to tests .377

From requirements to success .379

xviii Contents

PART III REQUIREMENTS FOR SPECIFIC PROJECT CLASSES

Chapter 20 Agile projects 383
Limitations of the waterfall .384

The agile development approach .385

Essential aspects of an agile approach to requirements385

Customer involvement .386

Documentation detail .386

The backlog and prioritization .387

Timing .387

Epics, user stories, and features, oh my! .388

Expect change .389

Adapting requirements practices to agile projects390

Transitioning to agile: Now what? .390

Chapter 21 Enhancement and replacement projects 393
Expected challenges .394

Requirements techniques when there is an existing system394

Prioritizing by using business objectives .396

Mind the gap .396

Maintaining performance levels .397

When old requirements don’t exist .398

Which requirements should you specify? .398

How to discover the requirements of an existing system400

Encouraging new system adoption .401

Can we iterate? .402

Chapter 22 Packaged solution projects 405
Requirements for selecting packaged solutions .406

Developing user requirements .406

Considering business rules .407

Identifying data needs .407

 Contents xix

Defining quality requirements .408

Evaluating solutions .408

Requirements for implementing packaged solutions 411

Configuration requirements .411

Integration requirements .412

Extension requirements .412

Data requirements .412

Business process changes .413

Common challenges with packaged solutions .413

Chapter 23 Outsourced projects 415
Appropriate levels of requirements detail .416

Acquirer-supplier interactions .418

Change management .419

Acceptance criteria .420

Chapter 24 Business process automation projects 421
Modeling business processes .422

Using current processes to derive requirements423

Designing future processes first .424

Modeling business performance metrics .424

Good practices for business process automation projects426

Chapter 25 Business analytics projects 427
Overview of business analytics projects .427

Requirements development for business analytics projects429

Prioritizing work by using decisions .430

Defining how information will be used .431

Specifying data needs .432

Defining analyses that transform the data .435

The evolutionary nature of analytics .436

xx Contents

Chapter 26 Embedded and other real-time systems projects 439
System requirements, architecture, and allocation440

Modeling real-time systems .441

Context diagram .442

State-transition diagram .442

Event-response table .443

Architecture diagram .445

Prototyping .446

Interfaces .446

Timing requirements .447

Quality attributes for embedded systems .449

The challenges of embedded systems .453

PART IV REQUIREMENTS MANAGEMENT

Chapter 27 Requirements management practices 457
Requirements management process .458

The requirements baseline .459

Requirements version control .460

Requirement attributes .462

Tracking requirements status .464

Resolving requirements issues .466

Measuring requirements effort .467

Managing requirements on agile projects .468

Why manage requirements? .470

Chapter 28 Change happens 471
Why manage changes? .471

Managing scope creep .472

Change control policy .474

Basic concepts of the change control process . 474

 Contents xxi

A change control process description .475

1. Purpose and scope .476

2. Roles and responsibilities .476

3. Change request status .477

4. Entry criteria .478

5. Tasks .478

6. Exit criteria .479

7. Change control status reporting .479

Appendix: Attributes stored for each request479

The change control board .480

CCB composition .480

CCB charter .481

Renegotiating commitments .482

Change control tools .482

Measuring change activity .483

Change impact analysis .484

Impact analysis procedure .484

Impact analysis template .488

Change management on agile projects .488

Chapter 29 Links in the requirements chain 491
Tracing requirements .491

Motivations for tracing requirements .494

The requirements traceability matrix .495

Tools for requirements tracing .498

A requirements tracing procedure. .499

Is requirements tracing feasible? Is it necessary? .501

Chapter 30 Tools for requirements engineering 503
Requirements development tools .505

Elicitation tools .505

Prototyping tools .505

Modeling tools .506

xxii Contents

Requirements management tools .506

Benefits of using an RM tool .506

RM tool capabilities .508

Selecting and implementing a requirements tool 510

Selecting a tool .511

Setting up the tool and processes .511

Facilitating user adoption .513

PART V IMPLEMENTING REQUIREMENTS ENGINEERING

Chapter 31 Improving your requirements processes 517
How requirements relate to other project processes518

Requirements and various stakeholder groups .520

Gaining commitment to change .521

Fundamentals of software process improvement .522

Root cause analysis .524

The process improvement cycle .526

Assess current practices .526

Plan improvement actions .527

Create, pilot, and roll out processes .528

Evaluate results .529

Requirements engineering process assets .530

Requirements development process assets .531

Requirements management process assets 532

Are we there yet? .533

Creating a requirements process improvement road map535

Chapter 32 Software requirements and risk management 537
Fundamentals of software risk management .538

Elements of risk management .538

Documenting project risks .539

Planning for risk management .542

 Contents xxiii

Requirements-related risks .542

Requirements elicitation .543

Requirements analysis . 544

Requirements specification .545

Requirements validation .545

Requirements management .546

Risk management is your friend .546

Epilogue 549

Appendix A 551

Appendix B 559

Appendix C 575

Glossary 597

References 605

Index 619

 xxv

Introduction

Despite decades of industry experience, many software organizations struggle to
 understand, document, and manage their product requirements. Inadequate user
input, incomplete requirements, changing requirements, and misunderstood business
 objectives are major reasons why so many information technology projects are less
than fully successful. Some software teams aren’t proficient at eliciting requirements
from customers and other sources. Customers often don’t have the time or patience
to participate in requirements activities. In many cases, project participants don’t
even agree on what a “requirement” is. As one writer observed, “Engineers would
rather decipher the words to the Kingsmen’s 1963 classic party song ‘Louie Louie’ than
 decipher customer requirements” (Peterson 2002).

The second edition of Software Requirements was published 10 years prior to this
one. Ten years is a long time in the technology world. Many things have changed in
that time, but others have not. Major requirements trends in the past decade include:

 ■ The recognition of business analysis as a professional discipline and the rise of
professional certifications and organizations, such as the International Institute
of Business Analysis and the International Requirements Engineering Board.

 ■ The maturing of tools both for managing requirements in a database and
for assisting with requirements development activities such as prototyping,
 modeling, and simulation.

 ■ The increased use of agile development methods and the evolution of
 techniques for handling requirements on agile projects.

 ■ The increased use of visual models to represent requirements knowledge.

So, what hasn’t changed? Two factors contribute to keeping this topic important and
relevant. First, many undergraduate curricula in software engineering and computer
 science continue to underemphasize the importance of requirements engineering
(which encompasses both requirements development and requirements management).
And second, those of us in the software domain tend to be enamored with technical
and process solutions to our challenges. We sometimes fail to appreciate that
 requirements elicitation—and much of software and systems project work in general—
is primarily a human interaction challenge. No magical new techniques have come
along to automate that, although various tools are available to help geographically
separated people collaborate effectively.

xxvi Introduction

We believe that the practices presented in the second edition for developing and
managing requirements are still valid and applicable to a wide range of software
 projects. The creative business analyst, product manager, or product owner will
thoughtfully adapt and scale the practices to best meet the needs of a particular
 situation. Newly added to this third edition are a chapter on handling requirements for
agile projects and sections in numerous other chapters that describe how to apply and
adapt the practices in those chapters to the agile development environment.

Software development involves at least as much communication as it does
 computing, yet both educational curricula and project activities often emphasize
the computing over the communication aspect. This book offers dozens of tools to
 facilitate that communication and to help software practitioners, managers, marketers,
and customers apply effective requirements engineering methods. The techniques
 presented here constitute a tool kit of mainstream “good practices,” not exotic new
techniques or an elaborate methodology that purports to solve all of your requirements
problems. Numerous anecdotes and sidebars present stories—all true—that illustrate
typical requirements-related experiences; you have likely had similar experiences. Look
for the “true stories” icon, like the one to the left, next to real examples drawn from
many project experiences.

Since the first edition of this book appeared in 1999, we have each worked on
 numerous projects and taught hundreds of classes on software requirements to
people from companies and government agencies of all sizes and types. We’ve
learned that these practices are useful on virtually any project: small projects and
large, new development and enhancements, with local and distributed teams, and
using traditional and agile development methods. The techniques apply to hardware
and systems engineering projects, too, not just software projects. As with any other
 technical practice, you’ll need to use good judgment and experience to learn how to
make the methods work best for you. Think of these practices as tools to help ensure
that you have effective conversations with the right people on your projects.

Benefits this book provides

Of all the software process improvements you could undertake, improved requirements
practices are among the most beneficial. We describe practical, proven techniques that
can help you to:

 ■ Write high-quality requirements from the outset of a project, thereby
 minimizing rework and maximizing productivity.

 Introduction xxvii

 ■ Deliver high-quality information systems and commercial products that achieve
their business objectives.

 ■ Manage scope creep and requirements changes to stay both on target and
under control.

 ■ Achieve higher customer satisfaction.

 ■ Reduce maintenance, enhancement, and support costs.

Our objective is to help you improve the processes you use for eliciting and
 analyzing requirements, writing and validating requirements specifications, and
managing the requirements throughout the software product development cycle. The
techniques we describe are pragmatic and realistic. Both of us have used these very
 techniques many times, and we always get good results when we do.

Who should read this book

Anyone involved with defining or understanding the requirements for any system that
contains software will find useful information here. The primary audience consists of
individuals who serve as business analysts or requirements engineers on a development
project, be they full-time specialists or other team members who sometimes fill the
 analyst role. A second audience includes the architects, designers, developers, testers,
and other technical team members who must understand and satisfy user expectations
and participate in the creation and review of effective requirements. Marketers and
product managers who are charged with specifying the features and attributes that
will make a product a commercial success will find these practices valuable. Project
 managers will learn how to plan and track the project’s requirements activities and
deal with requirements changes. Yet another audience is made up of stakeholders
who participate in defining a product that meets their business, functional, and quality
needs. This book will help end users, customers who procure or contract for software
products, and numerous other stakeholders understand the importance of the
 requirements process and their roles in it.

Looking ahead

This book is organized into five parts. Part I, “Software requirements: What, why, and
who,” begins with some definitions. If you’re on the technical side of the house, please
share Chapter 2, on the customer-development partnership, with your key customers.
Chapter 3 summarizes several dozen “good practices” for requirements development

xxviii Introduction

and management, as well as an overall process framework for requirements
 development. The role of the business analyst (a role that also goes by many other
names) is the subject of Chapter 4.

Part II, “Requirements development,” begins with techniques for defining the
 project’s business requirements. Other chapters in Part II address how to find
 appropriate customer representatives, elicit requirements from them, and document
user requirements, business rules, functional requirements, data requirements, and
nonfunctional requirements. Chapter 12 describes numerous visual models that
 represent the requirements from various perspectives to supplement natural-language
text, and Chapter 15 addresses the use of prototypes to reduce risk. Other chapters in
Part II present ways to prioritize, validate, and reuse requirements. Part II concludes by
describing how requirements affect other aspects of project work.

New to this edition, Part III contains chapters that recommend the most effective
 requirements approaches for various specific classes of projects: agile projects
 developing products of any type, enhancement and replacement projects, projects
that incorporate packaged solutions, outsourced projects, business process automation
projects, business analytics projects, and embedded and other real-time systems.

The principles and practices of requirements management are the subject of
Part IV, with emphasis on techniques for dealing with changing requirements.
Chapter 29 describes how requirements tracing connects individual requirements
both to their origins and to downstream development deliverables. Part IV concludes
with a description of commercial tools that can enhance the way your teams conduct
both requirements development and requirements management.

The final section of this book, Part V, “Implementing requirements engineering,”
helps you move from concepts to practice. Chapter 31 will help you incorporate
new requirements techniques into your group’s development process. Common
 requirements-related project risks are described in Chapter 32. The self-assessment
in Appendix A can help you select areas that are ripe for improvement. Two other
 appendices present a requirements troubleshooting guide and several sample
 requirements documents so you can see how the pieces all fit together.

Case studies

To illustrate the methods described in this book, we have provided examples from
several case studies based on actual projects, particularly a medium-sized information
system called the Chemical Tracking System. Don’t worry—you don’t need to know
anything about chemistry to understand this project. Sample discussions among

 Introduction xxix

 participants from the case studies are sprinkled throughout the book. No matter what
kind of software your organization builds, you’ll be able to relate to these dialogs.

From principles to practice

It’s difficult to muster the energy needed for overcoming obstacles to change
and putting new knowledge into action. As an aid for your journey to improved
 requirements, most chapters end with several “next steps,” actions you can take to
 begin applying the contents of that chapter immediately. Various chapters offer
 suggested templates for requirements documents, a review checklist, a requirements
prioritization spreadsheet, a change control process, and many other process assets.
These items are available for downloading at the companion content website for this
book:

http://aka.ms/SoftwareReq3E/files

Use them to jump-start your application of these techniques. Start with small
 improvements, but start today.

Some people will be reluctant to try new requirements techniques. Use this
book to educate your peers, your customers, and your managers. Remind them of
 requirements-related problems encountered on previous projects, and discuss the
potential benefits of trying some new approaches.

You don’t need to launch a new development project to begin applying better
requirements practices. Chapter 21 discusses ways to apply many of the techniques
to enhancement and replacement projects. Implementing requirements practices
 incrementally is a low-risk process improvement approach that will prepare you for the
next major project.

The goal of requirements development is to accumulate a set of requirements that
are good enough to allow your team to proceed with design and construction of the
next portion of the product at an acceptable level of risk. You need to devote enough
attention to requirements to minimize the risks of rework, unacceptable products, and
blown schedules. This book gives you the tools to get the right people to collaborate
on developing the right requirements for the right product.

http://aka.ms/SoftwareReq3E/files

xxx Introduction

Errata & book support

We’ve made every effort to ensure the accuracy of this book and its companion
 content. Any errors that have been reported since this book was published are listed on
our Microsoft Press site at oreilly.com:

http://aka.ms/SoftwareReq3E/errata

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://aka.ms/tellpress

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

http://aka.ms/SoftwareReq3E/errata
mailto:mspinput@microsoft.com
http://twitter.com/MicrosoftPress
http://aka.ms/tellpress

 xxxi

Acknowledgments

Writing a book like this is a team effort that goes far beyond the contributions from the
two authors. A number of people took the time to review the full manuscript and offer
countless suggestions for improvement; they have our deep gratitude. We especially
appreciate the invaluable comments from Jim Brosseau, Joan Davis, Gary K. Evans,
Joyce Grapes, Tina Heidenreich, Kelly Morrison Smith, and Dr. Joyce Statz. Additional
review input was received from Kevin Brennan, Steven Davis, Anne Hartley,
Emily Iem, Matt Leach, Jeannine McConnell, Yaaqub Mohamed, and John Parker.
 Certain individuals reviewed specific chapters or sections in their areas of expertise,
 often providing highly detailed comments. We thank Tanya Charbury, Mike Cohn,
Dr. Alex Dean, Ellen Gottesdiener, Shane Hastie, James Hulgan, Dr. Phil Koopman,
Mark Kulak, Shirley Sartin, Rob Siciliano, and Betsy Stockdale. We especially thank
 Roxanne Miller and Stephen Withall for their deep insights and generous participation.

We discussed aspects of the book’s topics with many people, learning from their
personal experiences and from resource materials they passed along to us. We
 appreciate such contributions from Jim Brosseau, Nanette Brown, Nigel Budd,
Katherine Busey, Tanya Charbury, Jennifer Doyle, Gary Evans, Scott Francis, Sarah Gates,
Dr. David Gelperin, Mark Kerin, Norm Kerth, Dr. Scott Meyers, John Parker,
Kathy Reynolds, Bill Trosky, Dr. Ricardo Valerdi, and Dr. Ian Watson. We also thank the
many people who let us share their anecdotes in our “true stories.”

Numerous staff members at Seilevel contributed to the book. They reviewed specific
sections, participated in quick opinion and experience surveys, shared blog material
they had written, edited final chapters, drew figures, and helped us with operational
issues of various sorts. We thank Ajay Badri, Jason Benfield, Anthony Chen,
Kell Condon, Amber Davis, Jeremy Gorr, Joyce Grapes, John Jertson, Melanie Norrell,
David Reinhardt, Betsy Stockdale, and Christine Wollmuth. Their work made ours easier.
The editorial input from Candase Hokanson is greatly appreciated.

Thanks go to many people at Microsoft Press, including acquisitions editor Devon
Musgrave, project editor Carol Dillingham, project editor Christian Holdener of
 S4Carlisle Publishing Services, copy editor Kathy Krause, proofreader Nicole Schlutt,
indexer Maureen Johnson, compositor Sambasivam Sangaran, and production artists
Balaganesan M., Srinivasan R., and Ganeshbabu G. Karl especially values his long-term
relationship, and friendship, with Devon Musgrave and Ben Ryan.

The comments and questions from thousands of students in our requirements
 training classes over the years have been most helpful in stimulating our thinking about

xxxii Acknowledgments

requirements issues. Our consulting experiences and the thought-provoking questions
we receive from readers have kept us in touch with what practitioners struggle with on
a daily basis and helped us think through some of these difficult topics. Please share
your own experiences with us at karl@processimpact.com or joy.beatty@seilevel.com.

As always, Karl would like to thank his wife, Chris Zambito. And as always, she was
patient and good-humored throughout the process. Karl also thanks Joy for prompting
him into working on this project and for her terrific contributions. Working with her
was a lot of fun, and she added a great deal of value to the book. It was great to have
someone to bounce ideas off, to help make difficult decisions, and to chew hard on
draft chapters before we inflicted them on the reviewers.

Joy is particularly grateful to her husband, Tony Hamilton, for supporting her writing
dreams so soon again; to her daughter, Skye, for making it easy to keep her daily
 priorities balanced; and to Sean and Estelle for being the center of her family fun times.
Joy wants to extend a special thanks to all of the Seilevel employees who collaborate
to push the software requirements field forward. She particularly wants to thank two
 colleagues and friends: Anthony Chen, whose support for her writing this book was
paramount; and Rob Sparks, for his continued encouragement in such endeavors.
Finally, Joy owes a great deal of gratitude to Karl for allowing her to join him in this
 co-authorship, teaching her something new every day, and being an absolute joy to
work with!

mailto:karl@processimpact.com
mailto:joy.beatty@seilevel.com

 1

PART I

Software
requirements: What,
why, and who

CHAPTER 1 The essential software requirement 3

CHAPTER 2 Requirements from the customer's
perspective .25

CHAPTER 3 Good practices for requirements
 engineering. .43

CHAPTER 4 The business analyst .61

 3

C H A P T E R 1

The essential software requirement

“Hello, Phil? This is Maria in Human Resources. We’re having a problem with the personnel system
you programmed for us. An employee just changed her name to Sparkle Starlight, and we can’t get the
system to accept the name change. Can you help?”

“She married some guy named Starlight?”

“No, she didn’t get married, just changed her name,” Maria replied. “That’s the problem. It looks like
we can change a name only if someone’s marital status changes.”

“Well, yeah, I never thought someone might just change her name. I don’t remember you telling me
about this possibility when we talked about the system,” Phil said.

“I assumed you knew that people could legally change their name anytime they like,” responded
Maria. “We have to straighten this out by Friday or Sparkle won’t be able to cash her paycheck. Can you
fix the bug by then?”

“It’s not a bug!” Phil retorted. “I never knew you needed this capability. I’m busy on the new
 performance evaluation system. I can probably fix it by the end of the month, but not by Friday. Sorry
about that. Next time, tell me these things earlier and please write them down.”

“What am I supposed to tell Sparkle?” demanded Maria. “She’ll be upset if she can’t cash her check.”

“Hey, Maria, it’s not my fault,” Phil protested. “If you’d told me in the first place that you had to be
able to change someone’s name at any time, this wouldn’t have happened. You can’t blame me for not
reading your mind.”

Angry and resigned, Maria snapped, “Yeah, well, this is the kind of thing that makes me hate
 computers. Call me as soon as you get it fixed, will you?”

If you’ve ever been on the customer side of a conversation like this, you know how frustrating it is
when a software system doesn’t let you perform an essential task. You hate to be at the mercy of a
developer who might get to your critical change request eventually. On the other hand, developers
are frustrated to learn about functionality that a user expected only after they’ve implemented the
system. It’s also annoying for a developer to have his current project interrupted by a request to
modify a system that does precisely what he was told it should do in the first place.

4 PART I Software requirements: What, why, and who

Many problems in the software world arise from shortcomings in the ways that people learn
about, document, agree upon and modify the product’s requirements. As with Phil and Maria,
 common problem areas are informal information gathering, implied functionality, miscommunicated
 assumptions, poorly specified requirements, and a casual change process. Various studies suggest
that errors introduced during requirements activities account for 40 to 50 percent of all defects
found in a software product (Davis 2005). Inadequate user input and shortcomings in specifying
and managing customer requirements are major contributors to unsuccessful projects. Despite this
 evidence, many organizations still practice ineffective requirements methods.

Nowhere more than in the requirements do the interests of all the stakeholders in a project
 intersect. (See Chapter 2, “Requirements from the customer’s perspective,” for more about
 stakeholders.) These stakeholders include customers, users, business analysts, developers, and many
others. Handled well, this intersection can lead to delighted customers and fulfilled developers.
Handled poorly, it’s the source of misunderstanding and friction that undermine the product’s quality
and business value. Because requirements are the foundation for both the software development and
the project management activities, all stakeholders should commit to applying requirements practices
that are known to yield superior-quality products.

But developing and managing requirements is hard! There are no simple shortcuts or magic
 solutions. On the plus side, so many organizations struggle with the same problems that you can look
for techniques in common that apply to many different situations. This book describes dozens of such
practices. The practices are presented as though you were building a brand-new system. However,
most of them also apply to enhancement, replacement, and reengineering projects (see Chapter 21,
“Enhancement and replacement projects”) and to projects that incorporate commercial off-the-shelf
(COTS) packaged solutions (see Chapter 22, “Packaged solution projects”). Project teams that build
products incrementally by following an agile development process also need to understand the
 requirements that go into each increment (see Chapter 20, ”Agile projects”).

This chapter will help you to:

 ■ Understand some key terms used in the software requirements domain.

 ■ Distinguish product requirements from project requirements.

 ■ Distinguish requirements development from requirements management.

 ■ Be alert to several requirements-related problems that can arise.

Important We use the terms “system,” “product,” “application,” and “solution”
 interchangeably in this book to refer to any kind of software or software-containing item
that you build, whether for internal corporate use, for commercial sale, or on a contract
basis.

 CHAPTER 1 The essential software requirement 5

Taking your requirements pulse
For a quick check of the current requirements practices in your organization, consider how
many of the following conditions apply to your most recent project. If more than three or four
of these items describe your experience, this book is for you:

 ■ The project’s business objectives, vision, and scope were never clearly defined.

 ■ Customers were too busy to spend time working with analysts or developers on the
 requirements.

 ■ Your team could not interact directly with representative users to understand their needs.

 ■ Customers claimed that all requirements were critical, so they didn’t prioritize them.

 ■ Developers encountered ambiguities and missing information when coding, so they had
to guess.

 ■ Communications between developers and stakeholders focused on user interface displays
or features, not on what users needed to accomplish with the software.

 ■ Your customers never approved the requirements.

 ■ Your customers approved the requirements for a release or iteration and then changed
them continually.

 ■ The project scope increased as requirements changes were accepted, but the schedule
slipped because no additional resources were provided and no functionality was removed.

 ■ Requested requirements changes got lost; no one knew the status of a particular change
request.

 ■ Customers requested certain functionality and developers built it, but no one ever uses it.

 ■ At the end of the project, the specification was satisfied but the customer or the business
objectives were not.

Software requirements defined

When a group of people begin discussing requirements, they often start with a terminology
 problem. Different observers might describe a single statement as being a user requirement,
 software requirement, business requirement, functional requirement, system requirement, product
 requirement, project requirement, user story, feature, or constraint. The names they use for various
requirements deliverables also vary. A customer’s definition of requirements might sound like a
high-level product concept to the developer. The developer’s notion of requirements might sound
like a detailed user interface design to the user. This diversity of understanding leads to confusion and
frustration.

6 PART I Software requirements: What, why, and who

Some interpretations of ”requirement”
Many decades after the invention of computer programming, software practitioners still have raging
debates about exactly what a “requirement” is. Rather than prolong those debates, in this book we
simply present some definitions that we have found useful.

Consultant Brian Lawrence suggests that a requirement is “anything that drives design choices”
(Lawrence 1997). This is not a bad colloquial definition, because many kinds of information fit in this
category. And, after all, the whole point of developing requirements is to make appropriate design
choices that will meet the customer’s needs in the end. Another definition is that a requirement is
a property that a product must have to provide value to a stakeholder. Also not bad, but not very
 precise. Our favorite definition, though, comes from Ian Sommerville and Pete Sawyer (1997):

Requirements are a specification of what should be implemented. They are
descriptions of how the system should behave, or of a system property or attribute.
They may be a constraint on the development process of the system.

This definition acknowledges the diverse types of information that collectively are referred to as
“the requirements.” Requirements encompass both the user’s view of the external system behavior
and the developer’s view of some internal characteristics. They include both the behavior of the
 system under specific conditions and those properties that make the system suitable—and maybe
even enjoyable—for use by its intended operators.

Trap Don’t assume that all your project stakeholders share a common notion of what
requirements are. Establish definitions up front so that you’re all talking about the same
things.

The pure dictionary “requirement”
Software people do not use “requirement” in the same sense as a dictionary definition of the
word: something demanded or obligatory, a need or necessity. People sometimes question
whether they even need to prioritize requirements, because maybe a low-priority requirement
won’t ever be implemented. If it isn’t truly needed, then it isn’t a requirement, they claim.
 Perhaps, but then what would you call that piece of information? If you defer a requirement from
today’s project to an unspecified future release, is it still considered a requirement? Sure it is.

Software requirements include a time dimension. They could be present tense, describing
the current system’s capabilities. Or they could be for the near-term (high priority), mid-term
(medium priority), or hypothetical (low priority) future. They could even be past tense, referring
to needs that were once specified and then discarded. Don’t waste time debating whether or
not something is a requirement, even if you know you might never implement it for some good
business reason. It is.

 CHAPTER 1 The essential software requirement 7

Levels and types of requirements
Because there are so many different types of requirements information, we need a consistent set of
adjectives to modify the overloaded term “requirement.” This section presents definitions we will use
for some terms commonly encountered in the requirements domain (see Table 1-1).

TABLE 1-1 Some types of requirements information

Term Definition

Business requirement A high-level business objective of the organization that builds a product or of a
customer who procures it.

Business rule A policy, guideline, standard, or regulation that defines or constrains some aspect
of the business. Not a software requirement in itself, but the origin of several
types of software requirements.

Constraint A restriction that is imposed on the choices available to the developer for the
design and construction of a product.

External interface requirement A description of a connection between a software system and a user, another
software system, or a hardware device.

Feature One or more logically related system capabilities that provide value to a user and
are described by a set of functional requirements.

Functional requirement A description of a behavior that a system will exhibit under specific conditions.

Nonfunctional requirement A description of a property or characteristic that a system must exhibit or a
 constraint that it must respect.

Quality attribute A kind of nonfunctional requirement that describes a service or performance
characteristic of a product.

System requirement A top-level requirement for a product that contains multiple subsystems, which
could be all software or software and hardware.

User requirement A goal or task that specific classes of users must be able to perform with a system,
or a desired product attribute.

Software requirements include three distinct levels: business requirements, user requirements, and
functional requirements. In addition, every system has an assortment of nonfunctional requirements.
The model in Figure 1-1 illustrates a way to think about these diverse types of requirements. As
 statistician George E. P. Box famously said, “Essentially, all models are wrong, but some are useful”
(Box and Draper 1987). That’s certainly true of Figure 1-1. This model is not all-inclusive, but it does
provide a helpful scheme for organizing the requirements knowledge you’ll encounter.

The ovals in Figure 1-1 represent types of requirements information, and the rectangles indicate
documents in which to store that information. The solid arrows indicate that a certain type of
 information typically is stored in the indicated document. (Business rules and system requirements
are stored separately from software requirements, such as in a business rules catalog or a system
 requirements specification, respectively.) The dotted arrows indicate that one type of information is
the origin of or influences another type of requirement. Data requirements are not shown explicitly
in this diagram. Functions manipulate data, so data requirements can appear throughout the three
 levels. Chapter 7, “Requirements elicitation,” contains many examples of these different types of
 requirements information.

8 PART I Software requirements: What, why, and who

FIGURE 1-1 Relationships among several types of requirements information. Solid arrows mean “are stored in”;
dotted arrows mean “are the origin of” or “influence.”

Important Although we will refer to requirements “documents” throughout this book, as
in Figure 1-1, those do not have to be traditional paper or electronic documents. Instead,
think of them simply as containers in which to store requirements knowledge. Such a
container could indeed be a traditional document, or it could be a spreadsheet, a set of
diagrams, a database, a requirements management tool, or some combination of these.
For convenience, we will use the term “document” to refer to any such container. We will
provide templates that identify the types of information to consider storing in each such
grouping, regardless of what form you store it in. What you call each deliverable is less
 important than having your organization agree on their names, what kinds of information
go into each, and how that information is organized.

Business requirements describe why the organization is implementing the system—the business
benefits the organization hopes to achieve. The focus is on the business objectives of the organization
or the customer who requests the system. Suppose an airline wants to reduce airport counter staff
costs by 25 percent. This goal might lead to the idea of building a kiosk that passengers can use to
check in for their flights at the airport. Business requirements typically come from the funding sponsor
for a project, the acquiring customer, the manager of the actual users, the marketing department, or a
product visionary. We like to record the business requirements in a vision and scope document. Other
strategic guiding documents sometimes used for this purpose include a project charter, business case,
and market (or marketing) requirements document. Specifying business requirements is the subject of
Chapter 5, “Establishing the business requirements.” For the purposes of this book, we are assuming
that the business need or market opportunity has already been identified.

 CHAPTER 1 The essential software requirement 9

User requirements describe goals or tasks the users must be able to perform with the product that
will provide value to someone. The domain of user requirements also includes descriptions of product
attributes or characteristics that are important to user satisfaction. Ways to represent user requirements
include use cases (Kulak and Guiney 2004), user stories (Cohn 2004), and event-response tables. Ideally,
actual user representatives will provide this information. User requirements describe what the user
will be able to do with the system. An example of a use case is “Check in for a flight” using an airline’s
 website or a kiosk at the airport. Written as a user story, the same user requirement might read: “As
a passenger, I want to check in for a flight so I can board my airplane.” It’s important to remember
that most projects have multiple user classes, as well as other stakeholders whose needs also must be
elicited. Chapter 8, “Understanding user requirements,” addresses this level of the model. Some people
use the broader term “stakeholder requirements,” to acknowledge the reality that various stakeholders
other than direct users will provide requirements. That is certainly true, but we focus the attention at
this level on understanding what actual users need to achieve with the help of the product.

Functional requirements specify the behaviors the product will exhibit under specific conditions.
They describe what the developers must implement to enable users to accomplish their tasks
(user requirements), thereby satisfying the business requirements. This alignment among the three
levels of requirements is essential for project success. Functional requirements often are written in the
form of the traditional “shall” statements: “The Passenger shall be able to print boarding passes for all
flight segments for which he has checked in” or “If the Passenger’s profile does not indicate a seating
 preference, the reservation system shall assign a seat.”

The business analyst (BA)1 documents functional requirements in a software requirements
 specification (SRS), which describes as fully as necessary the expected behavior of the software system.
The SRS is used in development, testing, quality assurance, project management, and related project
functions. People call this deliverable by many different names, including business requirements
document, functional spec, requirements document, and others. An SRS could be a report generated
from information stored in a requirements management tool. Because it is an industry-standard
term, we will use “SRS” consistently throughout this book (ISO/IEC/IEEE 2011). See Chapter 10,
 “Documenting the requirements,” for more information about the SRS.

System requirements describe the requirements for a product that is composed of multiple
 components or subsystems (ISO/IEC/IEEE 2011). A “system” in this sense is not just any information
system. A system can be all software or it can include both software and hardware subsystems.
People and processes are part of a system, too, so certain system functions might be allocated to
 human beings. Some people use the term “system requirements” to mean the detailed requirements
for a software system, but that’s not how we use the term in this book.

A good example of a “system” is the cashier’s workstation in a supermarket. There’s a bar code
scanner integrated with a scale, as well as a hand-held bar code scanner. The cashier has a keyboard,
a display, and a cash drawer. You’ll see a card reader and PIN pad for your loyalty card and credit or
debit card, and perhaps a change dispenser. You might see up to three printers for your purchase

1 “Business analyst” refers to the project role that has primary responsibility for leading requirements-related activities
on a project. The BA role also goes by many other names. See Chapter 4, “The business analyst,” for more about the
 business analyst role.

10 PART I Software requirements: What, why, and who

receipt, credit card receipt, and coupons you don’t care about. These hardware devices are all
 interacting under software control. The requirements for the system or product as a whole, then, lead
the business analyst to derive specific functionality that must be allocated to one or another of those
component subsystems, as well as demanding an understanding of the interfaces between them.

Business rules include corporate policies, government regulations, industry standards, and
 computational algorithms. As you’ll see in Chapter 9, “Playing by the rules,” business rules are not
themselves software requirements because they have an existence beyond the boundaries of any
specific software application. However, they often dictate that the system must contain functionality
to comply with the pertinent rules. Sometimes, as with corporate security policies, business rules are
the origin of specific quality attributes that are then implemented in functionality. Therefore, you can
trace the genesis of certain functional requirements back to a particular business rule.

In addition to functional requirements, the SRS contains an assortment of nonfunctional
 requirements. Quality attributes are also known as quality factors, quality of service requirements,
constraints, and the “–ilities.” They describe the product’s characteristics in various dimensions that are
important either to users or to developers and maintainers, such as performance, safety, availability,
and portability. Other classes of nonfunctional requirements describe external interfaces between
the system and the outside world. These include connections to other software systems, hardware
components, and users, as well as communication interfaces. Design and implementation constraints
impose restrictions on the options available to the developer during construction of the product.

If they’re nonfunctional, then what are they?
For many years, the requirements for a software product have been classified broadly as
either functional or nonfunctional. The functional requirements are evident: they describe the
 observable behavior of the system under various conditions. However, many people dislike the
term “nonfunctional.” That adjective says what the requirements are not, but it doesn’t say what
they are. We are sympathetic to the problem, but we lack a perfect solution.

Other-than-functional requirements might specify not what the system does, but rather
how well it does those things. They could describe important characteristics or properties
of the system. These include the system’s availability, usability, security, performance, and
many other characteristics, as addressed in Chapter 14, “Beyond functionality.” Some people
 consider nonfunctional requirements to be synonymous with quality attributes, but that is
overly restrictive. For example, design and implementation constraints are also nonfunctional
 requirements, as are external interface requirements.

Still other nonfunctional requirements address the environment in which the system
 operates, such as platform, portability, compatibility, and constraints. Many products are also
affected by compliance, regulatory, and certification requirements. There could be localization
requirements for products that must take into account the cultures, languages, laws, currencies,
terminology, spelling, and other characteristics of users. Though such requirements are
 specified in nonfunctional terms, the business analyst typically will derive numerous bits of
functionality to ensure that the system possesses all the desired behaviors and properties.

 CHAPTER 1 The essential software requirement 11

In this book, we are sticking with the term “nonfunctional requirements,” despite its
 limitations, for the lack of a suitably inclusive alternative. Rather than worry about precisely
what you call these sorts of information, just make sure that they are part of your requirements
elicitation and analysis activities. You can deliver a product that has all the desired functionality
but that users hate because it doesn’t match their (often unstated) quality expectations.

A feature consists of one or more logically related system capabilities that provide value to a
user and are described by a set of functional requirements. A customer’s list of desired product
 features is not equivalent to a description of the user’s task-related needs. Web browser bookmarks,
 spelling checkers, the ability to define a custom workout program for a piece of exercise equipment,
and automatic virus signature updating in an anti-malware product are examples of features. A
feature can encompass multiple user requirements, each of which implies that certain functional
 requirements must be implemented to allow the user to perform the task described by each user
requirement. Figure 1-2 illustrates a feature tree, an analysis model that shows how a feature can be
hierarchically decomposed into a set of smaller features, which relate to specific user requirements
and lead to specifying sets of functional requirements (Beatty and Chen 2012).

FIGURE 1-2 Relationships among features, user requirements, and functional requirements.

12 PART I Software requirements: What, why, and who

To illustrate some of these various kinds of requirements, consider a project to develop the
next version of a text editor program. A business requirement might be “Increase non-US sales by
25 percent within 6 months.” Marketing realizes that the competitive products only have English-language
spelling checkers, so they decide that the new version will include a multilanguage spelling checker
 feature. Corresponding user requirements might include tasks such as “Select language for spelling
checker,” “Find spelling errors,” and “Add a word to a dictionary.” The spelling checker has many
individual functional requirements, which deal with operations such as highlighting misspelled
words, autocorrect, displaying suggested replacements, and globally replacing misspelled words
with corrected words. Usability requirements specify how the software is to be localized for use with
 specific languages and character sets.

Working with the three levels
Figure 1-3 illustrates how various stakeholders might participate in eliciting the three levels of
 requirements. Different organizations use a variety of names for the roles involved in these activities;
think about who performs these activities in your organization. The role names often differ
 depending on whether the developing organization is an internal corporate entity or a company
building software for commercial use.

FIGURE 1-3 An example of how different stakeholders participate in requirements development.

 CHAPTER 1 The essential software requirement 13

Based on an identified business need, a market need, or an exciting new product concept,
 managers or marketing define the business requirements for software that will help their company
operate more efficiently (for information systems) or compete successfully in the marketplace
(for commercial products). In the corporate environment, a business analyst then typically works
with user representatives to identify user requirements. Companies developing commercial products
often identify a product manager to determine what features to include in the new product. Each
user requirement and feature must align with accomplishing the business requirements. From the
user requirements, the BA or product manager derives the functionality that will let users achieve
their goals. Developers use the functional and nonfunctional requirements to design solutions that
 implement the necessary functionality, within the limits that the constraints impose. Testers determine
how to verify whether the requirements were correctly implemented.

It’s important to recognize the value of recording vital requirements information in a shareable
form, rather than treating it as oral tradition around the project campfire. I was on a project once that
had experienced a rotating cast of development teams. The primary customer was sick to tears of
having each new team come along and say, “We have to talk about your requirements.” His reaction
to our request was, “I already gave your predecessors my requirements. Now build me a system!”
Unfortunately, no one had ever documented any requirements, so every new team had to start from
scratch. To proclaim that you “have the requirements” is delusional if all you really have is a pile
of email and voice mail messages, sticky notes, meeting minutes, and vaguely recollected hallway
 conversations. The BA must practice good judgment to determine just how comprehensive to make
the requirements documentation on a given project.

Figure 1-1, shown earlier in this chapter, identified three major requirements deliverables: a vision
and scope document, a user requirements document, and a software requirements specification. You
do not necessarily need to create three discrete requirements deliverables on each project. It often
makes sense to combine some of this information, particularly on small projects. However, recognize
that these three deliverables contain different information, developed at different points in the
 project, possibly by different people, with different purposes and target audiences.

The model in Figure 1-1 showed a simple top-down flow of requirements information. In reality,
you should expect cycles and iteration among the business, user, and functional requirements.
 Whenever someone proposes a new feature, user requirement, or bit of functionality, the analyst
must ask, “Is this in scope?” If the answer is “yes,” the requirement belongs in the specification. If the
answer is “no,” it does not, at least not for the forthcoming release or iteration. The third possible
answer is “no, but it supports the business objectives, so it ought to be.” In that case, whoever controls
the project scope—the project sponsor, project manager, or product owner—must decide whether
to increase the current project’s or iteration’s scope to accommodate the new requirement. This is
a business decision that has implications for the project’s schedule and budget and might demand
trade-offs with other capabilities. An effective change process that includes impact analysis ensures
that the right people make informed business decisions about which changes to accept and that the
associated costs in time, resources, or feature trade-offs are addressed.

14 PART I Software requirements: What, why, and who

Product vs. project requirements
So far we have been discussing requirements that describe properties of a software system to be built.
Let’s call those product requirements. Projects certainly do have other expectations and deliverables
that are not a part of the software the team implements, but that are necessary to the successful
completion of the project as a whole. These are project requirements but not product requirements.
An SRS houses the product requirements, but it should not include design or implementation details
(other than known constraints), project plans, test plans, or similar information. Separate out such
items so that requirements development activities can focus on understanding what the team intends
to build. Project requirements include:

 ■ Physical resources the development team needs, such as workstations, special hardware
 devices, testing labs, testing tools and equipment, team rooms, and videoconferencing
 equipment.

 ■ Staff training needs.

 ■ User documentation, including training materials, tutorials, reference manuals, and release
notes.

 ■ Support documentation, such as help desk resources and field maintenance and service
 information for hardware devices.

 ■ Infrastructure changes needed in the operating environment.

 ■ Requirements and procedures for releasing the product, installing it in the operating
 environment, configuring it, and testing the installation.

 ■ Requirements and procedures for transitioning from an old system to a new one, such as data
migration and conversion requirements, security setup, production cutover, and training to
close skills gaps; these are sometimes called transition requirements (IIBA 2009).

 ■ Product certification and compliance requirements.

 ■ Revised policies, processes, organizational structures, and similar documents.

 ■ Sourcing, acquisition, and licensing of third-party software and hardware components.

 ■ Beta testing, manufacturing, packaging, marketing, and distribution requirements.

 ■ Customer service-level agreements.

 ■ Requirements for obtaining legal protection (patents, trademarks, or copyrights) for
 intellectual property related to the software.

This book does not address these sorts of project requirements further. That doesn’t mean that
they aren’t important, just that they are out of scope for our focus on software product requirements
development and management. Identifying these project requirements is a shared responsibility of
the BA and the project manager. They often come up while eliciting product requirements. Project
requirements information is best stored in the project management plan, which should itemize all
expected project activities and deliverables.

 CHAPTER 1 The essential software requirement 15

Particularly for business applications, people sometimes refer to a “solution” as encompassing
both the product requirements (which are principally the responsibility of the business analyst) and
the project requirements (which are principally the responsibility of the project manager). They
might use the term “solution scope” to refer to “everything that has to be done to complete the
project successfully.” In this book, though, we are focusing on product requirements, whether your
 ultimate deliverable is a commercial software product, a hardware device with embedded software, a
 corporate information system, contracted government software, or anything else.

Requirements development and management

Confusion about requirements terminology extends even to what to call the whole discipline. Some
authors call the entire domain requirements engineering (our preference). Others refer to it all as
requirements management. Still others refer to these activities as a subset of the broad domain of
business analysis.

We find it useful to split requirements engineering into requirements development (addressed in
Part II of this book) and requirements management (addressed in Part IV), as shown in Figure 1-4.
 Regardless of what development life cycle your project is following—be it pure waterfall, phased,
iterative, incremental, agile, or some hybrid—these are the things you need to do regarding
 requirements. Depending on the life cycle, you will perform these activities at different times in the
project and to varying degrees of depth or detail.

FIGURE 1-4 Subdisciplines of software requirements engineering.

Requirements development
As Figure 1-4 shows, we subdivide requirements development into elicitation, analysis, specification,
and validation (Abran et al. 2004). These subdisciplines encompass all the activities involved with
 exploring, evaluating, documenting, and confirming the requirements for a product. Following are
the essential actions in each subdiscipline.

16 PART I Software requirements: What, why, and who

Elicitation
Elicitation encompasses all of the activities involved with discovering requirements, such as interviews,
workshops, document analysis, prototyping, and others. The key actions are:

 ■ Identifying the product’s expected user classes and other stakeholders.

 ■ Understanding user tasks and goals and the business objectives with which those tasks align.

 ■ Learning about the environment in which the new product will be used.

 ■ Working with individuals who represent each user class to understand their functionality
needs and their quality expectations.

Usage-centric or product-centric?
Requirements elicitation typically takes either a usage-centric or a product-centric approach,
 although other strategies also are possible. The usage-centric strategy emphasizes
 understanding and exploring user goals to derive the necessary system functionality. The
product-centric approach focuses on defining features that you expect will lead to marketplace
or business success. A risk with product-centric strategies is that you might implement features
that don’t get used much, even if they seemed like a good idea at the time. We recommend
 understanding business objectives and user goals first, then using that insight to determine the
appropriate product features and characteristics.

Analysis
Analyzing requirements involves reaching a richer and more precise understanding of each
 requirement and representing sets of requirements in multiple ways. Following are the principal
activities:

 ■ Analyzing the information received from users to distinguish their task goals from functional
requirements, quality expectations, business rules, suggested solutions, and other information

 ■ Decomposing high-level requirements into an appropriate level of detail

 ■ Deriving functional requirements from other requirements information

 ■ Understanding the relative importance of quality attributes

 ■ Allocating requirements to software components defined in the system architecture

 ■ Negotiating implementation priorities

 ■ Identifying gaps in requirements or unnecessary requirements as they relate to the defined
scope

 CHAPTER 1 The essential software requirement 17

Specification
Requirements specification involves representing and storing the collected requirements knowledge
in a persistent and well-organized fashion. The principal activity is:

 ■ Translating the collected user needs into written requirements and diagrams suitable for
 comprehension, review, and use by their intended audiences.

Validation
Requirements validation confirms that you have the correct set of requirements information that will
enable developers to build a solution that satisfies the business objectives. The central activities are:

 ■ Reviewing the documented requirements to correct any problems before the development
group accepts them.

 ■ Developing acceptance tests and criteria to confirm that a product based on the requirements
would meet customer needs and achieve the business objectives.

Iteration is a key to requirements development success. Plan for multiple cycles of exploring
requirements, progressively refining high-level requirements into more precision and detail, and
 confirming correctness with users. This takes time and it can be frustrating. Nonetheless, it’s an
 intrinsic aspect of dealing with the fuzzy uncertainty of defining a new software system.

Important You’re never going to get perfect requirements. From a practical point of
view, the goal of requirements development is to accumulate a shared understanding
of requirements that is good enough to allow construction of the next portion of the
 product—be that 1 percent or 100 percent of the entire product—to proceed at an
 acceptable level of risk. The major risk is that of having to do excessive unplanned rework
because the team didn’t sufficiently understand the requirements for the next chunk of
work before starting design and construction.

Requirements management
Requirements management activities include the following:

 ■ Defining the requirements baseline, a snapshot in time that represents an agreed-upon,
reviewed, and approved set of functional and nonfunctional requirements, often for a specific
product release or development iteration

 ■ Evaluating the impact of proposed requirements changes and incorporating approved
changes into the project in a controlled way

 ■ Keeping project plans current with the requirements as they evolve

 ■ Negotiating new commitments based on the estimated impact of requirements changes

18 PART I Software requirements: What, why, and who

 ■ Defining the relationships and dependencies that exist between requirements

 ■ Tracing individual requirements to their corresponding designs, source code, and tests

 ■ Tracking requirements status and change activity throughout the project

The object of requirements management is not to stifle change or to make it difficult. It is to
anticipate and accommodate the very real changes that you can always expect so as to minimize their
disruptive impact on the project.

Figure 1-5 provides another view of the boundary between requirements development and
requirements management. This book describes dozens of specific practices for performing
 requirements elicitation, analysis, specification, validation, and management.

FIGURE 1-5 The boundary between requirements development and requirements management.

Every project has requirements

Frederick Brooks eloquently stated the critical role of requirements to a software project in his classic
1987 essay, “No Silver Bullet: Essence and Accidents of Software Engineering”:

The hardest single part of building a software system is deciding precisely what to
build. No other part of the conceptual work is as difficult as establishing the detailed
technical requirements, including all the interfaces to people, to machines, and to
other software systems. No other part of the work so cripples the resulting system if
done wrong. No other part is more difficult to rectify later.

 CHAPTER 1 The essential software requirement 19

Every software-containing system has stakeholders who rely on it. The time spent understanding
their needs is a high-leverage investment in project success. If a project team does not have written
representations of requirements that the stakeholders agree to, how can developers be sure to satisfy
those stakeholders?

Often, it’s impossible—or unnecessary—to fully specify the functional requirements before
 commencing design and implementation. In those cases, you can take an iterative or incremental
approach, implementing one portion of the requirements at a time and obtaining customer
 feedback before moving on to the next cycle. This is the essence of agile development, learning just
enough about requirements to do thoughtful prioritization and release planning so the team can
begin delivering valuable software as quickly as possible. This isn’t an excuse to write code before
 contemplating requirements for that next increment, though. Iterating on code is more expensive
than iterating on concepts.

People sometimes balk at spending the time that it takes to write software requirements. But
writing the requirements isn’t the hard part. The hard part is determining the requirements. Writing
requirements is a matter of clarifying, elaborating, and recording what you’ve learned. A solid under-
standing of a product’s requirements ensures that your team works on the right problem and devises
the best solution to that problem. Without knowing the requirements, you can’t tell when the project
is done, determine whether it has met its goals, or make trade-off decisions when scope adjustments
are necessary. Instead of balking at spending time on requirements, people should instead balk at the
money wasted when the project doesn’t pay enough attention to requirements.

When bad requirements happen to good people

The major consequence of requirements problems is rework—doing again something that you
thought was already done—late in development or after release. Rework often consumes 30 to
50 percent of your total development cost (Shull, et al. 2002; GAO 2004), and requirements errors can
account for 70 to 85 percent of the rework cost (Leffingwell 1997). Some rework does add value and
improves the product, but excessive rework is wasteful and frustrating. Imagine how different your life
would be if you could cut the rework effort in half! Your team members could build better products
faster and perhaps even go home on time. Creating better requirements is an investment, not just a
cost.

It can cost far more to correct a defect that’s found late in the project than to fix it shortly after
its creation. Suppose it costs $1 (on a relative scale) to find and fix a requirement defect while you’re
still working on the requirements. If you discover that error during design instead, you have to pay
the $1 to fix the requirement error, plus another $2 or $3 to redo the design that was based on the
incorrect requirement. Suppose, though, that no one finds the error until a user calls with a problem.
 Depending on the type of system, the cost to correct a requirement defect found in operation can be
$100 or more on this relative scale (Boehm 1981; Grady 1999; Haskins 2004). One of my consulting
clients determined that they spent an average of $200 of labor effort to find and fix a defect in
their information systems using the quality technique of software inspection, a type of peer review

20 PART I Software requirements: What, why, and who

 (Wiegers 2002). In contrast, they spent an average of $4,200 to fix a single defect reported by the
user, an amplification factor of 21. Preventing requirements errors and catching them early clearly has
a huge leveraging effect on reducing rework.

Shortcomings in requirements practices pose many risks to project success, where success means
delivering a product that satisfies the user’s functional and quality expectations at the agreed-
upon cost and schedule. Chapter 32, “Software requirements and risk management,” describes
how to manage such risks to prevent them from derailing your project. Some of the most common
 requirements risks are described in the following sections.

Insufficient user involvement
Customers often don’t understand why it is so essential to work hard on eliciting requirements and
assuring their quality. Developers might not emphasize user involvement, perhaps because they think
they already understand what the users need. In some cases it’s difficult to gain access to people who
will actually use the product, and user surrogates don’t always understand what users really need.
Insufficient user involvement leads to late-breaking requirements that generate rework and delay
completion.

Another risk of insufficient user involvement, particularly when reviewing and validating the
 requirements, is that the business analyst might not understand and properly record the true business
or customer needs. Sometimes a BA goes down the path of specifying what appears to be the
 “perfect” requirements, and developers implement them, but then no one uses the solution because
the business problem was misunderstood. Ongoing conversations with users can help mitigate this
risk, but if users don’t review the requirements carefully enough, you can still have problems.

Inaccurate planning
“Here’s my idea for a new product; when will you be done?” No one should answer this question until
more is known about the problem being discussed. Vague, poorly understood requirements lead
to overly optimistic estimates, which come back to haunt you when the inevitable overruns occur.
An estimator’s quick guess sounds a lot like a commitment to the listener. The top contributors to
poor software cost estimation are frequent requirements changes, missing requirements, insufficient
communication with users, poor specification of requirements, and insufficient requirements analysis
(Davis 1995). Estimating project effort and duration based on requirements means that you need to
know something about the size of your requirements and the development team’s productivity. See
Chapter 5 of More about Software Requirements (Wiegers 2006) for more about estimation based on
requirements.

Creeping user requirements
As requirements evolve during development, projects often exceed their planned schedules and
budgets (which are nearly always too optimistic anyway). To manage scope creep, begin with a clear
statement of the project’s business objectives, strategic vision, scope, limitations, and success criteria.
Evaluate all proposed new features or requirements changes against this reference. Requirements will

 CHAPTER 1 The essential software requirement 21

change and grow. The project manager should build contingency buffers into schedules so the first
new requirement that comes along doesn’t derail the schedule (Wiegers 2007). Agile projects take the
approach of adjusting the scope for a certain iteration to fit into a defined budget and duration for
the iteration. As new requirements come along, they are placed into the backlog of pending work and
allocated to future iterations based on priority. Change might be critical to success, but change always
has a price.

Ambiguous requirements
One symptom of ambiguity in requirements is that a reader can interpret a requirement statement
in several ways (Lawrence 1996). Another sign is that multiple readers of a requirement arrive at
 different understandings of what it means. Chapter 11, “Writing excellent requirements,” lists many
words and phrases that contribute to ambiguity by placing the burden of interpretation on the
reader.

Ambiguity leads to different expectations on the part of various stakeholders. Some of them are
then surprised at whatever is delivered. Ambiguous requirements cause wasted time when developers
implement a solution for the wrong problem. Testers who expect the product to behave differently
from what the developers built waste time resolving the differences.

One way to ferret out ambiguity is to have people who represent different perspectives inspect
the requirements (Wiegers 2002). As described in Chapter 17, “Validating the requirements,” informal
peer reviews in which reviewers simply read the requirements on their own often don’t reveal
 ambiguities. If different reviewers interpret a requirement in different ways but it makes sense to
each of them, they won’t find the ambiguity. Collaborative elicitation and validation encourages
 stakeholders to discuss and clarify requirements as a group in a workshop setting. Writing tests
against the requirements and building prototypes are other ways to discover ambiguities.

Gold plating
Gold plating takes place when a developer adds functionality that wasn’t in the requirements
 specification (or was deemed out of scope) but which the developer believes “the users are just going
to love.” If users don’t care about this functionality, the time spent implementing it is wasted. Rather
than simply inserting new features, developers and BAs should present stakeholders with creative
ideas for their consideration. Developers should strive for leanness and simplicity, not going beyond
what stakeholders request without their approval.

Customers sometimes request certain features or elaborate user interfaces that look attractive but
add little value to the product. Everything you build costs time and money, so you need to maximize
the delivered value. To reduce the threat of gold plating, trace each bit of functionality back to its
origin and its business justification so everyone knows why it’s included. Make sure that what you are
specifying and developing lies within the project’s scope.

22 PART I Software requirements: What, why, and who

Overlooked stakeholders
Most products have several groups of users who might use different subsets of features, have
 different frequencies of use, or have varying levels of experience. If you don’t identify the important
user classes for your product early on, some user needs won’t be met. After identifying all user
 classes, make sure that each has a voice, as discussed in Chapter 6, “Finding the voice of the
user.” Besides obvious users, think about maintenance and field support staff who have their own
 requirements, both functional and nonfunctional. People who have to convert data from a legacy
system will have transition requirements that don’t affect the ultimate product software but that
certainly influence solution success. You might have stakeholders who don’t even know the project
exists, such as government agencies that mandate standards that affect your system, yet you need to
know about them and their influence on the project.

Benefits from a high-quality requirements process

Some people mistakenly believe that time spent discussing requirements simply delays delivery by
the same duration. This assumes that there’s no return on investment from requirements activities. In
actuality, investing in good requirements will virtually always return more than it costs.

Sound requirements processes emphasize a collaborative approach to product development
that involves stakeholders in a partnership throughout the project. Eliciting requirements lets
the development team better understand its user community or market, a critical success factor.
 Emphasizing user tasks instead of superficially attractive features helps the team avoid writing code
that no one will ever execute. Customer involvement reduces the expectation gap between what
the customer really needs and what the developer delivers. You’re going to get the customer input
 eventually; it’s far cheaper to reach this understanding before you build the product than after
 delivery. Chapter 2 addresses the nature of the customer-development partnership.

Explicitly allocating system requirements to various software, hardware, and human subsystems
emphasizes a systems approach to product engineering. An effective change control process will
minimize the adverse impact of requirements changes. Documented and clear requirements greatly
facilitate system testing. All of these increase your chances of delivering high-quality products that
satisfy all stakeholders.

No one can promise a specific return on investment from using sound requirements practices. You
can go through an analytical thought process to imagine how better requirements could help your
teams, though (Wiegers 2006). The cost of better requirements includes developing new procedures
and document templates, training the team, and buying tools. Your greatest investment is the time
your project teams actually spend on requirements engineering tasks. The potential payoff includes:

 ■ Fewer defects in requirements and in the delivered product.

 ■ Reduced development rework.

 ■ Faster development and delivery.

 CHAPTER 1 The essential software requirement 23

 ■ Fewer unnecessary and unused features.

 ■ Lower enhancement costs.

 ■ Fewer miscommunications.

 ■ Reduced scope creep.

 ■ Reduced project chaos.

 ■ Higher customer and team member satisfaction.

 ■ Products that do what they’re supposed to do.

Even if you can’t quantify all of these benefits, they are real.

Next steps
 ■ Write down requirements-related problems that you have encountered on your current

or previous project. Identify each as a requirements development or requirements
 management problem. Describe the root cause of each problem and its impact on the
project.

 ■ Facilitate a discussion with your team members and other stakeholders regarding
 requirements-related problems from your current or previous projects, their impacts, and
their root causes. Pool your ideas about changes in your current requirements practices
that could address these problems. The troubleshooting guide in Appendix B might be
helpful.

 ■ Map the requirements terminology and deliverables used in your organization to that
shown in this chapter to see if you’re covering all the categories recommended here.

 ■ Perform a simple assessment on just a few pages of one of your requirements documents
to see where your team might have some clear improvement areas. It might be most
 useful to have an objective outsider perform this assessment.

 ■ Arrange a training class on software requirements for your entire project team. Invite
key customers, marketing staff, managers, developers, testers, and other stakeholders
to participate. Training gives project participants a common vocabulary. It provides a
shared appreciation of effective techniques and behaviors so that all team members can
 collaborate more effectively on their mutual challenges.

 25

C H A P T E R 2

Requirements from the customer’s
perspective

Gerhard, a senior manager at Contoso Pharmaceuticals, was meeting with Cynthia, the manager of
Contoso’s IT department. “We need to build a chemical tracking information system,” Gerhard began.
“The system should keep track of all the chemical containers we already have in the stockroom and
in laboratories. That way, the chemists can get some chemicals from someone down the hall instead
of always buying a new container. This should save us a lot of money. Also, the Health and Safety
 Department needs to generate government reports on chemical usage and disposal with a lot less work
than it takes them today. Can you build this system in time for the compliance audit in five months?”

“I see why this project is important, Gerhard,” said Cynthia. “But before I can commit to a schedule,
we’ll need to understand the requirements for the chemical tracking system.”

Gerhard was confused. “What do you mean? I just told you my requirements.”

“Actually, you described some general business objectives for the project,” Cynthia explained. “That
doesn’t give me enough information to know what software to build or how long it might take. I’d like to
have one of our business analysts work with some users to understand their needs for the system.”

“The chemists are busy people,” Gerhard protested. “They don’t have time to nail down every detail
before you can start programming. Can’t your people figure out what to build?”

Cynthia replied, “If we just make our best guess at what the users need to do with the system, we
can’t do a good job. We’re software developers, not chemists. I’ve learned that if we don’t take the time
to understand the problem, nobody is happy with the results.”

“We don’t have time for all that,” Gerhard insisted. “I gave you my requirements. Now just build the
system, please. Keep me posted on your progress.”

Conversations like this take place regularly in the software world. Customers who request a new system
often don’t understand the importance of obtaining input from actual users of the proposed system
as well as other stakeholders. Marketers with a great product concept believe that they can adequately
represent the interests of prospective buyers. However, there’s no substitute for eliciting requirements
directly from people who will actually use the product. Some agile development methods recommend
that an on-site customer representative, sometimes called a product owner, work closely with the
 development team. As one book about agile development said, “The project is steered to success by
the customer and programmers working in concert” (Jeffries, Anderson, and Hendrickson 2001).

26 PART I Software requirements: What, why, and who

Part of the requirements problem results from confusion over the different levels of requirements
described in Chapter 1, “The essential software requirement”: business, user, and functional. Gerhard
stated some business objectives, benefits that he expects Contoso to enjoy with the help of the
new chemical tracking system. Business objectives are a core element of the business requirements.
 However, Gerhard can’t entirely describe the user requirements because he’s not an intended user of
the system. Users, in turn, can describe tasks they must be able to perform with the system, but they
can’t state all the functional requirements that developers must implement to let them accomplish
those tasks. Business analysts need to collaborate with users to reach that deeper understanding.

This chapter addresses the customer-development relationship that is so critical to software
 project success. We propose a Requirements Bill of Rights for Software Customers and a
 corresponding Requirements Bill of Responsibilities for Software Customers. These lists underscore
the importance of customer—and specifically end user—involvement in requirements development.
This chapter also discusses the critical issue of reaching agreement on a set of requirements planned
for a specific release or development iteration. Chapter 6, “Finding the voice of the user,” describes
various types of customers and users and ways to engage appropriate user representatives in
 requirements elicitation.

Deliverable: Rejected
I heard a sad story when I visited a corporate IT department once. The developers had recently
built a new information system for use within the company. They had obtained negligible user
input from the beginning. The day the developers proudly unveiled their new system, the
 users rejected it as completely unacceptable. This came as a shock because the developers had
worked hard to satisfy what they perceived to be the users’ needs. So what did they do then?
They fixed it. Companies always fix the system when they get the requirements wrong, yet it
always costs much more than if they had engaged user representatives from the outset.

The developers hadn’t planned to spend time fixing the flawed information system, of
course, so the next project in the team’s queue had to wait. This is a lose-lose-lose situation.
The developers were chagrined, the users were unhappy because their new system wasn’t
 available when they expected it, and the executives were upset over a lot of wasted money and
the opportunity costs of delaying other projects. Extensive and ongoing customer engagement
from the start could have prevented this unfortunate—but not uncommon—project outcome.

The expectation gap

Without adequate customer involvement, the inescapable outcome at the end of the project is an
expectation gap, a gulf between what customers really need and what developers deliver based
on what they heard at the beginning of the project (Wiegers 1996). This is shown as the dashed
lines in Figure 2-1. As with the previous story, the expectation gap comes as a rude surprise to all
 stakeholders. In our experience, software surprises are never good news. Requirements also get out of
date because of changes that occur in the business, so ongoing interactions with customers are vital.

 CHAPTER 2 Requirements from the customer's perspective 27

The best way to minimize the expectation gap is to arrange frequent contact points with suitable
customer representatives. These contact points can take the form of interviews, conversations,
requirements reviews, user interface design walkthroughs, prototype evaluations, and—with agile
development—user feedback on small increments of executable software. Each contact point affords
an opportunity to close the expectation gap: what the developer builds is more closely aligned with
what the customer needs.

Of course, the gap will begin to grow again immediately as development proceeds after each
 contact. The more frequent the contact points are, the easier it is to stay on track. As the progressively
shrinking small gray triangles in Figure 2-1 illustrate, a series of such contact points will lead to a far
smaller expectation gap at the end of the project and a solution that is much closer to the actual
customer needs. This is why one of the guiding principles of agile development is to have ongoing
conversations between developers and customers. That’s an excellent principle for any project.

FIGURE 2-1 Frequent customer engagement reduces the expectation gap.

Who is the customer?

Before we can talk about customers, we need to discuss stakeholders. A stakeholder is a person,
group, or organization that is actively involved in a project, is affected by its process or outcome, or
can influence its process or outcome. Stakeholders can be internal or external to the project team
and to the developing organization. Figure 2-2 identifies many of the potential stakeholders in these
categories. Not all of these will apply to every project or situation, of course.

Stakeholder analysis is an important part of requirements development (Smith 2000; Wiegers
2007; IIBA 2009). When searching for potential stakeholders for a particular project, cast a wide net
to avoid overlooking some important community. Then you can focus this candidate stakeholder list
down to the core set whose input you really need, to make sure you understand all of the project’s
requirements and constraints so your team can deliver the right solution.

28 PART I Software requirements: What, why, and who

FIGURE 2-2 Potential stakeholders within the project team, within the developing organization, and outside the
organization.

Customers are a subset of stakeholders. A customer is an individual or organization that derives
either direct or indirect benefit from a product. Software customers could request, pay for, select,
specify, use, or receive the output generated by a software product. The customers shown in
Figure 2-2 include the direct user, indirect user, executive sponsor, procurement staff, and acquirer.
Some stakeholders are not customers, such as legal staff, compliance auditors, suppliers, contractors,
and venture capitalists. Gerhard, the manager we met earlier, represents an executive sponsor who is
 paying for the project. Customers like Gerhard provide the business requirements, which establish
the guiding framework for the project and the business rationale for launching it. As discussed in
Chapter 5, “Establishing the business requirements,” business requirements describe the business
objectives that the customer, company, or other stakeholders want to achieve. All other product
requirements need to align with achieving those desired business outcomes.

User requirements should come from people who will actually use the product, either directly or
indirectly. These users (often called end users) are a subset of customers. Direct users will operate
the product hands-on. Indirect users might receive outputs from the system without touching it
 themselves, such as a warehouse manager who receives an automatic report of daily warehouse
 activities by email. Users can describe the tasks they need to perform with the product, the outputs
they need, and the quality characteristics they expect the product to exhibit.

 CHAPTER 2 Requirements from the customer's perspective 29

The case of the missing stakeholder
I know of a project that was almost finished with requirements elicitation when, while reviewing
a process flow, the business analyst (BA) asked the stakeholder, “Are you sure we have the
tax calculation steps correct in this flow?” The stakeholder replied, “Oh, I don’t know. I don’t
own tax. That’s the tax department.” The team hadn’t talked to anyone in the tax department
over the course of working on the project for months. They had no idea that there even was
a tax department. As soon as the BAs did meet with the tax department, they found a long
list of missed requirements around the legal implications of how tax-related functions were
 implemented. The project was delayed several months as a result. Using an organization
chart to search for all stakeholders who will be affected by a new system can avoid such
 unpleasantness.

Customers who provide the business requirements sometimes purport to speak for the actual
 users. They are often too far removed from the work to provide accurate user requirements, though.
For corporate information systems, contract development, or custom application development,
business requirements should come from the person who is ultimately accountable for the business
value expected from the product. User requirements should come from people who will press the
keys, touch the screen, or receive the outputs. If there is a serious disconnect between the acquiring
customers who are paying for the project and the end users, major problems are guaranteed.

The situation is different for commercial software development, where the customer and the user
often are the same person. Customer surrogates, such as marketing personnel or a product manager,
typically attempt to determine what customers would find appealing. Even for commercial software,
though, you should strive to engage end users in the process of developing user requirements, as
Chapter 7, “Requirements elicitation,” describes. If you don’t, be prepared to read reviews pointing
out product shortcomings that adequate user input could have avoided.

Conflicts can arise among project stakeholders. Business requirements sometimes reflect
 organizational strategies or budgetary constraints that aren’t apparent to users. Users who are upset
about having a new information system forced on them by management might not want to work
with the software developers, viewing them as the harbingers of an undesired future. Such folks are
sometimes called “loser groups” (Gause and Weinberg 1989). To manage such potential conflicts, try
communication strategies about project objectives and constraints that can build buy-in and avoid
debates and hard feelings.

The customer-development partnership

An excellent software product results from a well-executed design based on excellent requirements.
Excellent requirements result from effective collaboration between developers and customers
(in particular, actual users)—a partnership. A collaborative effort can work only when all parties
 involved know what they need to be successful and when they understand and respect what their

30 PART I Software requirements: What, why, and who

 collaborators need to be successful. As project pressures rise, it’s easy to forget that all stakeholders
share a common objective: to build a product that provides adequate business value and rewards to
all stakeholders. The business analyst typically is the point person who has to forge this collaborative
partnership.

The Requirements Bill of Rights for Software Customers in Table 2-1 lists 10 expectations that
 customers can legitimately hold regarding their interactions with BAs and developers during
the project’s requirements engineering activities. Each of these rights implies a corresponding
 responsibility on the part of the BAs or software developers. The word “you” in the rights and
 responsibilities refers to a customer for a software development project.

Because the flip side of a right is a responsibility, Table 2-2 lists 10 responsibilities that the
 customer has to BAs and developers during the requirements process. You might prefer to view these
as a developer’s bill of rights. If these lists aren’t exactly right for your organization, modify them to
suit the local culture.

TABLE 2-1 Requirements Bill of Rights for Software Customers

You have the right to

 1. Expect BAs to speak your language.

 2. Expect BAs to learn about your business and your objectives.

 3. Expect BAs to record requirements in an appropriate form.

 4. Receive explanations of requirements practices and deliverables.

 5. Change your requirements.

 6. Expect an environment of mutual respect.

 7. Hear ideas and alternatives for your requirements and for their solution.

 8. Describe characteristics that will make the product easy to use.

 9. Hear about ways to adjust requirements to accelerate development through reuse.

10. Receive a system that meets your functional needs and quality expectations.

TABLE 2-2 Requirements Bill of Responsibilities for Software Customers

You have the responsibility to

 1. Educate BAs and developers about your business.

 2. Dedicate the time that it takes to provide and clarify requirements.

 3. Be specific and precise when providing input about requirements.

 4. Make timely decisions about requirements when asked.

 5. Respect a developer’s assessment of the cost and feasibility of requirements.

 6. Set realistic requirement priorities in collaboration with developers.

 7. Review requirements and evaluate prototypes.

 8. Establish acceptance criteria.

 9. Promptly communicate changes to the requirements.

10. Respect the requirements development process.

 CHAPTER 2 Requirements from the customer's perspective 31

These rights and responsibilities apply to actual customers when the software is being developed
for internal corporate use, under contract, or for a known set of major customers. For mass-market
product development, the rights and responsibilities are more applicable to customer surrogates such
as the product manager.

As part of project planning, the key customer and development stakeholders should review these
two lists and negotiate to reach a meeting of the minds. Make sure the participants in requirements
development understand and accept their responsibilities. This understanding can reduce friction
later, when one party expects something that the other is not willing or able to provide.

Trap Don’t assume that the project participants instinctively know how to collaborate on
requirements development. Take the time to discuss how those involved can work together
most effectively. It’s a good idea to write down how you decide to approach and manage
requirements issues on the project. This will serve as a valuable communication tool
throughout the project.

Requirements Bill of Rights for Software Customers
Following are 10 rights that customers can expect when it comes to requirements issues.

Right #1: To expect BAs to speak your language
Requirements discussions should center on your business needs and tasks, using business vocabulary.
Consider conveying business terminology to the BAs with a glossary of terms. You shouldn’t have to
wade through technical jargon when talking with BAs.

Right #2: To expect BAs to learn about your business and your objectives
By interacting with you to elicit requirements, the BAs can better understand your business tasks
and how the system fits into your world. This will help developers create a solution that meets your
needs. Invite BAs and developers to observe what you and your colleagues do on the job. If the new
system is replacing an existing one, the BAs should use the current system as you use it. This will show
them how it fits into your workflow and where it can be improved. Don’t just assume that the BA will
already know all about your business operations and terminology (see Responsibility #1).

Right #3: To expect BAs to record requirements in an appropriate form
The BA will sort through all the information that stakeholders provide and ask follow-up questions
to distinguish user requirements from business rules, functional requirements, quality goals, and
other items. The ultimate deliverable from this analysis is a refined set of requirements stored in
some appropriate form, such as a software requirements specification document or a requirements
 management tool. This set of requirements constitutes the agreement among the stakeholders about

32 PART I Software requirements: What, why, and who

the functions, qualities, and constraints of the product to be built. Requirements should be written
and organized in a way that you find easy to understand. Your review of these specifications and
other requirements representations, such as visual analysis models, helps to ensure that they
accurately represent your needs.

Right #4: To receive explanations of requirements practices and deliverables
Various practices can make requirements development and management both effective and efficient,
and requirements knowledge can be represented in a variety of forms. The BA should explain the
practices he’s recommending and explain what information goes into each deliverable. For instance,
the BA might create some diagrams to complement textual requirements. These diagrams might be
unfamiliar to you, and they can be complex, but the notations shouldn’t be difficult to understand.
The BA should explain the purpose of each diagram, what the symbols mean, and how to examine the
diagram for errors. If the BA doesn’t offer such explanations, feel free to ask for them.

Right #5: To change your requirements
It’s not realistic for BAs or developers to expect you to think of all your requirements up front or
to expect those requirements to remain static throughout the development cycle. You have the
right to make changes in the requirements as the business evolves, as the team gathers more input
from stakeholders, or as you think more carefully about what you need. However, change always
has a price. Sometimes adding a new function demands trade-offs with other functions or with the
project’s schedule or budget. An important part of the BA’s responsibility is to assess, manage, and
 communicate change impacts. Work with the BA on your project to agree on a simple but effective
process for handling changes.

Right #6: To expect an environment of mutual respect
The relationship between customers and developers sometimes becomes adversarial. Requirements
discussions can be frustrating if the participants don’t understand each other. Working together can
open the eyes of the participants to the problems each group faces. Customers who participate in
 requirements development have the right to expect BAs and developers to treat them with respect
and to appreciate the time they are investing in the project’s success. Similarly, customers should
demonstrate respect for the development team members as everyone collaborates toward their
 mutual objective of a successful project. Everyone’s on the same side here.

Right #7: To hear ideas and alternatives for your requirements and for their
solution
Let the BA know about ways that your existing systems don’t fit well with your business processes to
make sure that a new system doesn’t automate ineffective or obsolete processes. That is, you want
to avoid “paving the cow paths.” A BA can often suggest improvements in your business processes.
A creative BA also adds value by proposing new capabilities that customers haven’t even envisioned.

 CHAPTER 2 Requirements from the customer's perspective 33

Right #8: To describe characteristics that will make the product easy to use
You can expect BAs to ask you about characteristics of the software that go beyond your functional
needs. These characteristics, or quality attributes, make the software easier or more pleasant to use,
which lets users accomplish their tasks more efficiently. Users sometimes request that the product be
user-friendly or robust, but such terms are too subjective to help the developers. Instead, the analyst
should inquire about the specific characteristics that mean “user-friendly” or “robust” to you. Tell the
BA about which aspects of your current applications seem “user-friendly” to you and which do not.
If you don’t discuss these characteristics with the BA, you’ll be lucky if the product comes out as you
hope.

Right #9: To hear about ways to adjust requirements to accelerate
development through reuse
Requirements are often somewhat flexible. The BA might know of existing software components or
requirements that come close to addressing some need you described. In such a case, the BA should
suggest ways of modifying your requirements or avoiding unnecessary customizations so developers
can reuse those components. Adjusting your requirements when sensible reuse opportunities are
available saves time and money. Some requirements flexibility is essential if you want to incorporate
commercial off-the-shelf (COTS) packages into the product, because they will rarely have precisely the
characteristics you want.

Right #10: To receive a system that meets your functional needs and quality
expectations
This is the ultimate customer right, but it can happen only if you clearly communicate all the
 information that will let developers build the right product, if developers communicate options and
constraints to you, and if the parties reach agreement. Be sure to state all your assumptions and
 expectations; otherwise, the developers likely can’t address them properly. Customers sometimes
don’t articulate points that they believe are common knowledge. However, validating a shared
 understanding across the project team is just as important as expressing something new.

Requirements Bill of Responsibilities for Software Customers
Because the counterpart to a right is a responsibility, following are 10 responsibilities that customer
representatives have when it comes to defining and managing the requirements for their projects.

Responsibility #1: To educate BAs and developers about your business
The development team depends on you to educate them about your business concepts and to define
business jargon. The intent is not to transform BAs into business experts but to help them understand
your problems and objectives. BAs aren’t likely to be aware of knowledge that you and your peers
take for granted.

34 PART I Software requirements: What, why, and who

Responsibility #2: To dedicate the time that it takes to provide and clarify
requirements
Customers are busy people; those who are involved in requirements work are often among the
busiest. Nonetheless, you have a responsibility to dedicate time to workshops, interviews, and other
requirements elicitation and validation activities. Sometimes the BA might think she understands a
point you made, only to realize later that she needs further clarification. Please be patient with this
iterative approach to developing and refining the requirements; it’s the nature of complex human
communication and a key to software success. The total time required is less when there is focused
effort for several hours than when the time is spent in bits and pieces strung out over weeks.

Responsibility #3: To be specific and precise when providing input about
requirements
It’s tempting to leave the requirements vague and fuzzy because pinning down details is tedious and
time consuming (or because someone wants to evade being held accountable for his decisions).
At some point, though, someone must resolve the ambiguities and imprecisions. You’re the best
person to make those decisions. Otherwise, you’re relying on the BA or developers to guess correctly.
It’s fine to temporarily include to be determined (TBD) markers in the requirements to indicate that
additional exploration or information is needed. Sometimes, though, TBD is used because a specific
 requirement is difficult to resolve and no one wants to tackle it. Try to clarify the intent of each
 requirement so that the BA can express it accurately. This is the best way to ensure that the product
will meet your needs.

Responsibility #4: To make timely decisions about requirements when asked
Just as a contractor does while building your fabulous dream home, the BA will ask you to make many
decisions. These include resolving conflicting requests received from multiple customers, choosing
between incompatible quality attributes, and evaluating the accuracy of information. Customers
who are authorized to make such decisions must do so promptly when asked. Developers often can’t
 proceed with confidence until you render your decision, so time spent waiting for an answer can delay
progress. When the demands for your time start to feel onerous, remember that the system is being
built for you. Business analysts are often skilled at helping people think through making decisions, so
ask for their help if you get stuck.

Responsibility #5: To respect a developer’s assessment of the cost and
feasibility of requirements
All software functions have a cost. Developers are in the best position to estimate those costs. Some
features might not be technically feasible or might be surprisingly expensive to implement. Certain
 requirements might demand unattainable performance in the operating environment or require access
to data that isn’t available to the system. The developer can be the bearer of bad news about feasibility
or cost. You should respect that judgment, even if it means you might not get something you asked for
in exactly the form you envisioned. Sometimes, you can rewrite requirements in a way that makes them
attainable or cheaper. For example, asking for an action to take place “instantaneously” isn’t feasible, but a
more precise timing requirement (“within 50 milliseconds”) might be achievable.

 CHAPTER 2 Requirements from the customer's perspective 35

Responsibility #6: To set realistic requirement priorities in collaboration with
developers
Few projects have the time and resources to implement every bit of functionality all customers want.
Determining which capabilities are essential, which are useful, and which the customers can live
 without is an important part of requirements analysis. You have a lead role in setting requirement
priorities. Developers can provide information about the cost and risk of each requirement or user
story to help determine final priorities. When you establish realistic priorities, you help the developers
deliver the maximum value at the lowest cost and at the right time. Collaborative prioritization is key
for agile projects, so the developers can begin delivering useful software as quickly as possible.

Respect the development team’s judgment as to how much of the requested functionality they
can complete within the available time and resource constraints. If everything you want doesn’t fit in
the project box, the decision makers will have to reduce project scope based on priorities, extend the
schedule, or provide additional funds or people. Simply declaring every requirement as high priority
is neither realistic nor collaborative.

Responsibility #7: To review requirements and evaluate prototypes
As you’ll see in Chapter 17, “Validating the requirements,” peer reviews of requirements are among
the most powerful software quality activities available. Having customers participate in reviews is
a key way to evaluate whether the requirements demonstrate the desired characteristics of being
 complete, correct, and necessary. A review is also an opportunity for customer representatives to
 assess how well the BA’s work is meeting the project’s needs. Busy customers often are reluctant
to devote time to a requirements review, but it’s well worth their time. The BA should make
 requirements available to you for review in manageable chunks throughout the requirements
 elicitation process, not in a massive tome dumped on your desk when the requirements are “done.”

It’s hard to develop a good mental picture of how software will work from written requirements
alone. To better understand your needs and explore the best ways to satisfy them, BAs or developers
sometimes build prototypes of the intended product. Your feedback on these preliminary, partial, or
exploratory implementations provides valuable information to the developers.

Responsibility #8: To establish acceptance criteria
How do developers know when they’re done? How can they tell if the software they built will meet
the expectations of the various customer communities? As a customer, one of your responsibilities
is to establish acceptance criteria, predefined conditions that the product must satisfy to be judged
 acceptable. Such criteria include acceptance tests, which assess whether the product lets users perform
certain of their important business operations correctly. Other acceptance criteria might address the
estimated remaining defect levels, the performance of certain actions in the operating environment,
or the ability to satisfy external certification requirements. Agile projects rely heavily on acceptance
tests, instead of written requirements, to flesh out the details of user stories. Testers can judge whether
a specified requirement was implemented correctly, but they don’t always know exactly what you will
consider an acceptable outcome.

36 PART I Software requirements: What, why, and who

Responsibility #9: To promptly communicate changes to the requirements
Continually changing requirements pose a serious risk to the development team’s ability to deliver
a high-quality product on schedule. Change is inevitable and often valuable, but the later in
 development a change is introduced, the greater its impact. Notify the BA as soon as you learn that
you need to change a requirement. To minimize the negative impact of changes, follow the project’s
defined change control process. This ensures that requested changes are not lost, the impact of each
change is analyzed, and all proposed changes are considered in a consistent way. As a result, the
 business stakeholders can make sound business decisions to incorporate appropriate changes at the
right stage of the project.

Responsibility #10: To respect the requirements development process
Eliciting and specifying requirements are among the greatest challenges in software development.
There’s a rationale behind the BA’s approach to requirements development. Although you might
 become frustrated, the time spent understanding requirements is an excellent investment. The
 process will be less painful if you respect the techniques the BAs use. Feel free to ask BAs to explain
why they’re requesting certain information or asking you to participate in some requirements-related
activity. A mutual understanding of, and respect for, each other’s approaches and needs goes a long
way toward establishing an effective—perhaps even enjoyable—collaboration.

Creating a culture that respects requirements

The leader of a corporate requirements organization once posed a problem: “I’m experiencing issues
in gaining agreement from some of our developers to participate in requirements development,”
she said. “How can I help them understand the value of their participation?” In another organization,
a BA experienced a clash between developers seeking detailed input for an accounting system and
an IT manager who simply wanted to brainstorm requirements without using any specific elicitation
techniques. “Do readers of your book risk cultural conflict?” this BA asked me.

These questions exemplify the challenges that can arise when trying to engage BAs, developers,
and customers in a collaborative requirements partnership. You’d think it would be obvious to a user
that providing requirements input makes it more likely that he’ll get what he needs. Developers ought
to recognize that participating in the process will make their lives easier than being hit on the head by
whatever requirements document flies over the proverbial wall. Obviously, not everyone is as excited
about requirements as you are; if they were, they’d probably all become business analysts!

Culture clashes frequently arise when teams are working on requirements. There are those
who recognize the many risks associated with trying to develop software based on minimal or
 telepathically communicated requirements. Then there are those who think requirements are
 unnecessary. It can be tough to gain business-side cooperation on projects like legacy-system
replacement if users see this as unrelated to their own business problems and not worth their time.
Understanding why people resist participating in requirements development is the first step to being
able to address it.

 CHAPTER 2 Requirements from the customer's perspective 37

It’s possible that the resisters haven’t been exposed to solid requirements practices. Or they
might have suffered from poor implementation of requirements processes, perhaps working on a
 project that produced a large, incomplete, and ignored requirements specification. That would leave
a bad taste in anyone’s mouth. Perhaps the resisters don’t understand and appreciate the value
of those practices when performed effectively. They might not realize the price they have paid for
 having worked in a casual and unstructured environment in the past. That price mostly shows up as
 unexpected rework that leads to late deliveries and poor software. Such rework is buried in the daily
activities of the project participants, so they don’t recognize it as a serious inefficiency.

If you’re trying to get developers, managers, and customers on board, make sure everyone
 understands the past pain the organization and its customers have experienced because of
 requirements problems. Find specific examples to demonstrate the impact in case individuals haven’t
felt the pain themselves. Express the cost in units that are meaningful to the organization, be it
 dollars, time, customer dissatisfaction, or lost business opportunities. Development managers aren’t
always aware of how badly requirements shortcomings hurt their teams’ productivity. So show them
how poor requirements slow down design and lead to excessive—and expensive—course corrections.

Developers are stakeholders in the project, but sometimes their input isn’t solicited and they
become the “victims” of the requirements that are thrust upon them. Therefore, they benefit from
providing input that will make the requirements documentation as useful and meaningful as possible.
I like to have developers review requirements as they are evolving. That way they know what’s coming
and can spot areas that need more clarity. You also need developer input when specifying internal
quality attributes that aren’t visible to users. Developers can offer suggestions no one else might have
thought about: easier ways to do certain things; functionality that would be very time-consuming to
 implement; unnecessary imposed design constraints; missing requirements, such as how exceptions
should be handled; and creative opportunities to take advantage of technologies.

Quality assurance staff and testers are also valuable contributors to excellent requirements.
Instead of waiting until later in the project, engage these sharp-eyed people in the iterative review
of requirements early on. They’re likely to find many ambiguities, conflicts, and concerns with the
requirements as they are developing their test cases and scenarios from the requirements. Testers can
also provide input on specifying verifiable quality attribute requirements.

Resistance to process or culture change can indicate fear, uncertainty, or lack of knowledge.
If you can discern the source of the resistance, you can confront it with reassurance, clarification, and
 education. Show people how their participation not only is in their personal best interest but also will
lead to collectively better results.

The organization’s leadership must understand the need for the organization to have effective
business analysis and requirements engineering capabilities as strategic core competencies. Though
project-specific and localized grassroots efforts are important, without management commitment,
the improvements and benefits likely won’t be sustained after the project ends or following a
 reorganization.

38 PART I Software requirements: What, why, and who

Identifying decision makers

There can be hundreds of decisions to make on software projects; often, they are on the critical path
to being able to move ahead. You might need to resolve some conflict, accept (or reject) a proposed
change, or approve a set of requirements for a specific release. Early in your project, determine
who the requirements decision makers will be and how they will make decisions. My friend Chris,
a seasoned project manager, pointed out, “I have found that there is usually one primary decision
 maker on a project, oftentimes the key sponsor within the organization. I don’t rest until I have
 identified that person, and then I make sure he is always aware of the project’s progress.” There’s
no single correct answer as to who should make key decisions. A small group representing key
areas—such as management, customers, business analysis, development, and marketing—generally
works best. Chapter 28, “Change happens,” describes the change control board, which serves as the
decision makers for proposed requirement changes.

The decision-making group needs to identify its decision leader and to select a decision rule, which
describes how they will arrive at their decisions. There are numerous decision rules to choose from,
including the following (Gottesdiener 2001):

 ■ The decision leader makes the choice, either with or without discussion with others.

 ■ The group votes and the majority rules.

 ■ The group votes, but the result must be unanimous to approve the decision.

 ■ The group discusses and negotiates to reach a consensus. Everyone can live with the decision
and commits to supporting it.

 ■ The decision leader delegates authority for making the decision to one individual.

 ■ The group reaches a decision, but some individual has veto authority over that decision.

There is no globally correct or appropriate decision rule. A single decision rule won’t work in
every situation, so the group must establish guidelines so they know when to vote, when to reach
 consensus, when to delegate, and so on. The people who will be making requirements-related
 decisions on each of your projects should choose a decision rule before they confront their first
 significant decision.

Reaching agreement on requirements

Reaching agreement on the requirements for the product to be built, or for a specific portion of it, is
at the core of the customer-developer partnership. Multiple parties are involved in this agreement:

 ■ Customers agree that the requirements address their needs.

 ■ Developers agree that they understand the requirements and that they are feasible.

 ■ Testers agree that the requirements are verifiable.

 ■ Management agrees that the requirements will achieve their business objectives.

 CHAPTER 2 Requirements from the customer's perspective 39

Many organizations use the act of “signing off” (why not “signing on”?) on the requirements
as the mark of stakeholder approval. All participants in the requirements approval process should
know exactly what sign-off means or problems could ensue. One such problem is the customer
 representative or manager who regards signing off on the requirements as a meaningless ritual:
“I was handed a piece of paper with my name on it, so I signed on the line above my name because
 otherwise the developers wouldn’t start coding.” This can lead to future problems when that
 individual wants to change the requirements or when he’s surprised by what is delivered: “Sure,
I signed off on the requirements, but I didn’t have time to read them all. I trusted you guys—you let
me down!”

Equally problematic is the development manager who views sign-off as a way to freeze the
 requirements. Whenever a change request comes along he can protest, “But you signed off on these
requirements, so that’s what we’re building. If you wanted something else, you should have said so.”

Both of these attitudes ignore the reality that it’s impossible to know all the requirements
early in the project and that requirements will undoubtedly change over time. Approving a set
of requirements is an appropriate action that brings closure to some stage of requirements
 development. However, the participants have to agree on precisely what they’re saying with their
signatures.

Important Don’t use sign-off as a weapon. Treat it as a milestone, with a clear, shared
 understanding of the activities that lead to sign-off and its implications for future changes.
If the decision makers don’t need to read every word of the requirements, select a
 communication technique—such as a slide presentation—that summarizes the essential
elements and facilitates reaching agreement quickly.

The requirements baseline
More important than the sign-off ritual is the concept of establishing a baseline of the requirements
agreement, a snapshot of it at a point in time (Wiegers 2006). A requirements baseline is a set
of requirements that has been reviewed and agreed upon and serves as the basis for further
 development. Whether your team uses a formal sign-off process or some other means of reaching
agreement on requirements, the subtext of that agreement should read something like this:

“I agree that this set of requirements represents our best understanding of the
requirements for the next portion of this project and that the solution described will
meet our needs as we understand them today. I agree to make future changes in
this baseline through the project’s defined change process. I realize that changes
might require us to renegotiate cost, resource, and schedule commitments.”

Some organizations put text like this right on the signature page, so the requirement approvers know
exactly what sign-off means in their world.

40 PART I Software requirements: What, why, and who

A shared understanding along these lines helps reduce the friction that can arise as requirements
oversights are revealed or marketplace and business demands evolve over the course of the project.
A meaningful baselining process gives all the major stakeholders confidence in the following ways:

 ■ Customer management or marketing is confident that the project scope won’t explode out of
control, because customers manage the scope change decisions.

 ■ User representatives have confidence that the development team will work with them to deliver
the right solution, even if they didn’t think of every requirement before construction began.

 ■ Development management has confidence because the development team has a business
partner who will keep the project focused on achieving its objectives and will work with
 development to balance schedule, cost, functionality, and quality.

 ■ Business analysts and project managers are confident that they can manage changes to the
project in a way that will keep chaos to a minimum.

 ■ Quality assurance and test teams can confidently develop their test scripts and be fully
 prepared for their project activities.

After the decision makers define a baseline, the BA should place the requirements under change
control. This allows the team to modify scope when necessary in a controlled way that includes
analyzing the impact of each proposed change on the schedule and other success factors. Sealing
the initial requirements development activities with an explicit agreement helps forge a collaborative
customer-development partnership on the way to project success.

What if you don’t reach agreement?
It can be hard to achieve sign-off from all the relevant stakeholders. Barriers include logistics, busy
schedules, and people who are reluctant to commit and be held accountable later. If stakeholders are
afraid they won’t be able to make changes after they approve the requirements, they might drag their
feet on the approval. This contributes to the dreaded trap of analysis paralysis. Many teams have tried
sending out an email message that says, “If you don’t reply by next Friday with your changes and/or
sign-off, I’m going to assume you are agreeing to these requirements.” That’s one option, but really it
equates to not reaching agreement. It also risks straining the relationship with those stakeholders for
whom you’ve just assumed a tacit approval. Try to understand why they didn’t feel comfortable with a
sign-off and address that directly.

In such a situation, you’re better off moving forward—cautiously—with the assumption that you
don’t have approval from the recalcitrant stakeholders. Document the fact that certain stakeholders
didn’t sign off on the requirements in your risk list, along with the likely impact of some of the
requirements being missing or wrong. Follow up with these people as part of risk management. In a
positive manner, mention that you recognize that they have not yet approved the requirements but
that the project is still moving forward with those requirements as a baseline so as to not impede
progress. Let them know that, if they want to change things, there’s a process in place to do that.
Basically, you’re acting as though the stakeholder did indeed agree to the requirements, but you’re
managing the communications closely.

 CHAPTER 2 Requirements from the customer's perspective 41

Agreeing on requirements on agile projects
Agile projects do not include a formal sign-off action. Agile projects generally maintain requirements
in the form of user stories in a product backlog. The product owner and the team reach agreement
on what stories will be developed in the next iteration in a planning session. The set of stories
is chosen based on their priority and the team’s velocity (productivity). After that set has been
 established and agreed to, the stories contained in the iteration are frozen. Requested changes
that come in are considered for future iterations. There’s no attempt on an agile project to achieve
 stakeholder approval on the full scope of requirements for the project up front, however. In agile
projects the full set of functionality is identified over time, although the vision and other business
requirements do need to be established at the outset. Chapter 20, “Agile projects,” discusses how
requirements are handled on agile projects.

I once worked with a client who requested sign-off on requirements even though they were
 following an agile development life cycle. The team had to be creative with how to do this in a
context that doesn’t traditionally involve sign-offs. The BA team had worked closely with the users
to elicit and review requirements in the form of user stories and other models such as process flows
and state tables. We asked the users to “sign off” that, at that moment in time, there were no major
requirements missing that they knew about, and there were no major issues with what we’d written
down that they knew about. Because users did participate in the requirements activities, development
would not be working on a solution that would be far off base. But this notion of “sign-off” also keeps
open the right of the users to realize later on that they need something new or got something wrong.

In contrast to the historical notion of sign-off as meaning “approve and freeze all the requirements
up front,” this approach doesn’t force anyone into a corner where he feels like he’s signing away his
life over a massive requirements document that he barely understands. Nor are customers forced
to agree that the requirements are close to perfect and that everything was addressed the first time
around. This version of sign-off allows the spirit of agile methods to prevail. As with the sign-off
process described earlier, the essence is to reach agreement on a specific body of requirements—a
baseline—to be implemented in the next construction cycle, with a clear, shared understanding of
what that agreement really means.

Commonly on agile projects, the product owner publicly accepts or rejects the requirements for an
iteration, which consist of a set of stories and their accompanying acceptance criteria and acceptance
tests. The ultimate “sign-off” is acceptance of the working, tested software delivered from the
 iteration.

As consultant Nanette Brown put it, “Even in an agile environment the concept of sign-off can
fill a valid function. Agile tells us to ‘embrace change,’ but the concept of change only exists with
respect to a reference point. Even within a team where there is close communication, people can
have different interpretations of current plans and status. One person’s ‘change’ can be what another
person thought was already agreed to. However, if you position a sign-off as a lightweight ceremony
acknowledging that ‘We are Here’ I think it’s fine. Just because ‘We are Here’ today doesn’t mean we
can’t be somewhere else tomorrow, but at least it ensures a common understanding and point of
reference.”

42 PART I Software requirements: What, why, and who

Next steps

 ■ Identify the customers, including end users, who are responsible for providing business
and user requirements on your project. Which items from the Bill of Rights and the Bill of
Responsibilities do these customers currently accept and practice? Which do they not?

 ■ Discuss the Bill of Rights with your key customers to learn whether they feel they aren’t
receiving any of their rights. Discuss the Bill of Responsibilities to reach agreement as to
which responsibilities they accept. Modify the Bill of Rights and the Bill of Responsibilities
as appropriate so that all parties agree on how they will work together. Monitor whether
the stakeholders are maintaining a balance between rights and responsibilities.

 ■ If you’re a customer participating in a software project and you don’t feel that your
requirements rights are being adequately respected, discuss the Bill of Rights with the
project manager or the BA. Offer to do your part to satisfy the Bill of Responsibilities as
you strive to build a more collaborative working relationship.

 ■ If your organization uses a formal sign-off process, think about what it really means today.
Work with development and customer (or marketing) management to reach agreement
on what sign-off really ought to mean for your requirements approval process.

 ■ Identify one example from a current or past project of not having the necessary level of
customer participation. Consider what the impact of that was. See if you can quantify the
risk in terms of number of late requirements changes, time spent fixing the product after
delivery, or business opportunities missed. Use that experience in the future as a story to
learn from and to convince others of why customer engagement is so vital.

 43

C H A P T E R 3

Good practices for requirements
engineering

“Welcome to the group, Sarah,” said the project manager, Kristin. “We’re looking forward to having you
help us with the requirements for this project. I understand that you were a business analyst in your
previous job. Do you have some idea of how we should get started here?”

“Well,” Sarah replied, “I was thinking I should just interview some users and see what they want.
Then I’ll write up what they tell me. That should give the developers a good place to start. That’s mostly
what we did before. Do you know some users I could talk to?”

“Hmmm. Do you think that will be good enough for this type of project?” Kristin asked. “We tried
that approach before, but it didn’t work out very well. I was hoping you might have some ideas about
best practices from your past BA experiences that might be better than just interviewing a couple of
 users. Are there any particular techniques that you’ve found to be especially helpful?”

Sarah was rather at a loss. “I don’t really know about any specific ways to approach requirements
other than talking to users and trying to write clear specifications from what they say. At my last job I
just did the best I could based on my business experience. Let me see what I can find out.”

Every software professional needs to acquire a tool kit of techniques she can use to approach each
project challenge. A practitioner who lacks such a tool kit is forced to invent an approach based on
whatever seems reasonable at the moment. Such ad hoc methods rarely yield great results. Some
people advocate for specific software development methodologies, packaged sets of techniques that
purport to provide holistic solutions to your project challenges. However, simply following a script—a
standard process that’s supposed to work in every situation—doesn’t work very well, either. We find
it more effective to identify and apply industry best practices. The best-practice approach stocks your
software tool kit with a variety of techniques you can apply to diverse problems.

The notion of best practices is debatable: who decides what is “best” and on what basis? One
 approach is to convene a body of industry experts to analyze projects from many organizations.
These experts seek out practices whose effective performance is associated with successful projects
and which are performed poorly or not at all on failed projects. Through these means, the experts
reach consensus on the activities that consistently yield superior results and label them best practices.

Table 3-1 lists more than 50 practices, grouped into 7 categories, that can help all development
teams do a better job on their requirements activities. Several of the practices contribute to more
than one category, but each practice appears only once in the table. Most of these practices

44 PART I Software requirements: What, why, and who

 contribute to more effective communication among project stakeholders. Note that this chapter is
titled “Good practices for requirements engineering,” not “Best practices.” It’s doubtful whether all
of these practices will ever be systematically evaluated for this purpose. Nonetheless, many other
 practitioners have found these techniques to be effective (Sommerville and Sawyer 1997; Hofmann
and Lehner 2001; Gottesdiener 2005; IIBA 2009).

TABLE 3-1 Requirements engineering good practices

Elicitation Analysis Specification Validation

 ■ Define vision and
scope

 ■ Identify user classes
 ■ Select product

 champions
 ■ Conduct focus groups
 ■ Identify user

 requirements
 ■ Identify system events

and responses
 ■ Hold elicitation

interviews
 ■ Hold facilitated

 elicitation workshops
 ■ Observe users

 performing their jobs
 ■ Distribute

 questionnaires
 ■ Perform document

analysis
 ■ Examine problem

reports
 ■ Reuse existing

 requirements

 ■ Model the application
environment

 ■ Create prototypes
 ■ Analyze feasibility
 ■ Prioritize requirements
 ■ Create a data dictionary
 ■ Model the requirements
 ■ Analyze interfaces
 ■ Allocate requirements to

subsystems

 ■ Adopt requirement
 document templates

 ■ Identify requirement
origins

 ■ Uniquely label each
requirement

 ■ Record business rules
 ■ Specify nonfunctional

requirements

 ■ Review the
 requirements

 ■ Test the requirements
 ■ Define acceptance

criteria
 ■ Simulate the

 requirements

Requirements management Knowledge Project management

 ■ Establish a change control
process

 ■ Perform change impact
analysis

 ■ Establish baselines and control
versions of requirements sets

 ■ Maintain change history
 ■ Track requirements status
 ■ Track requirements issues
 ■ Maintain a requirements

 traceability matrix
 ■ Use a requirements

 management tool

 ■ Train business analysts
 ■ Educate stakeholders about requirements
 ■ Educate developers about application

domain
 ■ Define a requirements engineering

process
 ■ Create a glossary

 ■ Select an appropriate life cycle
 ■ Plan requirements approach
 ■ Estimate requirements effort
 ■ Base plans on requirements
 ■ Identify requirements decision

makers
 ■ Renegotiate commitments
 ■ Manage requirements risks
 ■ Track requirements effort
 ■ Review past lessons learned

This chapter describes each good practice briefly and provides references to other chapters in
this book or to other sources where you can learn more about the technique. These practices aren’t
suitable for every situation, so use good judgment, common sense, and experience. Even the best
practices need to be selected, applied, and adapted thoughtfully to appropriate situations by skilled
business analysts. Different practices might be most appropriate for understanding the requirements
for different portions of a given project. Use cases and user interface prototypes might help for the
client side, whereas interface analysis is more valuable on the server side, for example.

 CHAPTER 3 Good practices for requirements engineering 45

The people who perform or take a lead role in these practices will vary from practice to practice
and from project to project. The business analyst (BA) will play a major role with many of them, but
not every project has a BA. The product owner could perform some of the practices on an agile
p roject. Still other practices are the purview of the project manager. Think about who the right people
in your team are to lead or participate in the practices you select for your next project.

Important None of these techniques will work if you’re dealing with unreasonable people.
Customers, managers, and IT people sometimes appear to be unreasonable, but perhaps
they are just uninformed. They might not know why you want to use certain practices
and could be uncomfortable with unfamiliar terms and activities. Try educating your
 collaborators about the practices, why you want to use them, and why it is important to
their own goals to cooperate.

A requirements development process framework

As you saw in Chapter 1, ”The essential software requirement,” requirements development involves
 elicitation, analysis, specification, and validation. Don’t expect to perform these activities in a simple linear,
one-pass sequence, though. In practice, these activities are interwoven, incremental, and iterative, as shown
in Figure 3-1. “Progressive refinement of detail” is a key operating phrase for requirements development,
moving from initial concepts of what is needed toward further precision of understanding and expression.

FIGURE 3-1 Requirements development is an iterative process.

If you’re the BA, you’ll be asking customers questions, listening to what they say, and watching what
they do (elicitation). You’ll process this information to understand it, classify it in various categories,
and relate the customer needs to possible software requirements (analysis). Your analysis might lead
you to realize that you need to clarify some requirements, so you go back and do more elicitation.
You’ll then structure the customer input and derived requirements as written requirement statements
and diagrams (specification). While writing requirements, you might need to go back and do some
additional analysis to close gaps in your knowledge. Next, you’ll ask some stakeholders to confirm
that what you’ve captured is accurate and complete and to correct any errors (validation). You’ll do
all this for the set of requirements that are most important and most timely for beginning software
 development. Validation could lead you to rewrite some unclear requirements, revisit some of your
analysis activities, or even have to go back and perform additional elicitation. Then you’ll move on
to the next portion of the project and do it all again. This iterative process continues throughout
 requirements development and possibly—as with agile projects—throughout the full project duration.

46 PART I Software requirements: What, why, and who

Because of the diversity of software development projects and organizational cultures, there is no
single, formulaic approach to requirements development. Figure 3-2 suggests a process framework
for requirements development that will work, with sensible adjustments, for many projects. The
business need or market opportunity is the predecessor for the process shown in Figure 3-2. These
steps are generally performed approximately in numerical sequence, but the process is not strictly
sequential. The first seven steps are typically performed once early in the project (although the team
will need to revisit all of these activities periodically). The remaining steps are performed for each
release or development iteration. Many of these activities can be performed iteratively, and they can
be interwoven. For instance, you can perform steps 8, 9, and 10 in small chunks, performing a review
(step 12) after each iteration.

FIGURE 3-2 A representative requirements development process.

The fifth subdiscipline of requirements engineering is requirements management. Requirements
management encompasses practices that help you deal with requirements after you have them in
hand. These practices include version control and baselining, change control, tracking requirements
status, and tracing requirements to other system elements. Requirements management will take place
throughout the project’s duration at a low level of intensity.

Figure 3-3 illustrates how some common software development life cycles allocate requirements
effort across the product development period. The total requirements effort might not be much
different for projects of comparable size that follow different life cycles, but the timing distribution
of requirements work is very different. In the pure waterfall life cycle, you plan to do only one major

 CHAPTER 3 Good practices for requirements engineering 47

release, so most of the requirements development effort is allocated for the beginning of the project
(the solid line in Figure 3-3). This approach is still used on quite a few projects, and it is appropriate
for some. But even if you plan a traditional “requirements phase” at the beginning of the project
that then leads into design, you can count on having to do some additional requirements work
 throughout the project.

FIGURE 3-3 The distribution of requirements development effort over time varies for projects that follow
 different development life cycles.

Projects that follow an iterative development process, such as the Rational Unified Process
 (Jacobson, Booch, and Rumbaugh 1999), will work on requirements on every iteration through the
development process, with a heavier emphasis in the first iteration (the dashed line in Figure 3-3).
This is also the case if you are planning a series of phased releases, each of which delivers a significant
fraction of the product’s ultimate functionality.

Agile and other incremental development projects aim to release functionality every few weeks
(Larman 2004). They will have frequent but small requirements development efforts, as shown with
the dotted line in Figure 3-3. Such projects begin by doing a first cut at collecting user requirements
in the form of simple user stories that describe major objectives the user wants to accomplish with
the help of the system. In this approach, you need to learn enough about the stories so that you can
estimate their development effort and prioritize them. Prioritizing these user requirements lets you
determine which ones to allocate to specific development increments, called iterations or sprints.
Those allocated requirements can be explored in further detail in a just-in-time fashion for each
development cycle.

Regardless of the life cycle your project follows, you should ask yourself for each release or
 iteration which of the activities shown in Figure 3-2 will add value and reduce risk. After you have
completed step 17 for any portion of the requirements, you’re ready to commence construction of
that part of the system. Repeat steps 8 through 17 with the next set of user requirements, which will
lay the foundation for the subsequent release or increment.

48 PART I Software requirements: What, why, and who

Good practices: Requirements elicitation

Chapter 1 discussed the three levels of requirements: business, user, and functional. These come from
different sources at different times during the project, have different audiences and purposes, and
need to be documented in different ways. You also need to elicit nonfunctional requirements, such as
quality expectations in various dimensions, from appropriate sources. Following are some practices
that can help with eliciting the myriad types of requirements information.

Define product vision and project scope The vision and scope document contains the product’s
business requirements. The vision statement gives all stakeholders a common understanding of the
product’s outcome. The scope defines the boundary between what’s in and what’s out for a specific
release or iteration. Together, the vision and scope provide a reference against which to evaluate
proposed requirements. The vision should remain relatively stable throughout the project, but each
planned release or iteration needs its own scope statement. See Chapter 5, “Establishing the business
requirements,” for more information.

Identify user classes and their characteristics To avoid overlooking the needs of any user
 community, identify the various groups of users for your product. They might differ in frequency
of use, features used, privilege levels, or experience. Describe aspects of their job tasks, attitudes,
 location, or personal characteristics that might influence product design. Create user personas,
 descriptions of imaginary people who will represent particular user classes. See Chapter 6, “Finding
the voice of the user,” for more information.

Select a product champion for each user class Identify an individual who can accurately serve
as the literal voice of the customer for each user class. The product champion presents the needs
of the user class and makes decisions on its behalf. This is easiest for internal information systems
 development, where your users are fellow employees. For commercial product development, build
on your current relationships with major customers or beta test sites to locate appropriate product
champions. See Chapter 6 for more information.

Conduct focus groups with typical users Convene groups of representative users of your
 previous products or of similar products. Collect their input on both functionality and quality
 characteristics for the product under development. Focus groups are particularly valuable for
 commercial product development, for which you might have a large and diverse customer base.
 Unlike product champions, focus groups generally do not have decision-making authority. See
 Chapter 7, “Requirements elicitation,” for more information.

Work with user representatives to identify user requirements Explore with your user
 representatives the tasks they need to accomplish with the software and the value they’re trying
to achieve. User requirements can be expressed in the form of use cases, user stories, or scenarios.
Discuss the interactions between the users and the system that will allow them to complete each task.
See Chapter 8, “Understanding user requirements,” for more information.

Identify system events and responses List the external events that the system can experience
and its expected response to each event. There are three classes of external events. Signal events are
 control signals or data received from external hardware devices. Temporal, or time-based, events

 CHAPTER 3 Good practices for requirements engineering 49

trigger a response, such as an external data feed that your system generates at the same time every
night. Business events trigger use cases in business applications. See Chapter 12, “A picture is worth
1024 words,” for more information.

Hold elicitation interviews Interviews can be performed one-on-one or with a small group of
 stakeholders. They are an effective way to elicit requirements without taking too much stakeholder
time because you meet with people to discuss only the specific requirements that are important to
them. Interviews are helpful to separately elicit requirements from people in preparation for workshops
where those people come together to resolve any conflicts. See Chapter 7 for more information.

Hold facilitated elicitation workshops Facilitated requirements-elicitation workshops that permit
collaboration between analysts and customers are a powerful way to explore user needs and to draft
requirements documents (Gottesdiener 2002). Such workshops are sometimes called Joint Application
Design, or JAD, sessions (Wood and Silver 1995). See Chapter 7 for more information.

Observe users performing their jobs Watching users perform their business tasks establishes
a context for their potential use of a new application. Simple process flow diagrams can depict the
steps and decisions involved and show how different user groups interact. Documenting the business
process flow will help you identify requirements for a solution that’s intended to support that process.
See Chapter 7 for more information.

Distribute questionnaires Questionnaires are a way to survey large groups of users to determine
what they need. Questionnaires are useful with any large user population but are particularly helpful
with distributed groups. If questions are well written, questionnaires can help you quickly determine
analytical information about needs. Additional elicitation efforts can then be focused according to
the questionnaire results. See Chapter 7 for more information.

Perform document analysis Existing documentation can help reveal how systems currently work
or what they are supposed to do. Documentation includes any written information about current
systems, business processes, requirements specifications, competitor research, and COTS (commercial
off-the-shelf) package user manuals. Reviewing and analyzing the documents can help identify
 functionality that needs to remain, functionality that isn’t used, how people do their jobs currently,
what competitors offer, and what vendors say their software should do. See Chapter 7 for more
 information.

Examine problem reports of current systems for requirement ideas Problem reports and
enhancement requests from users provide a rich source of ideas for capabilities to include in a
later release or in a new product. Help desk and support staff can provide valuable input into the
 requirements for future development work.

Reuse existing requirements If customers request functionality similar to that already present in
an existing product, see whether the requirements (and the customers!) are flexible enough to permit
reusing or adapting the existing software components. Projects often can reuse those requirements
that comply with an organization’s business rules, such as security requirements, and requirements
that conform to government regulations, such as accessibility requirements. Other good candidates
for reuse include glossaries, data models and definitions, stakeholder profiles, user class descriptions,
and personas. See Chapter 18, “Requirements reuse,” for more information.

50 PART I Software requirements: What, why, and who

Good practices: Requirements analysis

Requirements analysis involves refining the requirements to ensure that all stakeholders understand
them and scrutinizing them for errors, omissions, and other deficiencies. Analysis includes
 decomposing high-level requirements into appropriate levels of detail, building prototypes,
 evaluating feasibility, and negotiating priorities. The goal is to develop requirements of sufficient
quality and precision that managers can construct realistic project estimates and technical staff can
proceed with design, construction, and testing.

It is very valuable to represent some of the requirements in multiple ways—for example, in both
textual and visual forms, or in the forms of both requirements and tests (Wiegers 2006). These
 different views will reveal insights and problems that no single view can provide. Multiple views also
help all stakeholders arrive at a common understanding—a shared vision—of what they will have
when the product is delivered.

Model the application environment The context diagram is a simple analysis model that shows
how the new system fits into its environment. It defines the boundaries and interfaces between the
system being developed and external entities, such as users, hardware devices, and other systems. An
ecosystem map shows the various systems in the solution space that interact with each other and the
nature of their interconnections (Beatty and Chen 2012). See Chapter 5 for more information.

Create user interface and technical prototypes When developers or users aren’t certain about
the requirements, construct a prototype—a partial, possible, or preliminary implementation—to
make the concepts and possibilities more tangible. Prototypes allow developers and users to achieve
a mutual understanding of the problem being solved, as well as helping to validate requirements. See
Chapter 15, “Risk reduction through prototyping,” for more information.

Analyze requirement feasibility The BA should work with developers to evaluate the feasibility
of implementing each requirement at acceptable cost and performance in the intended operating
environment. This allows stakeholders to understand the risks associated with implementing each
 requirement, including conflicts and dependencies with other requirements, dependencies on
 external factors, and technical obstacles. Requirements that are technically infeasible or overly
 expensive to implement can perhaps be simplified and still contribute to achieving the project’s
 business objectives.

Prioritize the requirements It’s important to prioritize requirements to ensure that the team
implements the highest value or most timely functionality first. Apply an analytical approach to
 determine the relative implementation priority of product features, use cases, user stories, or
 functional requirements. Based on priority, determine which release or increment will contain each
feature or set of requirements. Adjust priorities throughout the project as new requirements are
 proposed and as customer needs, market conditions, and business goals evolve. See Chapter 16,
“First things first: Setting requirements priorities,” for more information.

Create a data dictionary Definitions of the data items and structures associated with the system
reside in the data dictionary. This enables everyone working on the project to use consistent data
definitions. As requirements are developed, the data dictionary should define data items from the

 CHAPTER 3 Good practices for requirements engineering 51

problem domain to facilitate communication between the customers and the development team. See
Chapter 13, “Specifying data requirements,” for more information.

Model the requirements An analysis model is a diagram that depicts requirements visually, in
contrast to the textual representation of a list of functional requirements. Models can reveal incorrect,
inconsistent, missing, and superfluous requirements. Such models include data flow diagrams, entity-
relationship diagrams, state-transition diagrams, state tables, dialog maps, decision trees, and others
(Beatty and Chen 2012). See Chapters 5, 12, and 13 for more information about modeling.

Analyze interfaces between your system and the outside world All software systems have
connections to other parts of the world through external interfaces. Information systems have
user interfaces and often exchange data with other software systems. Embedded systems involve
 interconnections between software and hardware components. Network-connected applications have
communication interfaces. Analyzing these helps make sure that your application will fit smoothly into
its environment. See Chapter 10, “Documenting the requirements,” for more information.

Allocate requirements to subsystems The requirements for a complex product that contains
 multiple subsystems must be apportioned among the various software, hardware, and human
 subsystems and components. An example of such a product is an access system to a secure building
that includes magnetic or optical badges, scanners, video cameras and recorders, door locks,
and human guards. See Chapter 26, “Embedded and other real-time systems projects,” for more
 information.

Good practices: Requirements specification

The essence of requirements specification is to document requirements of different types in a
 consistent, accessible, and reviewable way that is readily understandable by the intended audiences.
You can record the business requirements in a vision and scope document. User requirements
 typically are represented in the form of use cases or user stories. Detailed software functional and
nonfunctional requirements are recorded in a software requirements specification (SRS) or an
 alternative repository, such as a requirements management tool.

Adopt requirement document templates Adopt standard templates for documenting
 requirements in your organization, such as the vision and scope document template in Chapter 5,
the use case template in Chapter 8, and the SRS template in Chapter 10. The templates provide a
 consistent structure for recording various groups of requirements-related information. Even if you
don’t store the requirements in traditional document form, the template will remind you of the
 various kinds of requirements information to explore and record.

Identify requirement origins To ensure that all stakeholders know why every requirement is
needed, trace each one back to its origin. This might be a use case or some other customer input, a
high-level system requirement, or a business rule. Recording the stakeholders who are affected by
each requirement tells you whom to contact when a change is requested. Requirement origins can
be identified through traceability links or by defining a requirement attribute for this purpose. See
 Chapter 27, “Requirements management practices,” for more information on requirement attributes.

52 PART I Software requirements: What, why, and who

Uniquely label each requirement Define a convention for giving each requirement a unique
 identifying label. The convention must be robust enough to withstand additions, deletions, and
changes made in the requirements over time. Labeling the requirements permits requirements
 traceability and the recording of changes made. See Chapter 10 for more information.

Record business rules Business rules include corporate policies, government regulations,
 standards, and computational algorithms. Document your business rules separately from a project’s
requirements because they typically have an existence beyond the scope of a specific project. That
is, treat business rules as an enterprise-level asset, not a project-level asset. Some rules will lead to
functional requirements that enforce them, so define traceability links between those requirements
and the corresponding rules. See Chapter 9, “Playing by the rules,” for more information.

Specify nonfunctional requirements It’s possible to implement a solution that does exactly what
it’s supposed to do but does not satisfy the users’ quality expectations. To avoid that problem, you
need to go beyond the functionality discussion to understand the quality characteristics that are
important to success. These characteristics include performance, reliability, usability, modifiability,
and many others. Customer input on the relative importance of these quality attributes lets the
 developer make appropriate design decisions. Also, specify external interface requirements, design
and implementation constraints, internationalization issues, and other nonfunctional requirements.
See Chapter 14, “Beyond functionality,” for more information.

Good practices: Requirements validation

Validation ensures that the requirements are correct, demonstrate the desired quality characteristics,
and will satisfy customer needs. Requirements that seem fine when you read them might turn out to
have ambiguities and gaps when developers try to work with them. You must correct these problems
if the requirements are to serve as a reliable foundation for design and for final system testing and
user acceptance testing. Chapter 17, “Validating the requirements,” discusses this topic further.

Review the requirements Peer review of requirements, particularly the type of rigorous review
called inspection, is one of the highest-value software quality practices available (Wiegers 2002).
Assemble a small team of reviewers who represent different perspectives (such as analyst, customer,
developer, and tester), and carefully examine the written requirements, analysis models, and related
information for defects. Informal preliminary reviews during requirements development are also
 valuable. It’s important to train the team members in how to perform effective requirements reviews
and to adopt a review process for your organization. See Chapter 17 for more information.

Test the requirements Tests constitute an alternative view of the requirements. Writing tests
 requires you to think about how to tell if the expected functionality was correctly implemented.
 Derive tests from the user requirements to document the expected behavior of the product
 under specified conditions. Walk through the tests with customers to ensure that they reflect user
 expectations. Map the tests to the functional requirements to make sure that no requirements
have been overlooked and that all have corresponding tests. Use the tests to verify the correctness
of analysis models and prototypes. Agile projects often create acceptance tests in lieu of detailed
 functional requirements. See Chapter 17 for more information.

 CHAPTER 3 Good practices for requirements engineering 53

Define acceptance criteria Ask users to describe how they will determine whether the solution
meets their needs and is fit for use. Acceptance criteria include a combination of the software passing
a defined set of acceptance tests based on user requirements, demonstrating satisfaction of specific
nonfunctional requirements, tracking open defects and issues, having infrastructure and training in
place for a successful rollout, and more. See Chapter 17 for more information.

Simulate the requirements Commercial tools are available that allow a project team to simulate
a proposed system either in place of or to augment written requirements specifications. Simulation
takes prototyping to the next level, by letting BAs work with users to rapidly build executable
 mock-ups of a system. Users can interact with the simulated system to validate requirements and
make design choices, making the requirements come to life before they are cast into the concrete of
code. Simulation is not a substitute for thoughtful requirements elicitation and analysis, but it does
provide a powerful supplement.

Good practices: Requirements management

After you have the initial requirements for a body of work in hand, you must cope with the inevitable
changes that customers, managers, marketing, the development team, and others request during
development. Effective change management demands a process for proposing changes, evaluating
their potential cost and impact on the project, and making sure that appropriate stakeholders make
sensible business decisions about which proposed changes to incorporate.

Well-established configuration management practices are a prerequisite for effective requirements
management. The same version control tools that you use to control your code base can manage
your requirements documents. Even better, store requirements in a requirements management tool,
which provides many capabilities to perform these practices.

Establish a requirements change control process Rather than stifling change or hoping changes
don’t happen, accept the fact that they will and establish a mechanism to prevent rampant changes
from causing chaos. Your change process should define how requirements changes are proposed,
analyzed, and resolved. Manage all proposed changes through this process. Defect-tracking tools can
support the change control process. Charter a small group of project stakeholders as a change control
board (CCB) to evaluate proposed requirements changes, decide which ones to accept, and set
 implementation priorities or target releases. See Chapter 28, “Change happens,” for more information.

Perform impact analysis on requirements changes Impact analysis is an important element of
the change process that helps the CCB make informed business decisions. Evaluate each proposed
requirement change to assess the effect it will have on the project. Use the requirements traceability
matrix to identify the other requirements, design elements, source code, and tests that you might
need to modify. Identify the tasks required to implement the change and estimate the effort needed
to perform those tasks. See Chapter 28 for more information.

Establish baselines and control versions of requirements sets A baseline defines a set of
 agreed-upon requirements, typically for a specific release or iteration. After the requirements have
been baselined, changes should be made only through the project’s change control process. Give

54 PART I Software requirements: What, why, and who

 every version of the requirements specification a unique identifier to avoid confusion between drafts
and baselines and between previous and current versions. See Chapter 2, “Requirements from the
customer’s perspective,” and Chapter 27 for more information.

Maintain a history of requirements changes Retain a history of the changes made to individual
requirements. Sometimes you need to revert to an earlier version of a requirement or want to
know how a requirement came to be in its current form. Record the dates that requirements were
changed, the changes that were made, who made each change, and why. A version control tool or
 requirements management tool can help with these tasks.

Track the status of each requirement Establish a repository with one record for each discrete
requirement of any type that affects implementation. Store key attributes about each requirement,
including its status (such as proposed, approved, implemented, or verified), so you can monitor the
number of requirements in each status category at any time. Tracking the status of each requirement
as it moves through development and system testing provides insight into overall project status. See
Chapter 27 for more information.

Track requirements issues When busy people are working on a complex project, it’s easy to lose
sight of the many issues that arise, including questions about requirements that need resolution, gaps
to eradicate, and issues arising from requirements reviews. Issue-tracking tools can keep these items
from falling through the cracks. Assign a single owner to each issue. Monitor the status of requirement
issues to determine the overall state of the requirements. See Chapter 27 for more information.

Maintain a requirements traceability matrix It’s often valuable—and sometimes required—to
assemble a set of links that connect each functional requirement to the design and code elements that
implement it and the tests that verify it. Such a requirements traceability matrix is helpful for confirming
that all requirements are implemented and verified. It’s also useful during maintenance when
a requirement has to be modified. The requirements traceability matrix can also connect functional
requirements to the higher-level requirements from which they were derived and to other related
requirements. Populate this matrix during development, not at the end. Tool support is essential on all
but the smallest projects. See Chapter 29, “Links in the requirements chain,” for more information.

Use a requirements management tool Commercial requirements management tools let you store
various types of requirements in a database. Such tools help you implement and automate many of
the other requirements management practices described in this section. See Chapter 30, “Tools for
requirements engineering,” for more information.

Good practices: Knowledge

Various team members might perform the role of business analyst on a given project, but few
 software practitioners receive formal training in requirements engineering. Business analysis is a
specialized and challenging role, with its own body of knowledge (IIBA 2009). As with all technical
 disciplines, there is no substitute for experience. It isn’t reasonable to expect all people to be

 CHAPTER 3 Good practices for requirements engineering 55

 instinctively competent at the communication-intensive tasks of requirements engineering. Training
can increase the proficiency and comfort level of those who serve as analysts, but it can’t compensate
for absent interpersonal skills or a lack of interest in the role.

Train business analysts All team members who will perform BA tasks, whether they have the job
title “business analyst” or not, should receive training in requirements engineering. Business analyst
specialists need several days of training in the diverse activities that BAs typically perform. This
will give them a solid foundation on which to build through their own experiences and advanced
 training. In addition to having an extensive tool kit of techniques, the skilled analyst is patient and
well organized, has effective interpersonal and communication skills, and understands the application
domain. See Chapter 4, “The business analyst,” for more information about this important role.

Educate stakeholders about requirements The most effective requirements training classes have
an audience that spans multiple project functional areas, not just BAs. Users who will participate in
software development should receive one or two days of education about requirements so they
understand terminology, key concepts and practices, and why this is such an important contributor
to project success. Development managers and customer managers will also find this information
useful. Bringing together the various stakeholders for a class on software requirements can be an
 effective team-building activity. All parties will better appreciate the challenges their counterparts
face and what the participants require from each other for the whole team to succeed. Some users
who have attended our requirements classes have said that they came away with more sympathy for
the software developers.

Educate developers about the application domain To help give developers a basic
 understanding of the application domain, arrange a seminar on the customer’s business
 activities, terminology, and objectives for the product being created. This can reduce confusion,
 miscommunication, and rework down the road. “Day-in-the-life” experiences in which developers
accompany users to see how they perform their jobs are sound investments. You might also match
each developer with a “user buddy” for the life of the project to translate jargon and explain business
concepts. The product champion could play this role, as described in Chapter 6.

Define a requirements engineering process Document the steps your organization follows to
elicit, analyze, specify, validate, and manage requirements. Providing guidance on how to perform the
key steps will help analysts do a consistently good job. It will also make it easier to plan each project’s
requirements development and management tasks, schedule, and required resources. The project
manager should incorporate requirements activities as discrete tasks in the project plan. See Chapter 31,
“Improving your requirements processes,” for more information.

Create a glossary A glossary that defines specialized terms from the application domain will
 minimize misunderstandings. Include synonyms, acronyms or abbreviations, terms that can have
multiple meanings, and terms that have both domain-specific and everyday meanings. A glossary
could be a reusable enterprise-level asset. Developing a glossary could be an activity for new team
members, because they will be the ones most confused by the unfamiliar terminology. See Chapter 10
for more information on the glossary.

56 PART I Software requirements: What, why, and who

Good practices: Project management

Software project management approaches are tightly coupled to a project’s requirements
 processes. The project manager should base project schedules, resources, and commitments on the
 requirements that are to be implemented. An alternative strategy is to timebox development cycles,
such that the team estimates the scope of the work they can fit into an iteration of fixed duration.
This is the approach taken by agile development projects. Scope is regarded as negotiable within the
schedule. This transforms scope creep into “scope choice”—the product owner can ask for anything
and as much as he wants, but he must prioritize it, and the team quits developing when they run out
of time. Then the team plans a subsequent release for the remaining requirements.

Select an appropriate software development life cycle Your organization should define several
development life cycles that are appropriate for various types of projects and different degrees of
 requirements uncertainty (Boehm and Turner 2004). Each project manager should select and adapt
the life cycle that best suits her project. Include requirements activities in your life cycle definitions.
When possible, specify and implement sets of functionality incrementally so that you can deliver
 useful software to the customer as early as possible (Larman 2004; Schwaber 2004; Leffingwell 2011).

Plan requirements approach Each project team should plan how it will handle its requirements
development and management activities. An elicitation plan helps ensure that you identify and obtain
input from appropriate stakeholders at the right stages of the project using the most appropriate
techniques. The BA and project manager should work together to ensure that tasks and deliverables
related to requirements engineering appear in the project management plan. See Chapter 7 for more
information.

Estimate requirements effort Stakeholders often want to know how long it’s going to take to
develop the requirements for a project and what percentage of their total effort should be devoted
to requirements development and management. Naturally, this depends on many factors. Consider
the factors that would indicate that you should spend either more or less time than average to ensure
the requirements lay a solid foundation for development (Wiegers 2006). See Chapter 19, “Beyond
requirements development,” for more information.

Base project plans on requirements Develop plans and schedules for your project iteratively as
the scope and detailed requirements become clear. Begin by estimating the effort needed to develop
the user requirements from the initial product vision and project scope. Early cost and schedule
estimates based on fuzzy requirements will be highly uncertain, but you can improve the estimates
as your understanding of the requirements improves. On agile projects, the timeboxed nature of
 iterations means that planning involves adjusting the scope to fit within the fixed schedule and
 resource constraints. See Chapter 19, “Beyond requirements development,” and Chapter 20, “Agile
projects,” for more information.

 CHAPTER 3 Good practices for requirements engineering 57

Identify requirements decision makers Software development involves making many decisions.
Conflicting user inputs must be resolved, commercial package components must be selected,
change requests must be evaluated, and on and on. Because so many decisions involve requirements
 issues, it’s essential for the project team to identify and empower its requirements decision makers,
 preferably before they confront their first significant decision. See Chapter 2 for more information.

Renegotiate project commitments when requirements change A project team makes
 commitments to deliver specific sets of requirements within a particular schedule and budget. As you
incorporate new requirements into the project, evaluate whether you can still achieve the current
commitments with the available resources. If not, communicate the project realities to management
and negotiate new, realistically achievable commitments (Wiegers 2007; Fisher, Ury, and Patton 2011).
You might also need to renegotiate commitments as requirements evolve from their fuzzy beginnings
with initial implementation estimates to clear, validated requirements.

Analyze, document, and manage requirements-related risks Unanticipated events and
 conditions can wreak havoc on an unprepared project. Identify and document risks related to
 requirements as part of the project’s risk-management activities. Brainstorm approaches to mitigate
or prevent these risks, implement the mitigation actions, and track their progress and effectiveness.
See Chapter 32, “Software requirements and risk management,” for more information.

Track the effort spent on requirements To improve your ability to estimate the resources needed
for requirements work on future projects, record the effort your team expends on requirements
 development and management activities (Wiegers 2006). Monitor the effect that your requirements
activities have on the project to help judge the return on your investment in requirements
 engineering. See Chapter 27 for more information.

Review lessons learned regarding requirements on other projects A learning organization
 conducts periodic retrospectives to collect lessons learned from completed projects or from earlier
iterations of the current project (Kerth 2001; Derby and Larsen 2006; Wiegers 2007). Studying the
lessons learned from previous requirements experiences can help project managers and business
analysts steer a more confident course in the future.

Getting started with new practices

Table 3-2 groups the requirements engineering good practices described in this chapter by the
 relative value they can contribute to most projects and their relative difficulty of implementation.
These classifications are not absolute; your experiences might be different. Although all the practices
can be beneficial, you might begin with those practices that have a high impact on project success
and are relatively easy to implement.

58 PART I Software requirements: What, why, and who

TABLE 3-2 Implementing requirements engineering good practices

Value Difficulty

High Medium Low

High ■ Define a requirements
engineering process

 ■ Base plans on requirements
 ■ Renegotiate commitments

 ■ Train business analysts
 ■ Plan requirements approach
 ■ Select product champions
 ■ Identify user requirements
 ■ Hold elicitation interviews
 ■ Specify nonfunctional

 requirements
 ■ Prioritize requirements
 ■ Define vision and scope
 ■ Establish a change control

process
 ■ Review the requirements
 ■ Allocate requirements to

 subsystems
 ■ Use a requirements management

tool
 ■ Record business rules

 ■ Educate developers about
 application domain

 ■ Adopt requirement document
templates

 ■ Identify user classes
 ■ Model the application

 environment
 ■ Identify requirement origins
 ■ Establish baselines and control

versions of requirements sets
 ■ Identify requirements decision

makers

Medium ■ Maintain a requirements
traceability matrix

 ■ Hold facilitated elicitation
workshops

 ■ Estimate requirements
effort

 ■ Reuse existing
 requirements

 ■ Educate stakeholders about
requirements

 ■ Conduct focus groups
 ■ Create prototypes
 ■ Analyze feasibility
 ■ Define acceptance criteria
 ■ Model the requirements
 ■ Analyze interfaces
 ■ Perform change impact analysis
 ■ Select an appropriate life cycle
 ■ Identify system events and

responses
 ■ Manage requirements risks
 ■ Review past lessons learned
 ■ Track requirements effort

 ■ Create a data dictionary
 ■ Observe users performing

their jobs
 ■ Test the requirements
 ■ Track requirements status
 ■ Perform document analysis
 ■ Track requirements issues
 ■ Uniquely label each

 requirement
 ■ Create a glossary

Low ■ Distribute questionnaires
 ■ Maintain change history
 ■ Simulate the requirements

 ■ Examine problem reports

Don’t try to apply all of these techniques on your next project. Instead, think of these good
 practices as new items for your requirements tool kit. You can begin to use certain practices, such
as those dealing with change management, no matter where your project is in its development
cycle. Elicitation practices will be more useful when you begin the next project or iteration. Still
 others might not fit your current project, organizational culture, or resource availability. Chapter 31
and Appendix A describe ways to evaluate your organization’s current requirements engineering
 practices. Chapter 31 will help you devise a road map for implementing selected improvements in your
 requirements process based on the practices described in this chapter. Incorporate the adoption of
new requirements techniques into your organization’s software process improvement activities, relying
on change leadership to facilitate the piloting, rollout, and adoption of better practices. Just make sure
that each of your development teams tries something new and better at each opportunity.

 CHAPTER 3 Good practices for requirements engineering 59

Next steps

 ■ Go back to the requirements-related problems you identified from the Next Steps
in Chapter 1. Identify good practices from this chapter that might help with each
 problem you identified. Group the practices into high, medium, and low impact in your
 organization. Identify any barriers to implementing each practice in your organization or
culture. Who can help you break down those barriers? Can you pick one activity to begin
performing better than you already are?

 ■ Determine how you would assess the benefits from the practices that you think would
be most valuable. Would you find fewer requirements defects late in the game, reduce
 unnecessary rework, better meet project schedules, achieve higher customer satisfaction
or product sales, or enjoy other advantages?

 ■ List all the requirements good practices you identified in the first step. For each, indicate
your project team’s current level of capability: expert, proficient, novice, or unfamiliar. If
your team is not at least proficient in any of those practices, ask someone on your project
to learn more about the practice and to share what he learns with the rest of the team.

 61

C H A P T E R 4

The business analyst

Molly is a senior business analyst in an insurance company, where she has worked for seven years. Her
manager recently told her that, because of her stellar performance over the course of her career, he
wanted her to help build a stronger BA career path for the rest of the department. He asked Molly for
ideas of what to look for when hiring new BAs and how to train the ones already on the team. Molly
was flattered. She reflected on her own career path to see if she could replicate any of her formative
experiences.

Molly received a degree in computer science from a university whose curriculum did not discuss
 requirements; the focus was on the technical aspects of software development. Her first career was as
an enterprise software developer. Within a year she knew it was not the job for her. Molly spent most
of her time stuck in a cubicle writing code, desperately wanting to talk to other people. Over the next
couple of years, she evolved her role into one of a BA, though she was still called a developer. She
eventually convinced her manager to give her the more appropriate title and formally redefine her role.
Molly also took a basic class on software requirements to learn the fundamentals. Then she got herself
assigned to projects where she could try different practices and learn from more experienced mentors.
Within a couple more years, she was able to develop a requirements process for her company. Molly
had become the resident business analysis expert.

Molly recognizes that she shouldn’t expect a specific educational background when hiring new
 business analysts. She’ll focus on interviewing for the most important BA soft skills. Her training
 development program will emphasize the fundamentals of business analysis and how to apply the
 critical soft skills. Finally, she will establish a mentoring program for junior BAs.

Explicitly or implicitly, someone performs the role of business analyst (BA) on every software project.
A business analyst enables change in an organizational context by defining needs and recommending
solutions that deliver value to stakeholders. The analyst elicits and analyzes others’ perspectives,
transforms the information collected into a requirements specification, and communicates the
 information to other stakeholders. The analyst helps stakeholders find the difference between what
they say they want and what they really need. She educates, questions, listens, organizes, and learns.
It’s a tough job.

This chapter looks at the vital functions the BA performs, the skills and knowledge an effective
analyst needs, and how you might develop such people in your organization (Wiegers 2000; IIBA
2011). Ralph Young (2004) proposes a job description for a requirements analyst, and you can also
access a sample BA job description from the companion content for this book.

62 PART I Software requirements: What, why, and who

The business analyst role

The business analyst is the individual who has the primary responsibility to elicit, analyze, document,
and validate the needs of the project stakeholders. The analyst serves as the principal interpreter
through which requirements flow between the customer community and the software development
team, as shown in Figure 4-1. Many other communication pathways also are used, so the analyst
isn’t solely responsible for information exchange on the project. The BA plays a central role in
 collecting and disseminating product information, whereas the project manager takes the lead in
 communicating project information.

FIGURE 4-1 The business analyst bridges communication between customer and development stakeholders.

Business analyst is a project role, not necessarily a job title. Synonyms for business analyst include
requirements analyst, systems analyst, requirements engineer, requirements manager, application
 analyst, business systems analyst, IT business analyst, and simply analyst. These job titles are used
inconsistently from organization to organization. One or more dedicated specialists could perform
the role on a given project or it could be assigned to team members who also perform other project
functions. These team members include project manager, product manager, product owner, subject
matter expert (SME), developer, and sometimes even user.

It’s important to note that when a person who has another project role also serves as the business
analyst, he is doing two distinct jobs. Consider a project manager who is also the BA on a project.
A project manager needs to create and manage plans, including schedules and resource needs, based
on work that BAs define. The project manager must help manage scope and deal with schedule
changes as scope evolves. He might perform the project management role one minute, then change
hats to execute the analyst practices the next. But these are distinct roles, requiring somewhat
 different skill sets.

In organizations that develop consumer products, the analyst role is often the product manager’s
or marketing staff’s responsibility. Essentially, the product manager acts as a BA, often with additional
emphasis on understanding the market landscape and anticipating external users’ needs. If the

 CHAPTER 4 The business analyst 63

project has both a product manager and a BA, typically the product manager focuses on the external
market and user demands, and the BA converts those into functional requirements.

Agile projects need business analysis skills, too. There will likely be a project role such as a product
owner who performs some of the traditional BA tasks. Some teams find it helpful to have someone in
an analyst role as well (Cohn 2010). The BA can help represent the users and understand their needs,
while performing the additional BA activities described later in the chapter. Regardless of the job title,
the person performing the analyst tasks must have the skills, knowledge, and personality to perform
the role well.

Trap Don’t assume that any talented developer or knowledgeable user can automatically
be an effective business analyst without training, resource materials, and coaching.

A talented analyst can make the difference between a project that succeeds and one that
 struggles. One company discovered that they could inspect requirements specifications written by
experienced analysts twice as fast as those written by novices because they contained fewer defects.
In the popular Cocomo II model for project estimation, analyst experience and capability have a
great influence on a project’s effort and cost (Boehm et al. 2000). Using highly experienced analysts
can reduce the project’s overall effort by one-third compared to similar projects with inexperienced
analysts.

The business analyst’s tasks

The analyst must first understand the business objectives for the project and then define user,
 functional, and quality requirements that allow teams to estimate and plan the project and to design,
build, and verify the product. The BA is also a leader and a communicator, turning vague customer
notions into clear specifications that guide the software team’s work. This section describes some of
the typical activities that you might perform while wearing an analyst’s hat.

Define business requirements Your work as a BA begins when you help the business or funding
sponsor, product manager, or marketing manager define the project’s business requirements. You
might suggest a template for a vision and scope document (see Chapter 5, “Establishing the business
requirements”) and work with those who hold the vision to help them express it clearly.

Plan the requirements approach The analyst should develop plans to elicit, analyze, document,
validate, and manage requirements throughout the project. Work closely with the project manager to
ensure these plans align with the overall project plans and will help achieve the project goals.

Identify project stakeholders and user classes Work with the business sponsors to select
 appropriate representatives for each user class (see Chapter 6, “Finding the voice of the user”),
enlist their participation, and negotiate their responsibilities. Explain what you would like from your
 customer collaborators and agree on an appropriate level of engagement from each one.

64 PART I Software requirements: What, why, and who

Elicit requirements A proactive analyst helps users articulate the system capabilities they need to
meet their business objectives by using a variety of information-gathering techniques. See Chapter 7,
“Requirements elicitation,” and Chapter 8, “Understanding user requirements,” for further discussion.

Analyze requirements Look for derived requirements that are a logical consequence of what
the customers requested and for implicit requirements that the customers seem to expect without
saying so. Use requirements models to recognize patterns, identify gaps in the requirements,
 reveal conflicting requirements, and confirm that all requirements specified are within scope. Work
with stakeholders to determine the necessary level of detail for specifying user and functional
 requirements.

Document requirements The analyst is responsible for documenting requirements in a
 well-organized and well-written manner that clearly describes the solution that will address the
 customer’s problem. Using standard templates accelerates requirements development by reminding
the BA of topics to discuss with the user representatives.

Communicate requirements You must communicate the requirements effectively and efficiently
to all parties. The BA should determine when it is helpful to represent requirements by using methods
other than text, including various types of visual analysis models (discussed in Chapters 5, 12, and 13),
tables, mathematical equations, and prototypes (discussed in Chapter 15, “Risk reduction through
prototyping”). Communication is not simply a matter of putting requirements on paper and tossing
them over a wall. It involves ongoing collaboration with the team to ensure that they understand the
information you are communicating.

Lead requirements validation The BA must ensure that requirement statements possess the
 desired characteristics that are discussed in Chapter 11, “Writing excellent requirements,” and
that a solution based on the requirements will satisfy stakeholder needs. Analysts are the central
 participants in reviews of requirements. You should also review designs and tests that were derived
from the requirements to ensure that the requirements were interpreted correctly. If you are creating
acceptance tests in place of detailed requirements on an agile project, those should also be reviewed.

Facilitate requirements prioritization The analyst brokers collaboration and negotiation among
the various stakeholders and the developers to ensure that they make sensible priority decisions in
alignment with achieving business objectives.

Manage requirements A business analyst is involved throughout the entire software development
life cycle, so she should help create, review, and execute the project’s requirements management
plan. After establishing a requirements baseline for a given product release or development iteration,
the BA’s focus shifts to tracking the status of those requirements, verifying their satisfaction in the
product, and managing changes to the requirements baseline. With input from various colleagues,
the analyst collects traceability information that connects individual requirements to other system
elements.

 CHAPTER 4 The business analyst 65

Essential analyst skills

It isn’t reasonable to expect people to serve as analysts without sufficient training, guidance,
and experience. They won’t do a good job, and they’ll find the experience frustrating. The job
 includes many “soft skills” that are more people-oriented than technical. Analysts need to know
how to use a variety of elicitation techniques and how to represent information in forms other
than natural-language text. An effective BA combines strong communication, facilitation, and
 interpersonal skills with technical and business domain knowledge and the right personality for the
job. Patience and a genuine desire to work with people are key success factors. The skills described in
this section are particularly important. Young (2004) provides a comprehensive table of skills that are
appropriate for junior-level, mid-level, and senior-level requirements analysts.

Listening skills To become proficient at two-way communication, learn how to listen effectively.
Active listening involves eliminating distractions, maintaining an attentive posture and eye contact,
and restating key points to confirm your understanding. You need to grasp what people are saying
and also to read between the lines to detect what they might be hesitant to say. Learn how your
 collaborators prefer to communicate, and avoid imposing your personal filter of understanding on
what you hear from the customers. Watch for unstated assumptions that underlie either what you
hear from others or your own interpretation.

Interviewing and questioning skills Most requirements input comes through discussions, so
the BA must be able to interact with diverse individuals and groups about their needs. It can be
 intimidating to work with senior managers and with highly opinionated or aggressive individuals.
You need to ask the right questions to surface essential requirements information. For example, users
naturally focus on the system’s normal, expected behaviors. However, much code gets written to
handle exceptions. Therefore, you must also probe to identify error conditions and determine how
the system should respond. With experience, you’ll become skilled in the art of asking questions that
reveal and clarify uncertainties, disagreements, assumptions, and unstated expectations (Gause and
Weinberg 1989).

Thinking on your feet Business analysts always need to be aware of the existing information and
to process new information against it. They need to spot contradictions, uncertainty, vagueness, and
assumptions so they can discuss them in the moment if appropriate. You can try to script the perfect
set of interview questions; however, you’ll always need to ask something you could not have foreseen.
You need to draft good questions, listen clearly to the responses, and quickly come up with the next
smart thing to say or ask. Sometimes you won’t be asking a question but rather giving an appropriate
example in context to help your stakeholder formulate the next answer.

Analytical skills An effective business analyst can think at both high and low levels of abstraction
and knows when to move from one to another. Sometimes, you must drill down from high-level
information into details. In other situations, you’ll need to generalize from a specific need that
one user described to a set of requirements that will satisfy multiple stakeholders. BAs need to
 understand complex information coming from many sources and to solve hard problems related to
that information. They need to critically evaluate the information to reconcile conflicts, separate user
“wants” from the underlying true needs, and distinguish solution ideas from requirements.

66 PART I Software requirements: What, why, and who

Systems thinking skills Although a business analyst must be detail-oriented, he must also see the
big picture. The BA must check requirements against what he knows about the whole enterprise, the
business environment, and the application to look for inconsistencies and impacts. The BA needs to
understand the interactions and relationships among the people, processes, and technology related
to the system (IIBA 2009). If a customer requests a requirement for his functional area, the BA needs
to judge whether the requirement affects other parts of the system in unobvious ways.

Learning skills Analysts must learn new material quickly, whether it is about new requirements
approaches or the application domain. They need to be able to translate that knowledge into practice
efficiently. Analysts should be efficient and critical readers because they have to wade through a lot
of material and grasp the essence quickly. You do not have to be an expert in the domain, so don’t
hesitate to ask clarifying questions. Be honest about what you don’t know. It’s okay not to know it all,
but it’s not okay to hide your ignorance.

Facilitation skills The ability to facilitate requirements discussions and elicitation workshops is
a vital analyst capability. Facilitation is the act of leading a group towards success. Facilitation is
 essential when collaboratively defining requirements, prioritizing needs, and resolving conflicts.
A neutral facilitator who has strong questioning, observational, and facilitation skills can help a
group build trust and improve the sometimes tense relationship between business and IT staff.
Chapter 7 presents guidelines for facilitating requirements elicitation activities.

Leadership skills A strong analyst can influence a group of stakeholders to move in a certain
 direction to accomplish a common goal. Leadership requires understanding a variety of techniques to
negotiate agreements among project stakeholders, resolve conflicts, and make decisions. The analyst
should create a collaborative environment, fostering trust among the various stakeholder groups who
might not understand each other’s motivations, needs, and constraints.

Observational skills An observant analyst will detect comments made in passing that might turn
out to be significant. By watching a user perform her job or use a current application, a good observer
can detect subtleties that the user might not think to mention. Strong observational skills sometimes
expose new areas for elicitation discussions, thereby revealing additional requirements.

Communication skills The principal deliverable from requirements development is a set of
written requirements that communicates information effectively among customers, marketing,
managers, and technical staff. The analyst needs a solid command of the language and the ability
to express complex ideas clearly, both in written form and verbally. You must be able to write for
multiple audiences, including customers who have to validate the requirements and developers who
need clear, precise requirements for implementation. A BA needs to speak clearly, adapting to local
 terminology and to regional differences in dialect. Also, a BA must be able to summarize and present
information at the level of detail the target audience needs.

Organizational skills BAs must contend with a vast array of jumbled information gathered during
elicitation and analysis. Coping with rapidly changing information and structuring all the bits into a
coherent whole demands exceptional organizational skills and the patience and tenacity to make sense
from ambiguity and disarray. As an analyst, you need to be able to set up an information architecture
to support the project information as it grows throughout the project (Beatty and Chen 2012).

 CHAPTER 4 The business analyst 67

Modeling skills Models ranging from the venerable flowchart through structured analysis models
(data flow diagram, entity-relationship diagram, and similar diagrams) to Unified Modeling Language
(UML) notations should be part of every analyst’s repertoire (Beatty and Chen 2012). Some will be
useful when communicating with users, others when communicating with developers, and still others
purely for analysis to help the BA improve the requirements. The BA will need to know when to select
specific models based on how they add value. Also, he’ll need to educate other stakeholders on
the value of using these models and how to read them. See Chapters 5, 12, and 13 for overviews of
 several types of analysis models.

Interpersonal skills Analysts must be able to get people with competing interests to work together
as a team. An analyst should feel comfortable talking with individuals in diverse job functions and at
all levels of the organization. A BA should speak the language of the audience she is talking to, not
using technical jargon with business stakeholders. She might need to work with virtual teams whose
members are separated by geography, time zones, cultures, or native languages. A BA should be easy
to communicate with and be clear and consistent when communicating with team members.

Creativity The BA is not merely a scribe who records whatever customers say. The best analysts
invent potential requirements for customers to consider (Robertson 2002). They conceive innovative
product capabilities, imagine new markets and business opportunities, and think of ways to surprise
and delight their customers. A really valuable BA finds creative ways to satisfy needs that users didn’t
even know they had. Analysts can offer new ideas because they are not as close as users to the
 problem being solved. Analysts have to be careful to avoid gold-plating the solution, though; don’t
simply add new requirements to the specification without customer approval.

Practicing what you teach
An experienced BA and developer once saved me from myself. I was talking to my friend and
colleague Tanya about a software service I thought I needed for my website. I told her that I
needed some kind of script that could intercept certain email messages I received and parse
certain information out of them. I didn’t know how to write such a script, so I asked Tanya how
she would suggest proceeding.

Tanya replied, “Excuse me, Karl, but I don’t think that’s your real requirement. Your real
 requirement is to get the information you need in some other way besides manually reading
and processing emails as they arrive in your inbox.” She was exactly correct. I had fallen into the
oh-so-common trap of a user attempting to specify a solution as a requirement. Fortunately,
this observant BA detected my mistake. Tanya stepped back a bit and immediately grasped the
underlying issue. When you do that, you almost always find that there are multiple ways you
could solve the problem, some of which might be better than the first one that popped into
your head. My smart friend Tanya reminded me how important it is for the skillful BA to dig
below a presented solution and really understand the user’s objectives.

68 PART I Software requirements: What, why, and who

Essential analyst knowledge

In addition to having specific capabilities and personal characteristics, business analysts need a
breadth of knowledge, much of which is gained through experience. They need to understand
contemporary requirements engineering practices and how to apply them in the context of various
software development life cycles. They might need to educate and persuade those who are not
familiar with established requirements practices. The effective analyst has a rich tool kit of techniques
available and knows when—and when not—to use each one.

BAs need to thread requirements development and management activities through the entire
project life span. An analyst with a sound understanding of project management, development
life cycles, risk management, and quality engineering can help prevent requirements issues from
 torpedoing the project. In a commercial development setting, the BA will benefit from knowledge of
product management concepts. BAs benefit from a basic level of knowledge about the architecture
and operating environment, so that they can engage in technical conversations about priorities and
nonfunctional requirements.

Knowledge of the business, the industry, and the organization are powerful assets for an effective
BA (IIBA 2009). The business-savvy analyst can minimize miscommunications with users. Analysts who
understand the organization and business domains often detect unstated assumptions and implicit
requirements. They can suggest ways that users could improve their business processes or propose
valuable functionality that no other stakeholder thought of. Understanding the industry domain
can be particularly helpful in a commercial environment so analysts can offer marketplace and
 competitive product analysis.

The making of a business analyst

Great business analysts are grown from diverse backgrounds of education and work experience, so
they will likely have gaps in their knowledge and skill sets. All analysts should decide which of the
knowledge and skills described in this chapter pertain to their situation and actively seek to fill their
own gaps. The International Institute of Business Analysis (IIBA) describes the competencies that
entry-level, junior, intermediate, and senior business analysts should exhibit across the common BA
activities (IIBA 2011). All new BAs will benefit from mentoring and coaching from those who have
more experience, perhaps in the form of an apprenticeship. Let’s explore how people with different
backgrounds might move into the analyst role and see some of the challenges and risks they’ll face.

The former user
Corporate IT departments often have business analysts who migrated into that role after working on
the business side as a user of information systems. These individuals understand the business and the
work environment, so they can easily gain the trust of their former colleagues. They speak the user’s
language, and they know the existing systems and business processes.

 CHAPTER 4 The business analyst 69

On the downside, former users who are now BAs might know little about software engineering
or how to communicate with technical people. If they aren’t familiar with modeling techniques, they
will express all information in textual form. Users who become BAs need to learn more about the
 technical side of software development so they can represent information in the most appropriate
forms for their multiple audiences.

Some former users believe they understand what is needed better than current users do, so they
don’t solicit or respect input from those who will actually use the new system. Recent users can be
stuck in the here-and-now of the current ways of working, such that they don’t see opportunities to
improve business processes with the help of a new information system. It’s also easy for a former user
to think of requirements strictly from a user interface perspective. Focusing on solution ideas can
impose unnecessary design constraints and often fails to solve the real problem.

From medical technologist to business analyst
The senior manager of a medical devices division in a large company had a problem. “Two years
ago, I hired three medical technologists into my division to represent our customers’ needs,”
he said. “They’ve done a great job, but they’re no longer current in medical technology, so they
can’t speak accurately for what our customers need today. What’s a reasonable career path for
them now?”

This manager’s former medical technologists were good candidates to become business
analysts. Although they weren’t up on the latest happenings in the hospital laboratory, they
could still communicate with other med techs. Spending two years in a product development
environment gave them a good appreciation for how it works. They needed some additional
training in requirements-writing techniques, but these employees had accumulated a range of
valuable experiences that could make them effective analysts. These former users did indeed
transition into the BA role successfully.

The former developer or tester
Project managers who lack a dedicated BA often expect a developer to do the job. Unfortunately,
the skills and personality needed for requirements development aren’t the same as those needed for
software development. Some developers have little patience with users, preferring to work with the
code and promote the glamour of technology. Of course, many other developers do recognize the
criticality of the requirements process and can work as analysts when necessary. Those who enjoy
collaborating with customers to understand the needs that drive software development are good
candidates to specialize in business analysis.

70 PART I Software requirements: What, why, and who

The developer-turned-analyst might need to learn more about the business domain. Developers
can easily lapse into technical thinking and jargon, focusing on the software to be built instead of
the customers’ needs. They’ll need to get up to speed on current best practices for requirements
 engineering. Developers will benefit from training and mentoring in the diverse soft skills that the
best analysts master, as described earlier in this chapter.

Testers aren’t commonly asked to perform the analyst role. However, a tester often has an
 analytical mindset that can lend itself to being a good BA. Testers are already used to thinking about
exceptions and how to break things, a useful skill for finding gaps in requirements. As with a former
developer, a tester will have to learn about good requirements engineering practices. She might also
need to become more knowledgeable about the business domain.

The former (or concurrent) project manager
Project managers are sometimes asked to also fill the role of business analyst, probably because they
have some of the same skills and domain knowledge required. This can be an effective role change.
Project managers will already be used to working with the appropriate teams, understanding the
organization and business domains, and demonstrating strong communication skills. They will likely
be good at listening, negotiation, and facilitation. They should have strong organizational and writing
skills as well.

However, the former project manager will have to learn more about requirements engineering
practices. It is one thing to set up a plan, allocate resources, and coordinate the activities of analysts
and other team members. It is a very different matter to perform the business analyst role yourself.
Former project managers must learn to focus on understanding the business needs and prioritizing
those within existing project schedules, rather than focusing on timelines, resources, and budget
 constraints. They will need to develop the analysis, modeling, and interviewing skills that are less
important for project managers but are essential to BA success.

The subject matter expert
Young (2001) recommends that the business analyst be an application domain expert or a SME,
as opposed to being a typical user: “SMEs can determine, based on their experience, whether the
requirements are reasonable, how they extend the existing system, how the proposed architecture
should be designed, and the impacts on users, among other areas.” Some product development
organizations hire expert users of their products who have extensive domain experience into their
companies to serve either as analysts or as user surrogates.

There are risks here, though, too. The business analyst who is a domain expert might specify the
system’s requirements to suit his own preferences, rather than addressing the legitimate needs of
the various user classes. He might have blinders on when thinking about requirements and be less
creative in proposing new ideas. SMEs are expert in their understanding of the “as-is” system; they
sometimes have difficulty imagining the “to-be” system. It often works better to have a BA from
the development team work with the SME, who then serves as a key user representative or product
 champion. The product champion is described in Chapter 6.

 CHAPTER 4 The business analyst 71

The rookie
Becoming a business analyst is a good entry point into the information technology arena for
 someone right out of school or coming from a completely unrelated job. The new graduate will have
little, if any, relevant experience or knowledge. He will likely be hired into the BA role because he
demonstrates many of the skills required to be a good analyst. An advantage of hiring a novice as a
BA is that he will have few preconceived notions about how requirements processes should work.

Because he lacks related experience and knowledge, a new graduate will have much to learn about
how to execute the BA tasks and the intricacies of the practices. The recent graduate also needs to
learn enough about the software development process to understand the challenges that developers,
 testers, and other team members face so he can collaborate effectively with them. Mentoring can
reduce the learning curve for a novice BA and instill good habits from the outset.

No matter what his background, a creative business analyst can apply it to enhance his
 effectiveness. The analyst needs to gain the knowledge and skills he is lacking, build on any past
experiences, and practice performing the BA tasks to become more proficient. All of these help create
the well-rounded BA (Figure 4-2).

FIGURE 4-2 Knowledge, skills, and experience feed into creating an effective business analyst.

The analyst role on agile projects

On projects using agile development methods, the business analyst functions still need to be
 performed, but the individual who does them might not be called a BA. Some agile approaches
have a key team member called the product owner. The person in that role might perform some of
the traditional business analysis activities, as well as providing the product vision, communicating

72 PART I Software requirements: What, why, and who

 constraints, prioritizing the product backlog of remaining work, and making the ultimate decisions
about the product (Cohn 2010). Other projects maintain a business analyst role separate from the
product owner. Additionally, other team members, such as developers, perform portions of the
analyst role. The point is that, regardless of the project’s development approach, the tasks associated
with the BA role still have to get done. The team will benefit from having members who possess the
skills associated with business analysts.

Often, in an organization moving toward an agile development approach, the BA finds herself
unsure as to how she can most effectively contribute to the project. In the spirit of agile development,
the analyst has to be willing to step out of a preconceived role of “business analyst” and fill in where
needed to help deliver a successful product. Ellen Gottesdiener (2009) offers a detailed list of how
traditional business analyst activities can be adapted to an agile environment. Following are a few
suggestions for a BA to apply her skills on an agile project:

 ■ Define a lightweight, flexible requirements process and adapt it as the project warrants.

 ■ Ensure that requirements documentation is at the right level: not too little and not too much.
(Many BAs tend to document everything in specifications to the nth degree. Some purists
suggest agile projects should have little or no requirements documentation. Neither extreme
is ideal.)

 ■ Help determine the best approach to document the backlog, including whether story cards or
more formal tools are most appropriate.

 ■ Apply facilitation and leadership skills to ensure that stakeholders are talking to one another
frequently about requirements needs, questions, and concerns.

 ■ Help validate that customer needs are accurately represented in the product backlog, and
facilitate backlog prioritization.

 ■ Work with customers when they change their minds about requirements and priorities, and
help record those changes. Work with the rest of the team to determine the impact of changes
on iteration contents and release plans.

There is a lot of value in having a role such as a product owner to represent the users throughout
development. However, the person filling the product owner role might not have all of the business
analysis skills or time to perform all the related activities. A BA can bring those critical capabilities to
the team.

Creating a collaborative team

Software projects sometimes experience strained relationships among analysts, developers, users,
managers, and marketing. The parties don’t always trust each other’s motivations or appreciate each
other’s needs and constraints. In reality, though, the producers and consumers of a software product
share common objectives. For corporate information systems development, all parties work for the

 CHAPTER 4 The business analyst 73

same company, so they all benefit from improvements to the corporate bottom line. For commercial
products, happy customers generate revenue for the producer and satisfaction for the developers.

The business analyst has the major responsibility for forging a collaborative relationship among
the user representatives and other project stakeholders. An effective analyst appreciates the
 challenges that both business and technical stakeholders face and demonstrates respect for his
or her collaborators at all times. The analyst steers the project participants toward a requirements
 agreement that leads to a win-win-win outcome in the following ways:

 ■ Customers are delighted with the product.

 ■ The developing organization is happy with the business outcomes.

 ■ All team members are proud of the good work they did on a challenging and rewarding
 project.

Next steps
 ■ Complete a self-assessment of your BA skills or compare your own skills and knowledge

with those described in this chapter to identify areas for further development. The IIBA’s
self-assessment is a good tool for this purpose (IIBA 2010). Create a personal roadmap to
close the gaps.

 ■ For any skills gaps, select two specific areas for improvement and begin closing those gaps
immediately by reading, practicing, finding a mentor, or taking a class.

 ■ Evaluate your current knowledge about the business, industry, and organization in which
you’re working and identify subject matter expertise to develop further. Find an article
about that subject or an expert from whom you can learn more.

 75

PART II

Requirements
development

CHAPTER 5 Establishing the business requirements.77

CHAPTER 6 Finding the voice of the user101

CHAPTER 7 Requirements elicitation. .119

CHAPTER 8 Understanding user requirements143

CHAPTER 9 Playing by the rules .167

CHAPTER 10 Documenting the requirements181

CHAPTER 11 Writing excellent requirements203

CHAPTER 12 A picture is worth 1024 words221

CHAPTER 13 Specifying data requirements245

CHAPTER 14 Beyond functionality .261

CHAPTER 15 Risk reduction through prototyping295

CHAPTER 16 First things first: Setting requirement
priorities. .313

CHAPTER 17 Validating the requirements329

CHAPTER 18 Requirements reuse. .351

CHAPTER 19 Beyond requirements development.365

 77

C H A P T E R 5

Establishing the business
requirements

Karen is a business analyst on a project to implement a new online product catalog for the company’s
customer service representatives. The drafted SRS is going through review when the marketing manager
says he wants to add a “Like this product” feature. Karen’s first instinct is to push back; there is already
concern about meeting schedules with the current requirements set. But then she realizes that maybe
that’s a smart feature to add, because customer service representatives can promote the most-liked
products with other customers. Before she elicits and documents functional requirements for this
 feature, she needs an objective analysis about whether this feature should be added to the scope or not.

When she explains to the marketing manager the need to analyze this request further, he responds,
“Well, soon the developers are going to be in there changing code anyway. How hard is it to add just
one tiny feature?” Karen’s analysis determines that the proposed feature lies outside the project’s scope:
it won’t contribute to the business objectives to reduce the customer service representatives’ average call
time, and it wouldn’t be simple to implement. Karen needs to be able to clearly articulate why the feature
isn’t in scope to the marketing manager, who doesn’t have the business objectives readily in mind.

As you saw in Chapter 1, “The essential software requirement,” business requirements represent the
top of the requirements chain. They define the vision of the solution and the scope of the project that
will implement the solution. The user requirements and functional requirements must align with the
context and objectives that the business requirements establish. Requirements that don’t help the
project achieve its business objectives shouldn’t be implemented.

A project without a clearly defined and well-communicated direction invites disaster. Project
 participants can unwittingly work at cross-purposes if they have different objectives and priorities.
The stakeholders will never agree on the requirements if they lack a common understanding of the
project’s business objectives. Without this understanding up front, project deadlines will likely be
missed and budgets will likely be overrun as the team struggles to deliver the right product.

This chapter describes the vision and scope document, a deliverable that contains the project’s
business requirements. Figure 5-3 later in this chapter suggests a template for the vision and scope
document. But before we get to the template, let’s see just what we mean by “business requirements.”

78 PART II Requirements development

Defining business requirements

“Business requirements” refers to a set of information that, in the aggregate, describes a need that
leads to one or more projects to deliver a solution and the desired ultimate business outcomes.
 Business opportunities, business objectives, success metrics, and a vision statement make up the
 business requirements.

Business requirements issues must be resolved before the functional and nonfunctional
 requirements can be fully specified. A statement of the project’s scope and limitations helps greatly
with discussions of proposed features and target releases. The business requirements provide a
 reference for making decisions about proposed requirement changes and enhancements. We
 recommend displaying the business objectives, vision, and scope highlights in every requirements
 elicitation session so the team can quickly judge whether a proposed requirement is in or out of scope.

Identifying desired business benefits
The business requirements set the context for, and enable the measurement of, the benefits the
business hopes to achieve from undertaking a project. Organizations should not initiate any project
without a clear understanding of the value it will add to the business. Set measurable targets with
business objectives, and then define success metrics that allow you to measure whether you are on
track to meet those objectives.

Business requirements might come from funding sponsors, corporate executives, marketing
 managers, or product visionaries. However, it can be challenging to identify and communicate the
business benefits. Team members sometimes aren’t exactly sure what the project is intended to
 accomplish. Sometimes, sponsors don’t want to set objectives in a measurable fashion and then be
held accountable for achieving them. There could be multiple important stakeholders who don’t
agree on what the objectives should be. The business analyst can ensure that the right stakeholders
are setting the business requirements and facilitate elicitation, prioritization, and conflict resolution.
Karl Wiegers (2006) suggests some questions that the BA can ask to help elicit business requirements.

The business benefit has to represent a true value for the project’s sponsors and to the product’s
customers. For example, simply merging two systems into one is not a reasonable business objective.
Customers don’t care if they are using an application that involves 1, 5, or even 10 systems. They care
about issues like increasing revenue and decreasing costs. Merging two systems might be part of the
solution, but it is rarely the true business objective. Regulatory and legal compliance projects also
have clear business objectives. Often the objectives are phrased as risk avoidance, possibly to avoid
getting sued or being put out of business.

Product vision and project scope
Two core elements of the business requirements are the vision and the scope. The product vision
succinctly describes the ultimate product that will achieve the business objectives. This product could
serve as the complete solution for the business requirements or as just a portion of the solution.
The vision describes what the product is about and what it ultimately could become. It provides the

 CHAPTER 5 Establishing the business requirements 79

context for making decisions throughout the product’s life, and it aligns all stakeholders in a common
direction. The project scope identifies what portion of the ultimate product vision the current project
or development iteration will address. The statement of scope draws the boundary between what’s in
and what’s out for this project.

Important The product vision ensures that we all know where we are hoping to go
 eventually. The project scope ensures that we are all talking about the same thing for the
immediate project or iteration.

Make sure the vision solves the problem
In one of our training courses, we give students a business problem and a corresponding
 business objective. Throughout the exercise, we periodically provide additional details about
the requirements. At each step, we ask the students to conceive a solution to the problem,
given the information they have. By the end of the exercise, all of the students’ solution ideas
are similar, but rarely do any of them actually solve the original problem!

This mimics what we see on real projects. Teams might set clear objectives and then specify,
develop, and test the system, without checking against the objectives along the way.
A stakeholder might come up with a “shiny” new feature she wants implemented. The team
adds it because it seems reasonable and interesting. However, months down the road, the
 delivered system doesn’t solve the original problem, despite all of its cool features.

The vision applies to the product as a whole. The vision should change relatively slowly as a
 product’s strategic positioning or a company’s business objectives evolve over time. The scope
 pertains to a specific project or iteration that will implement the next increment of the product’s
 functionality, as shown in Figure 5-1. Scope is more dynamic than vision because the stakeholders
 adjust the contents of each release within its schedule, budget, resource, and quality constraints.
Scope for the current release should be clear, but the scope of future releases will be fuzzier
the farther out you look. The team’s goal is to manage the scope of a specific development or
 enhancement project as a defined subset of the strategic vision for the product.

FIGURE 5-1 The product vision encompasses the scope for each planned release, which is less well defined the
farther out you look.

80 PART II Requirements development

Interlocking scopes
A federal government agency is undertaking a massive five-year information system
 development effort. The agency defined the business objectives and vision for this system early
in the process; they won’t change substantially over the next few years. The agency has planned
15 releases of portions of the ultimate system, each created by a separate project team and
having its own scope description. Some projects will run in parallel, because certain of them are
relatively independent of each other and some have longer timelines than others. Each scope
description must align with the overall product vision and interlock with the scope for the other
projects to ensure that nothing is inadvertently omitted and that lines of responsibility are clear.

Conflicting business requirements
Business requirements collected from multiple sources might conflict. Consider a kiosk that will be
used by a retail store’s customers. Figure 5-2 shows the likely business interests of the kiosk developer,
retailer, and customer as we envision how each of these stakeholders hopes the kiosk will provide an
advantage over their current way of doing business.

FIGURE 5-2 Stakeholders for a kiosk don’t always have congruent business interests.

The various stakeholders’ objectives sometimes are in alignment. For instance, both the kiosk
developers and the customers want to have a wide variety of products or services available through
the kiosk. However, some business objectives could conflict. The customer wants to spend less time
purchasing goods and services, but the retailer would prefer to have customers linger in the store and

 CHAPTER 5 Establishing the business requirements 81

spend more money. The tension among stakeholders with different goals and constraints can lead to
clashing business requirements. The project’s decision makers must resolve these conflicts before the
analyst can detail the kiosk’s requirements. The focus should be on delivering the maximum business
value to the primary stakeholders. It’s easy to be distracted by superficial product characteristics that
don’t really address the business objectives.

The project’s decision makers shouldn’t expect the software team to resolve conflicts among
various stakeholders. As more constituencies with diverse interests climb aboard, scope will grow.
 Uncontrolled scope creep, in which stakeholders overstuff the new system in an attempt to satisfy
every interest, can cause the project to topple under its own weight. A BA can help by surfacing
potential areas of conflict and differing assumptions, flagging conflicting business objectives, noting
when requested features don’t achieve those objectives, and facilitating conflict resolution. Resolving
such issues is often a political and power struggle, which lies outside the scope of this book.

Long-duration projects often experience a change in decision makers partway through. If this
 happens to you, immediately revisit the baselined business requirements with the new decision
 makers. They need to be aware of the existing business requirements, which they might want to
modify. If so, the project manager will have to adjust budgets, schedules, and resources, while the
BA might need to work with stakeholders to update user and functional requirements and reset their
priorities.

Vision and scope document

The vision and scope document collects the business requirements into a single deliverable that
sets the stage for the subsequent development work. Some organizations create a project charter
 (Wiegers 2007) or a business case document that serves a similar purpose. Organizations that build
commercial software often create a market (or marketing) requirements document (MRD). An
MRD might go into more detail about the target market segments and the issues that pertain to
 commercial success.

The owner of the vision and scope document is the project’s executive sponsor, funding authority,
or someone in a similar role. A business analyst can work with this individual to articulate the business
requirements and write the vision and scope document. Input to the business requirements should
come from people who have a clear sense of why they are undertaking the project. These individuals
might include the customer or development organization’s senior management, a product visionary, a
product manager, a subject matter expert, or members of the marketing department.

Figure 5-3 suggests a template for a vision and scope document; the sections that follow describe
each of the template headings in more detail. As with any template, adapt this to meet the specific
needs of your own projects. If you already have recorded some of this information elsewhere, do not
duplicate it in the vision and scope document. Some elements of the vision and scope document might
be reusable from project to project, such as business objectives, business risks, and stakeholder profiles.
Appendix C includes an example vision and scope document written according to this template.

82 PART II Requirements development

FIGURE 5-3 Suggested template for a vision and scope document.

The vision and scope document only defines the scope at a high level; the scope details are
represented by each release baseline that the team defines. Major new projects should have both a
complete vision and scope document and an SRS. (See Chapter 10, “Documenting the requirements,”
for an SRS template.) Each iteration, release, or enhancement project for an evolving product can
include its own scope statement in that project’s requirements documentation, rather than creating a
separate vision and scope document.

Template tactics
Templates provide a consistent way to organize information from one project to the next. They
help me remember information that I might overlook if I started with a blank piece of paper.

I don’t fill out a template from top to bottom. Instead, I populate the various sections as I
accumulate information during the course of the project. Empty sections highlight gaps in our
current knowledge. Suppose one section of my document template is titled “Business risks.”
Partway through the project, I realize this section is empty. Does the project really have no
business risks? Have we identified some business risks but stored them someplace else? Or have
we not yet worked with appropriate stakeholders to identify possible risks? Blank sections in
the template help me conduct a richer exploration for important project information. If there
are common questions you ask to elicit content for a section, consider embedding those in the
 appropriate section of the template, perhaps in the form of hidden text, for others to reuse.

I use the term “shrink to fit” when working with templates. I begin with a rich template with
many categories that might be important. Then I condense it down to just what I need for each
situation. Suppose that a certain section of the template—business risks, say—doesn’t pertain
to the current project. I can remove that section from my document or I can retain the heading
but leave the contents blank. Both options run the risk that a reader will notice the hole and

 CHAPTER 5 Establishing the business requirements 83

question whether there are indeed any business risks. The best solution is to put an explicit
message in that section: “No business risks have been identified.”

If certain sections of a template rarely get used, delete them. You might want to create a
small set of templates for use on different types of projects, such as SRS templates suitable for
use on large, new development projects; small websites; and enhancement projects. Even if you
store your requirements in some repository other than a traditional document, a template can
help you consider all the requirements information you need to accumulate for your project.

One project manager described the benefits his team received from adopting requirements
document templates: “They are time consuming to fill in. The first couple of times I created
them, I was surprised at the amount of detail required to make them useful, and then the
amount of work taken to review and tidy up the documents, cleaning up any ambiguities, filling
in gaps, etc. But it’s worth it. The first two products that were developed after introducing the
documents came in on time and were of much higher quality than before.”

1. Business requirements
Projects are launched in the belief that creating or changing a product will provide worthwhile
 benefits for someone and a suitable return on investment. The business requirements describe
the primary benefits that the new system will provide to its sponsors, buyers, and users. Business
 requirements directly influence which user requirements to implement and in what sequence.

1.1 Background
Summarize the rationale and context for the new product or for changes to be made to an existing
one. Describe the history or situation that led to the decision to build this product.

1.2 Business opportunity
For a corporate information system, describe the business problem that is being solved or the process
being improved, as well as the environment in which the system will be used. For a commercial
product, describe the business opportunity that exists and the market in which the product will be
competing. This section could include a comparative evaluation of existing products, indicating
why the proposed product is attractive and the advantages it provides. Describe the problems that
cannot currently be solved without the envisioned solution. Show how it aligns with market trends,
 technology evolution, or corporate strategic directions. List any other technologies, processes, or
resources required to provide a complete customer solution.

Describe the needs of typical customers or of the target market. Present customer problems that
the new product will address. Provide examples of how customers would use the product. Define any
known critical interface or quality requirements, but omit design or implementation specifics.

84 PART II Requirements development

1.3 Business objectives
Summarize the important business benefits the product will provide in a quantitative and measurable
way. Platitudes (“become recognized as a world-class <whatever>”) and vaguely stated improvements
(“provide a more rewarding customer experience”) are neither helpful nor verifiable. Table 5-1 presents
some simplified examples of both financial and nonfinancial business objectives (Wiegers 2007).

TABLE 5-1 Examples of financial and nonfinancial business objectives

Financial Nonfinancial

 ■ Capture a market share of X% within Y months.
 ■ Increase market share in country W from X% to Y%

within Z months.
 ■ Reach a sales volume of X units or revenue of $Y within

Z months.
 ■ Achieve X% return on investment within Y months.
 ■ Achieve positive cash flow on this product within

Y months.
 ■ Save $X per year currently spent on a high-maintenance

legacy system.
 ■ Reduce monthly support costs from $X to $Y within

Z months.
 ■ Increase gross margin on existing business from X% to

Y% within 1 year.

 ■ Achieve a customer satisfaction measure of at least
X within Y months of release.

 ■ Increase transaction-processing productivity by X% and
reduce data error rate to no more than Y%.

 ■ Develop an extensible platform for a family of related
products.

 ■ Develop specific core technology competencies.
 ■ Be rated as the top product for reliability in published

product reviews by a specified date.
 ■ Comply with specific federal and state regulations.
 ■ Receive no more than X service calls per unit and

Y warranty calls per unit within Z months after shipping.
 ■ Reduce turnaround time to X hours on Y% of support

calls.

Organizations generally undertake a project to solve a problem or exploit an opportunity. A
business objectives model shows a hierarchy of related business problems and measurable business
objectives (Beatty and Chen 2012). The problems describe what is keeping the business from meeting
their goals at present, whereas the objectives define ways to measure achievement of those goals.
Problems and objectives are intertwined: understanding one can reveal the other.

Given a set of business objectives, ask, “What is keeping us from achieving the goal?” to identify
a more detailed business problem. Or work backward by asking, “Why do we care about that goal?”
to better understand the top-level business problem or opportunity. Given a business problem, ask,
“How will we assess whether the problem is solved?” to identify the measurable objective. The process
is iterative, cycling through the hierarchy of problems and objectives until you see a list of features
emerge that would help solve the problems and meet the objectives.

A conversation between a business analyst and an executive sponsor to identify business problems
and objectives might look similar to the one in Figure 5-4. This illustration is for the Chemical Tracking
System project at Contoso Pharmaceuticals that was introduced in Chapter 2, “Requirements from the
customer’s perspective.” From the executive’s responses to these questions, the BA could construct a
business objectives model for the Chemical Tracking System, as shown in Figure 5-5.

 CHAPTER 5 Establishing the business requirements 85

FIGURE 5-4 Example of a conversation between a business analyst and an executive sponsor.

1.4 Success metrics
Specify the indicators that stakeholders will use to define and measure success on this project
 (Wiegers 2007). Identify the factors that have the greatest impact on achieving that success, including
factors both within and outside the organization’s control.

Business objectives sometimes cannot be measured until well after a project is complete. In other
cases, achieving the business objectives might be dependent on projects beyond your current one.
However, it’s still important to evaluate the success of an individual project. Success metrics indicate
whether a project is on track to meet its business objectives. The metrics can be tracked during
 testing or shortly after product release. For the Chemical Tracking System, one success metric might
be the same as Business Objective 3 in Figure 5-5 to “Reduce time spent ordering chemicals to
10 minutes on 80 percent of orders,” because you can measure the average order time during testing
or soon after release. Another success metric might relate to Business Objective 2 with a timeline
that can be measured much earlier than a year after release, such as “Track 60 percent of commercial
chemical containers and 50 percent of proprietary chemicals within 4 weeks.”

86 PART II Requirements development

FIGURE 5-5 Example business objectives model for the Chemical Tracking System.

Important Choose your success metrics wisely. Make sure they measure what is important
to your business, not just what is easy to measure. A success metric to “Reduce product
development costs by 20 percent” is easy to measure. It might also be easy to achieve
by laying off employees or investing less in innovation. However, these might not be the
 intended outcomes of the objectives.

 CHAPTER 5 Establishing the business requirements 87

1.5 Vision statement
Write a concise vision statement that summarizes the long-term purpose and intent of the product.
The vision statement should reflect a balanced view that will satisfy the expectations of diverse
 stakeholders. It can be somewhat idealistic but should be grounded in the realities of existing or
anticipated markets, enterprise architectures, corporate strategic directions, and resource limitations.
The following keyword template works well for crafting a product vision statement (Moore 2002):

 ■ For [target customer]

 ■ Who [statement of the need or opportunity]

 ■ The [product name]

 ■ Is [product category]

 ■ That [major capabilities, key benefit, compelling reason to buy or use]

 ■ Unlike [primary competitive alternative, current system, current business process]

 ■ Our product [statement of primary differentiation and advantages of new product]

Here’s a sample vision statement for the Chemical Tracking System, with the keywords in boldface:

For scientists who need to request containers of chemicals, the Chemical Tracking
System is an information system that will provide a single point of access to the
chemical stockroom and to vendors. The system will store the location of every
chemical container within the company, the quantity of material remaining in it, and
the complete history of each container’s locations and usage. This system will save
the company 25 percent on chemical costs in the first year of use by allowing the
company to fully exploit chemicals that are already available within the company,
dispose of fewer partially used or expired containers, and use a standard chemical
purchasing process. Unlike the current manual ordering processes, our product
will generate all reports required to comply with federal and state government
regulations that require the reporting of chemical usage, storage, and disposal.

Crafting the product vision
I use the vision statement in my own consulting work. One longtime client and I work together
very well, but occasionally Bill asks me to undertake a new project that’s a little different. If we
aren’t exactly sure what he wants me to do, I ask him to write a vision statement. Bill always
grumbles a bit because he knows that this will force him to think carefully about exactly what
outcome he is expecting. But Bill’s vision statement invariably gives me a clear idea of just what
we are trying to accomplish so we can work efficiently together. It’s well worth the time it takes.

88 PART II Requirements development

You might have several key stakeholders write their vision statements separately, rather
than doing it as a group exercise. Comparing their vision statements is a good way to spot
 different understandings about the project’s objectives. And it’s never too late to write a vision
 statement. Even if the project is under way, crafting a vision statement can help keep the rest of
the project work on track and in focus. Though drafting a vision statement is quick, crafting the
right vision statement and reaching agreement among the key stakeholders will take more time.

1.6 Business risks
Summarize the major business risks associated with developing—or not developing—this product.
Risk categories include marketplace competition, timing issues, user acceptance, implementation
 issues, and possible negative impacts on the business. Business risks are not the same as project risks,
which often include resource availability concerns and technology factors. Estimate the potential loss
from each risk, the likelihood of it occurring, and any potential mitigation actions. See Chapter 32,
“Software requirements and risk management,” for more about this topic.

1.7 Business assumptions and dependencies
An assumption is a statement that is believed to be true in the absence of proof or definitive
 knowledge. Business assumptions are specifically related to the business requirements. Incorrect
 assumptions can potentially keep you from meeting your business objectives. For example, an
 executive sponsor might set a business objective that a new website will increase revenue by $100,000
per month. To establish this revenue target, the sponsor made some assumptions, perhaps that the
new site will attract 200 additional unique visitors per day and that each visitor will spend an average
of $17. If the new site does not attract enough visitors with a high enough average sale per visitor, the
project might not achieve its business objective. If you learn that certain assumptions are wrong, you
might have to change scope, adjust the schedule, or launch other projects to achieve the objectives.

Record any assumptions that the stakeholders made when conceiving the project and writing their
vision and scope document. Often, one party’s assumptions are not shared by others. If you write
them down and review them, you can avoid possible confusion and aggravation in the future.

Record any major dependencies the project has on external factors. Examples are pending
 industry standards or government regulations, deliverables from other projects, third-party suppliers,
or development partners. Some business assumptions and dependencies might turn into risks that
the project manager must monitor regularly. Broken dependencies are a common source of project
delays. Note the impact of an assumption not being true, or the impact of a broken dependency, to
help stakeholders understand why it is critical.

2. Scope and limitations
When a chemist invents a new reaction that transforms one kind of chemical into another, he writes a
paper that includes a “Scope and limitations” section, which describes what the reaction will and will
not do. Similarly, a software project should define its scope and limitations. You need to state both
what the solution being developed is and what it is not.

 CHAPTER 5 Establishing the business requirements 89

Many projects suffer from scope creep—rampant growth as more and more functionality gets
stuffed into the product. The first step to controlling scope creep is to define the project’s scope.
The scope describes the concept and range of the proposed solution. The limitations itemize certain
 capabilities that the product will not include that some people might assume will be there. The scope
and limitations help to establish realistic stakeholder expectations because customers sometimes
request features that are too expensive or that lie outside the intended project scope.

Scope can be represented in numerous ways (see “Scope representation techniques” later in this
chapter). At the highest level, scope is defined when the customer decides which business objectives
to target. At a lower level, scope is defined at the level of features, user stories, use cases, or events
and responses to include. Scope ultimately is defined through the set of functional requirements
planned for implementation in a specific release or iteration. At each level, the scope must stay within
the bounds of the level above it. For example, in-scope user requirements must map to the business
objectives, and functional requirements must map to user requirements that are in scope.

Blue-sky requirements
A manager at a product development company that suffered near-catastrophic scope creep
once told me ruefully, “We blue-skied the requirements too much.” She meant that any idea
anyone had was included in the requirements. This company had a solid product vision, but
they didn’t manage the scope by planning a series of releases and deferring some suggested
features to later (perhaps infinitely later) releases. The team finally released an overinflated
product after four years of development. It can be valuable to jot down the blue-sky
 requirements for future consideration. However, thoughtful scope management and an
 incremental development approach would have let the team ship a useful product much earlier.

2.1 Major features
List the product’s major features or user capabilities, emphasizing those that distinguish it from
previous or competing products. Think about how users will use the features, to ensure that the list is
complete and that it does not include unnecessary features that sound interesting but don’t provide
customer value. Give each feature a unique and persistent label to permit tracing it to other system
 elements. You might include a feature tree diagram, as described later in this chapter.

2.2 Scope of initial release
Summarize the capabilities that are planned for inclusion in the initial product release. Scope is often
defined in terms of features, but you can also define scope in terms of user stories, use cases, use case
flows, or external events. Also describe the quality characteristics that will let the product provide
the intended benefits to its various user classes. To focus the development effort and maintain
a reasonable project schedule, avoid the temptation to include every feature that any potential
 customer might eventually want in release 1.0. Bloatware and slipped schedules are common
 outcomes of such insidious scope stuffing. Focus on those features that will provide the most value, at
the most acceptable cost, to the broadest community, in the earliest time frame.

90 PART II Requirements development

As an illustration, a recent project team decided that users had to be able to run their package
delivery business with the first release of the software application. Version 1 didn’t have to be fast,
pretty, or easy to use, but it had to be reliable; this focus drove everything the team did. The initial
 release accomplished the basic objectives of the system. Future releases will include additional
 features, options, and usability aids. Be careful not to neglect nonfunctional requirements in the initial
release, though. The ones that directly affect architecture are particularly critical to establish from the
outset. Rearchitecting to try to fix quality deficiencies can be almost as expensive as a total rewrite.
See Chapter 14, “Beyond functionality,” for more about software quality attributes.

2.3 Scope of subsequent releases
If you envision a staged evolution of the product, or if you are following an iterative or incremental
life cycle, build a release roadmap that indicates which functionality chunks will be deferred and
the desired timing of later releases. Subsequent releases let you implement additional use cases
and features, as well as enriching the capabilities of the initial ones. The farther out you look, the
fuzzier these future scope statements will be and the more they will change over time. Expect to shift
 functionality from one planned release to another and to add unanticipated capabilities. Short release
cycles provide frequent opportunities for learning based on customer feedback.

2.4 Limitations and exclusions
List any product capabilities or characteristics that a stakeholder might expect but that are not
planned for inclusion in the product or in a specific release. List items that were cut from scope, so the
scope decision is not forgotten. Maybe a user requested that she be able to access the system from
her phone while away from her desk, but this was deemed to be out of scope. State that explicitly in
this section: “The new system will not provide mobile platform support.”

3. Business context
This section presents profiles of major stakeholder categories, management’s priorities for the project,
and a summary of some factors to consider when planning deployment of the solution.

3.1 Stakeholder profiles
Stakeholders are the people, groups, or organizations that are actively involved in a project, are
 affected by its outcome, or are able to influence its outcome (Smith 2000; IIBA 2009; PMI 2013).
The stakeholder profiles describe different categories of customers and other key stakeholders
for the project. You needn’t describe every stakeholder group, such as legal staff who must check
for compliance with pertinent laws on a website development project. Focus on different types
of customers, target market segments, and the various user classes within those segments. Each
 stakeholder profile should include the following information:

 ■ The major value or benefit that the stakeholder will receive from the product. Stakeholder
value could be defined in terms of:

• Improved productivity.

 CHAPTER 5 Establishing the business requirements 91

• Reduced rework and waste.

• Cost savings.

• Streamlined business processes.

• Automation of previously manual tasks.

• Ability to perform entirely new tasks.

• Compliance with pertinent standards or regulations.

• Improved usability compared to current products.

 ■ Their likely attitudes toward the product.

 ■ Major features and characteristics of interest.

 ■ Any known constraints that must be accommodated.

You might include a list of key stakeholders by name for each profile or an organization chart that
shows the relationships among the stakeholders within the organization.

3.2 Project priorities
To enable effective decision making, the stakeholders must agree on the project’s priorities. One
way to approach this is to consider the five dimensions of features, quality, schedule, cost, and staff
 (Wiegers 1996). Each dimension fits in one of the following three categories on any given project:

 ■ Constraint A limiting factor within which the project manager must operate

 ■ Driver A significant success objective with limited flexibility for adjustment

 ■ Degree of freedom A factor that the project manager has some latitude to adjust and
 balance against the other dimensions

The project manager’s challenge is to adjust the degrees of freedom to achieve the project’s
 success drivers within the limits imposed by the constraints. Suppose marketing suddenly demands
that you release the product one month earlier than scheduled. How do you respond? Do you:

 ■ Defer certain requirements to a later release?

 ■ Shorten the planned system test cycle?

 ■ Demand overtime from your staff or hire contractors to accelerate development?

 ■ Shift resources from other projects to help out?

The project priorities drive the actions you take when such eventualities arise. Realistically, when
change happens, you need to have conversations with the key stakeholders to determine the most
appropriate actions to take based on the change requested. For example, marketing might want to
add features or shorten a timeline, but perhaps they are willing to defer certain features in exchange.
See Appendix C for an example of how to document these project priorities.

92 PART II Requirements development

Important Not all of the five dimensions can be constraints, and they cannot all be drivers.
The project manager needs some degrees of freedom to be able to respond appropriately
when requirements or project realities change.

3.3 Deployment considerations
Summarize the information and activities that are needed to ensure an effective deployment of the
solution into its operating environment. Describe the access that users will require to use the system,
such as whether the users are distributed over multiple time zones or located close to each other.
State when the users in various locations need to access the system. If infrastructure changes are
needed to support the software’s need for capacity, network access, data storage, or data migration,
describe those changes. Record any information that will be needed by people who will be preparing
training or modifying business processes in conjunction with deployment of the new solution.

Scope representation techniques

The models described in this section can be used to represent project scope in various ways. You
don’t need to create all of these models; consider which ones provide the most useful insight for
each project. The models can be included in the vision and scope document or stored elsewhere and
referenced as needed.

The purpose of tools such as the context diagram, ecosystem map, feature tree, and event list
is to foster clear and accurate communication among the project stakeholders. That clarity is more
important than dogmatically adhering to the rules for a “correct” diagram. We strongly recommend,
though, that you adopt the notations illustrated in the following examples as standards for drawing
the diagrams. For example, in a context diagram, suppose you were to use a triangle to represent the
system instead of a circle, and ovals rather than rectangles for external entities. Your colleagues would
have difficulty reading a diagram that follows your personal preferences rather than a team standard.

Context diagrams, ecosystem maps, feature trees, and event lists are the most common ways
to represent scope visually. However, other techniques are also used. Identifying affected business
 processes also can help define the scope boundary. Use case diagrams can depict the scope boundary
between use cases and actors (see Chapter 8, “Understanding user requirements”).

Context diagram
The scope description establishes the boundary and connections between the system you’re
 developing and everything else in the universe. The context diagram visually illustrates this boundary.
It identifies external entities (also called terminators) outside the system that interface to it in some
way, as well as data, control, and material flows between the terminators and the system. The context
diagram is the top level in a data flow diagram developed according to the principles of structured
analysis (Robertson and Robertson 1994), but it’s a useful model for all projects.

 CHAPTER 5 Establishing the business requirements 93

Figure 5-6 illustrates a portion of the context diagram for the Chemical Tracking System. The
entire system is depicted as a single circle; the context diagram deliberately provides no visibility
into the system’s internal objects, processes, or data. The “system” inside the circle could encompass
any combination of software, hardware, and human components. Therefore, it could include manual
 operations as part of the entire system. The external entities in the rectangles can represent user
classes (Chemist, Buyer), organizations (Health and Safety Department), other systems (Training
 Database), or hardware devices (Bar Code Reader). The arrows on the diagram represent the flow of
data (such as a request for a chemical) or physical items (such as a chemical container) between the
system and its external entities.

You might expect to see chemical vendors shown as an external entity in this diagram. After all,
the company will route orders to vendors for fulfillment, the vendors will send chemical containers
and invoices to Contoso Pharmaceuticals, and Contoso’s purchasing department will pay the vendors.
However, those processes take place outside the scope of the Chemical Tracking System, as part of
the operations of the purchasing and receiving departments. Their absence from the context diagram
makes it clear that this system is not directly involved in placing orders with the vendors, receiving the
products, or paying the bills.

FIGURE 5-6 Partial context diagram for the Chemical Tracking System.

94 PART II Requirements development

Ecosystem map
An ecosystem map shows all of the systems related to the system of interest that interact with one
another and the nature of those interactions (Beatty and Chen 2012). An ecosystem map represents
scope by showing all the systems that interconnect and that therefore might need to be modified
to accommodate your new system. Ecosystem maps differ from context diagrams in that they show
 other systems that have a relationship with the system you’re working on, including those without
 direct interfaces. You can identify the affected systems by determining which ones consume data
from your system. When you reach the point that your project does not affect any additional data,
you’ve identified the scope boundary of systems that participate in the solution.

Figure 5-7 is a partial ecosystem map for the Chemical Tracking System. The systems are all shown
in boxes (such as the Purchasing System or Receiving System). In this example, the primary system
we are working on is shown in a bold box (Chemical Tracking System), but if all systems have equal
status in your solution, you can use the same box style for all of them. The lines show interfaces
between systems (for instance, the Purchasing System interfaces to the Chemical Tracking System).
Lines with arrows and labels show that major pieces of data are flowing from one system to another
(for instance, “training records” are passed from the Corporate Training Database to the Chemical
 Tracking System). Some of these same flows can also appear on the context diagram.

FIGURE 5-7 Partial ecosystem map for the Chemical Tracking System.

The ecosystem map in Figure 5-7 shows that the Chemical Tracking System does not directly connect
to the OSHA/EPA Reporting Interface. Nonetheless, you need to consider whether any requirements
in the Chemical Tracking System arise because of the data that flows from it, through the Health and
Safety Incident Database, and to that reporting interface.

 CHAPTER 5 Establishing the business requirements 95

Feature tree
A feature tree is a visual depiction of the product’s features organized in logical groups, hierarchically
subdividing each feature into further levels of detail (Beatty and Chen 2012). The feature tree
 provides a concise view of all of the features planned for a project, making it an ideal model to show
to executives who want a quick glance at the project scope. A feature tree can show up to three levels
of features, commonly called level 1 (L1), level 2 (L2), and level 3 (L3). L2 features are subfeatures of L1
features, and L3 features are subfeatures of L2 features.

Figure 5-8 shows a partial feature tree for the Chemical Tracking System. The main branch of
the tree in the middle represents the product being implemented. Each feature has its own line or
“branch” coming off that central main branch. The gray boxes represent the L1 features, such as Order
Chemicals and Inventory Management. The lines coming off an L1 branch are L2 features: Search
and Chemical Request are subfeatures of Order Chemicals. The branches off an L2 branch are the L3
features: Local Lab Search is a subfeature of Search.

FIGURE 5-8 Partial feature tree for the Chemical Tracking System.

When planning a release or an iteration, you can define its scope by selecting a specific set of
features and subfeatures to be implemented (Nejmeh and Thomas 2002; Wiegers 2006). You could
implement a feature in its entirety in a specific release, or you could implement only a portion of
it by choosing just certain L2 and L3 subfeatures. Future releases could enrich these rudimentary
 implementations by adding more L2 and L3 subfeatures until each feature is fully implemented in the
final product. So the scope of a particular release consists of a defined set of L1, L2, and/or L3 features
chosen from the feature tree. You can mark up a feature tree diagram to illustrate these feature

96 PART II Requirements development

 allocations across releases by using colors or font variations. Alternatively, you can create a feature
roadmap table that lists the subfeatures planned for each release (Wiegers 2006).

Event list
An event list identifies external events that could trigger behavior in the system. The event list depicts the
scope boundary for the system by naming possible business events triggered by users, time-triggered
(temporal) events, or signal events received from external components, such as hardware devices. The
event list only names the events; the functional requirements that describe how the system responds
to the events would be detailed in the SRS by using event-response tables. See Chapter 12, “A picture is
worth 1024 words,” for more information about event-response tables.

Figure 5-9 is a partial event list for the Chemical Tracking System. Each item in the list states what
triggers the event (“Chemist” does something or the “Time to” do something arrives), as well as
 identifying the event action. An event list is a useful scoping tool because you can allocate certain
events to be implemented in specific product releases or development iterations.

FIGURE 5-9 Partial event list for the Chemical Tracking System.

Notice how the event list complements the context diagram and ecosystem map. The context
 diagram and ecosystem map collectively describe the external actors and systems involved, whereas
the event list identifies what those actors and systems might do to trigger behavior in the system
 being specified. You can check the event list against the context diagram and ecosystem map for
 correctness and completeness, as follows:

 ■ Consider whether each external entity on the context diagram is the source of any events:
“Do any actions by Chemists trigger behavior in the Chemical Tracking System?”

 ■ Consider whether any systems in the ecosystem map lead to events for your system.

 ■ For each event, consider whether you have corresponding external entities in the context
diagram or systems in the ecosystem map: “If a chemical container can be received from a
vendor, does Vendor appear in the context diagram and/or ecosystem map?”

If you find a disconnect, consider whether the model is missing an element. In this case, Vendor did
not appear on the context diagram because the Chemical Tracking System doesn’t interface directly
to vendors. However, Vendor is included in the ecosystem map.

 CHAPTER 5 Establishing the business requirements 97

Keeping the scope in focus

A scope definition is a structure, not a straitjacket. The business requirements and an understanding
of how customers will use the product provide valuable tools for dealing with scope change. Scope
change isn’t a bad thing if it helps you steer the project toward satisfying evolving customer needs.
The information in the vision and scope document lets you assess whether proposed requirements
are appropriate for inclusion in the project. You can modify the scope for a future iteration or for an
entire project if it’s done consciously, by the right people, for the right business reasons, and with
understanding and acceptance of the tradeoffs.

Remember, whenever someone requests a new requirement, the analyst needs to ask, “Is this in
scope?” One response might be that the proposed requirement is clearly out of scope. Perhaps it’s
interesting, but it should be addressed in a future release or by another project. Another possibility
is that the request obviously lies within the defined project scope. You can incorporate new in-scope
requirements in the current project if they are of high priority relative to the other requirements that
were already committed. Including new requirements often involves making a decision to defer or
cancel other planned requirements, unless you’re willing to extend the project’s duration.

The third possibility is that the proposed new requirement is out of scope, but it’s such a good
idea that the scope should be broadened to accommodate it, with corresponding changes in
 budget, schedule, and/or staff. That is, there’s a feedback loop between the user requirements and
the business requirements. This will require that you update the vision and scope document, which
should have been placed under change control at the time it was baselined. Keep a record of why
 requirements were rejected; they have a way of reappearing. Chapter 27, “Requirements management
practices,” describes how to use a requirement attribute to track rejected or deferred requirements.

Using business objectives to make scoping decisions
The business objectives are the most important factor to consider when making scope decisions.
 Determine which proposed features or user requirements add the most value with respect to
the business objectives; schedule those for the early releases. When a stakeholder wants to add
 functionality, consider how the suggested changes will contribute to achieving the business
 objectives. For example, a business objective to generate maximum revenue from a kiosk implies the
early implementation of features that sell more products or services to the customer. Glitzy features
that appeal to only a few technology-hungry customers and don’t contribute to the primary business
objective shouldn’t have high priority.

If possible, quantify the contribution the feature makes towards the business objectives, so that
people can make scoping decisions on the basis of facts rather than emotions (Beatty and Chen
2012). Will a specific feature contribute roughly $1,000, $100,000, or $1,000,000 toward a business
 objective? When an executive requests a new feature that he thought of over the weekend, you can
use quantitative analysis to help determine if adding it is the right business decision.

98 PART II Requirements development

Assessing the impact of scope changes
When the project’s scope increases, the project manager usually will have to renegotiate the
planned budget, resources, schedule, and/or staff. Ideally, the original schedule and resources will
 accommodate a certain amount of change because of thoughtfully included contingency buffers
(Wiegers 2007). Otherwise, you’ll need to re-plan after requirements changes are approved.

A common consequence of scope change is that completed activities must be reworked in
 response to the changes. Quality often suffers if the allocated resources or time are not increased
when new functionality is added. Documented business requirements make it easier to manage
 legitimate scope growth as the marketplace or business needs change. They also help a harried
 project manager to justify saying “no”—or at least “not yet”—when influential people try to stuff
more features into an overly constrained project.

Vision and scope on agile projects
Managing scope on an agile project, in which development is performed in a series of fixed timebox
iterations, takes a different approach. The scope of each iteration consists of user stories selected
from a dynamic product backlog, based on their relative priority and the estimated delivery
 capacity of the team for each timebox. Instead of trying to fight scope creep, the team prioritizes
new requirements against existing items in the backlog and allocates them to future iterations. The
 number of iterations—and hence the overall project duration—still depends on the total amount
of functionality to be implemented, but the scope of each iteration is controlled to ensure timely
completion. Alternatively, some agile projects fix the overall project duration, yet are willing to modify
the scope. The number of iterations might remain the same, but the scope addressed in remaining
iterations changes according to the relative priorities of existing and newly defined user stories.

The team can define a high-level roadmap of iterations at the beginning of the project, but the user story
allocation for an iteration will be performed at the beginning of each iteration. Referencing the business
requirements as the team sets the scope for each iteration helps to ensure that the project delivers a
product that meets the business objectives. The same strategy can be used on any project that follows a
timeboxed development process (see the “Scope management and timeboxed development” sidebar).

Scope management and timeboxed development
Enrique, a project manager at Litware, Inc., had to deliver a web-enabled version of Litware’s
flagship portfolio-management software. It would take about two years to fully supplant
the mature application, but Litware needed a web presence right away. Enrique selected a
 timeboxed development approach, promising to release a new version every 90 days. His
marketing team carefully prioritized the product’s requirements. The SRS for each quarterly
release included a committed set of new and enhanced features, as well as a list of lower-priority
“stretch” requirements to be implemented as time permitted. Enrique’s team didn’t incorporate
every stretch requirement into each release, but they did ship a stable release every three
months through this schedule-driven approach to scope management. Schedule and quality are
normally constraints on a timeboxed project, and scope is a degree of freedom.

 CHAPTER 5 Establishing the business requirements 99

Although agile projects might not create a formal vision and scope document, the contents from
the template in Figure 5-3 are both relevant and essential to delivering a successful product. Many
agile projects conduct an upfront planning iteration (iteration zero) to define the overarching product
vision and other business requirements for the project.

Business requirements need to be defined for all software projects, regardless of their
 development approach. The business objectives describe the expected value coming out of the
 project, and on an agile project, they are used to help prioritize the backlog to deliver the most
 business value in the earliest iterations. Success metrics should be defined so that as iterative releases
go live, the success can be measured and the rest of the backlog adjusted accordingly. A vision
 statement describes the long-term plan for what the product will be after all iterations are complete.

Using business objectives to determine completion

How do you know when you can stop implementing functionality? Traditionally, a project manager
manages the project towards completion. However, a business analyst is intimately familiar with the
business objectives and can help determine when the desired value has been delivered, implying that
the work is done.

If you begin with a clear vision for the solution, and if each release or iteration is scoped to deliver
just a portion of the total functionality, then you will be done when you complete the preplanned
iterations. The completed iterations should have led to a fully realized product vision that meets the
business objectives.

However, particularly in iterative development approaches, the end point might be vague.
Within each iteration, scope is defined for that iteration. As the project continues, the backlog of
 uncompleted work dwindles. It’s not always necessary to implement the entire set of remaining
 functionality. It’s critical to have clear business objectives so that you can move toward satisfying
those objectives incrementally as information becomes available. The project is complete when the
success metrics indicate that you have a good chance of meeting the business objectives. Vague
 business objectives will guarantee an open-ended project with no way to know when you’re done.
Funding sponsors don’t like it because they don’t know how to budget, schedule, or plan for such
projects. Customers don’t like it because they might receive a solution that is delivered on time and
on budget but that doesn’t provide the value they need. But that might just be the risk of working
on products that cannot be clearly defined at the outset, unless you refine the business objectives
partway through the project.

Focus on defining clear business requirements for all of your projects. Otherwise, you are just
wandering about aimlessly hoping to accomplish something useful without any way to know if you’re
reaching your destination.

100 PART II Requirements development

Next steps

 ■ Ask several stakeholders for your project each to write a vision statement using the
 keyword template described in this chapter. See how similar the visions are. Rectify any
disconnects and come up with a unified vision statement that all those stakeholders
agree to.

 ■ Whether you’re near the launch of a new project or in the midst of construction,
 document the business requirements by using the template in Figure 5-3. Or, simply
create a business objectives model, and have the rest of the team review it. This might
reveal that your team doesn’t share a common understanding of the project’s objectives
or scope. Correct that problem now; it will be even more difficult to correct if you wait.
This activity will also suggest ways to modify the template to best meet the needs of your
 organization’s projects.

 ■ Write down the measurable business objectives for your project in a format that can
be shared easily in meetings throughout the project’s duration. Take it to your next
 requirements-related meeting and see if the team finds the reminder to be useful.

 101

C H A P T E R 6

Finding the voice of the user

Jeremy walked into the office of Ruth Gilbert, the director of the Drug Discovery Division at Contoso
Pharmaceuticals. Ruth had asked the information technology team that supported Contoso’s research
organization to build a new application to help the research chemists accelerate their exploration for
new drugs. Jeremy was assigned as the business analyst for the project. After introducing himself and
discussing the project in broad terms, Jeremy said to Ruth, “I’d like to talk with some of your chemists to
understand their requirements for the system. Who might be some good people to start with?”

Ruth replied, “I did that same job for five years before I became the division director three years ago.
You don’t really need to talk to any of my people; I can tell you everything you need to know about this
project.”

Jeremy was concerned. Scientific knowledge and technologies change quickly, so he wasn’t sure if
Ruth could adequately represent the current and future needs for users of this complex application.
 Perhaps there were some internal politics going on that weren’t apparent and there was a good reason
for Ruth to create a buffer between Jeremy and the actual users. After some discussion, though, it
 became clear that Ruth didn’t want any of her people involved directly with the project.

“Okay,” Jeremy agreed reluctantly. “Maybe I can start by doing some document analysis and bring
questions I have to you. Can we set up a series of interviews for the next couple of weeks so I can
 understand the kinds of things you expect your scientists to be able to do with this new system?”

“Sorry, I’m swamped right now,” Ruth told him. “I can give you a couple of hours in about three
weeks to clarify things you’re unsure about. Just go ahead and start writing the requirements. When we
meet, then you can ask me any questions you still have. I hope that will let you get the ball rolling on
this project.”

If you share our conviction that customer involvement is a critical factor in delivering excellent
 software, you will ensure that the business analyst (BA) and project manager for your project will
work hard to engage appropriate customer representatives from the outset. Success in software
 requirements, and hence in software development, depends on getting the voice of the user close to
the ear of the developer. To find the voice of the user, take the following steps:

 ■ Identify the different classes of users for your product.

 ■ Select and work with individuals who represent each user class and other stakeholder groups.

 ■ Agree on who the requirements decision makers are for your project.

102 PART II Requirements development

Customer involvement is the best way to avoid the expectation gap described in Chapter 2,
 “Requirements from the customer’s perspective,” a mismatch between the product that customers
expect to receive and what developers build. It’s not enough simply to ask a few customers or their
manager what they want once or twice and then start coding. If developers build exactly what
 customers initially request, they’ll probably have to build it again because customers often don’t
know what they really need. In addition, the BAs might not be talking to the right people or asking
the right questions.

The features that users present as their “wants” don’t necessarily equate to the functionality they
need to perform their tasks with the new product. To gain a more accurate view of user needs, the
business analyst must collect a wide range of user input, analyze and clarify it, and specify just what
needs to be built to let users do their jobs. The BA has the lead responsibility for recording the new
system’s necessary capabilities and properties and for communicating that information to other
stakeholders. This is an iterative process that takes time. If you don’t invest the time to achieve this
shared understanding—this common vision of the intended product—the certain outcomes are
rework, missed deadlines, cost overruns, and customer dissatisfaction.

User classes

People often talk about “the user” for a software system as though all users belong to a monolithic
group with similar characteristics and needs. In reality, most products of any size appeal to a diversity
of users with different expectations and goals. Rather than thinking of “the user” in singular, spend
some time identifying the multiple user classes and their roles and privileges for your product.

Classifying users
Chapter 2 described many of the types of stakeholders that a project might have. As shown in
Figure 6-1, a user class is a subset of the product’s users, which is a subset of the product’s customers,
which is a subset of its stakeholders. An individual can belong to multiple user classes. For example,
an application’s administrator might also interact with it as an ordinary user at times. A product’s
users might differ—among other ways—in the following respects, and you can group users into a
number of distinct user classes based on these sorts of differences:

 ■ Their access privilege or security levels (such as ordinary user, guest user, administrator)

 ■ The tasks they perform during their business operations

 ■ The features they use

 ■ The frequency with which they use the product

 ■ Their application domain experience and computer systems expertise

 ■ The platforms they will be using (desktop PCs, laptop PCs, tablets, smartphones, specialized
devices)

 CHAPTER 6 Finding the voice of the user 103

 ■ Their native language

 ■ Whether they will interact with the system directly or indirectly

FIGURE 6-1 A hierarchy of stakeholders, customers, users, and user classes.

It’s tempting to group users into classes based on their geographical location or the kind of
 company they work in. One company that creates software used in the banking industry initially
considered distinguishing users based on whether they worked in a large commercial bank, a small
commercial bank, a savings and loan institution, or a credit union. These distinctions really represent
different market segments, though, not different user classes.

A better way to identify user classes is to think about the tasks that various users will perform with
the system. All of those types of financial institutions will have tellers, employees who process loan
applications, business bankers, and so forth. The individuals who perform such activities—whether
they are job titles or simply roles—will have similar functional needs for the system across all of the
financial institutions. Tellers all have to do more or less the same things, business bankers do more or
less the same things, and so on. More logical user class names for a banking system therefore might
include teller, loan officer, business banker, and branch manager. You might discover additional user
classes by thinking of possible use cases, user stories, and process flows and who might perform them.

Certain user classes could be more important than others for a specific project. Favored user
classes are those whose satisfaction is most closely aligned with achieving the project’s business
 objectives. When resolving conflicts between requirements from different user classes or making
priority decisions, favored user classes receive preferential treatment. This doesn’t mean that the
customers who are paying for the system (who might not be users at all) or those who have the most
political clout should necessarily be favored. It’s a matter of alignment with the business objectives.

Disfavored user classes are groups who aren’t supposed to use the product for legal, security,
or safety reasons (Gause and Lawrence 1999). You might build in features to deliberately make it
hard for disfavored users to do things they aren’t supposed to do. Examples include access security

104 PART II Requirements development

 mechanisms, user privilege levels, antimalware features (for non-human users), and usage logging.
Locking a user’s account after four unsuccessful login attempts protects against access by the
 disfavored user class of “user impersonators,” albeit at the risk of inconveniencing forgetful legitimate
users. If my bank doesn’t recognize the computer I’m using, it sends me an email message with a
 one-time access code I have to enter before I can log on. This feature was implemented because of
the disfavored user class of “people who might have stolen my banking information.”

You might elect to ignore still other user classes. Yes, they will use the product, but you don’t
specifically build it to suit them. If there are any other groups of users that are neither favored,
 disfavored, nor ignored, they are of equal importance in defining the product’s requirements.

Each user class will have its own set of requirements for the tasks that members of the class must
perform. There could be some overlap between the needs of different user classes. Tellers, business
bankers, and loan officers all might have to check a bank customer’s account balance, for instance.
Different user classes also could have different quality expectations, such as usability, that will drive
user interface design choices. New or occasional users are concerned with how easy the system is to
learn. Such users like menus, graphical user interfaces, uncluttered screen displays, wizards, and help
screens. As users gain experience with the system, they become more interested in efficiency. They
now value keyboard shortcuts, customization options, toolbars, and scripting facilities.

Trap Don’t overlook indirect user classes. They won’t use your application themselves,
instead accessing its data or services through other applications or through reports. Your
customer once removed is still your customer.

User classes need not be human beings. They could be software agents performing a service on
behalf of a human user, such as bots. Software agents can scan networks for information about goods
and services, assemble custom news feeds, process your incoming email, monitor physical systems
and networks for problems or intrusions, or perform data mining. Internet agents that probe websites
for vulnerabilities or to generate spam are a type of disfavored non-human user class. If you identify
these sorts of disfavored user classes, you might specify certain requirements not to meet their needs
but rather to thwart them. For instance, website tools such as CAPTCHA that validate whether a user is
a human being attempt to block such disruptive access by “users” you want to keep out.

Remember, users are a subset of customers, which are a subset of stakeholders. You’ll need to
consider a much broader range of potential sources of requirements than just direct and indirect user
classes. For instance, even though the development team members aren’t end users of the system
they’re building, you need their input on internal quality attributes such as efficiency, modifiability,
portability, and reusability, as described in Chapter 14, “Beyond functionality.” One company
found that every installation of their product was an expensive nightmare until they introduced an
 “installer” user class so they could focus on requirements such as the development of a customization
 architecture for their product. Look well beyond the obvious end users when you’re trying to identify
stakeholders whose requirements input is necessary.

 CHAPTER 6 Finding the voice of the user 105

Identifying your user classes
Identify and characterize the different user classes for your product early in the project so you can
elicit requirements from representatives of each important class. A useful technique for this is a
collaboration pattern developed by Ellen Gottesdiener called “expand then contract” (Gottesdiener
2002). Start by asking the project sponsor who he expects to use the system. Then brainstorm as
many user classes as you can think of. Don’t get nervous if there are dozens at this stage; you’ll
 condense and categorize them later. It’s important not to overlook a user class, which can lead to
problems later when someone complains that the delivered solution doesn’t meet her needs. Next,
look for groups with similar needs that you can either combine or treat as a major user class with
several subclasses. Try to pare the list down to about 15 or fewer distinct user classes.

One company that developed a specialized product for about 65 corporate customers initially
 regarded each company as a distinct user with unique needs. Grouping their customers into just six
user classes greatly simplified their requirements challenges. Donald Gause and Gerald Weinberg
(1989) offer much advice about casting a wide net to identify potential users, pruning the user list,
and seeking specific users to participate in the project.

Various analysis models can help you identify user classes. The external entities shown outside your
system on a context diagram (see Chapter 5, “Establishing the business requirements”) are candidates
for user classes. A corporate organization chart can also help you discover potential users and other
stakeholders (Beatty and Chen 2012). Figure 6-2 illustrates a portion of the organization chart for
Contoso Pharmaceuticals. Nearly all of the potential users for the system are likely to be found
 somewhere in this chart. While performing stakeholder and user analysis, study the organization
chart to look for:

 ■ Departments that participate in the business process.

 ■ Departments that are affected by the business process.

 ■ Departments or role names in which either direct or indirect users might be found.

 ■ User classes that span multiple departments.

 ■ Departments that might have an interface to external stakeholders outside the company.

Organization chart analysis reduces the likelihood that you will overlook an important class of
users within that organization. It shows you where to seek potential representatives for specific user
classes, as well as helping determine who the key requirements decision makers might be. You might
find multiple user classes with diverse needs within a single department. Conversely, recognizing
the same user class in multiple departments can simplify requirements elicitation. Studying the
 organization chart helps you judge how many user representatives you’ll need to work with to feel
confident that you thoroughly understand the broad user community’s needs. Also try to understand
what type of information the users from each department might supply based on their role in the
organization and their department’s perspective on the project.

106 PART II Requirements development

FIGURE 6-2 A portion of the organization chart for Contoso Pharmaceuticals.

Document the user classes and their characteristics, responsibilities, and physical locations in
the software requirements specification (SRS) or in a requirements plan for your project. Check that
 information against any information you might already have about stakeholder profiles in the vision
and scope document to avoid conflicts and duplication. Include all pertinent information you have
about each user class, such as its relative or absolute size and which classes are favored. This will
help the team prioritize change requests and conduct impact assessments later on. Estimates of
the volume and type of system transactions help the testers develop a usage profile for the system
so that they can plan their verification activities. The project manager and business analyst of the
 Chemical Tracking System discussed in earlier chapters identified the user classes and characteristics
shown in Table 6-1.

TABLE 6-1 User classes for the Chemical Tracking System

Name Number Description

Chemists
 (favored)

Approximately
1,000 located in
6 buildings

Chemists will request chemicals from vendors and from the chemical
 stockroom. Each chemist will use the system several times per day, mainly for
requesting chemicals and tracking chemical containers into and out of the
laboratory. The chemists need to search vendor catalogs for specific chemical
structures imported from the tools they use for drawing structures.

Buyers 5 Buyers in the purchasing department process chemical requests. They place
and track orders with external vendors. They know little about chemistry and
need simple query facilities to search vendor catalogs. Buyers will not use
the system’s container-tracking features. Each buyer will use the system an
 average of 25 times per day.

Chemical
 stockroom staff

6 technicians,
1 supervisor

The chemical stockroom staff manages an inventory of more than 500,000
chemical containers. They will supply containers from three stockrooms,
 request new chemicals from vendors, and track the movement of all
 containers into and out of the stockrooms. They are the only users of the
 inventory-reporting feature. Because of their high transaction volume,
 features that are used only by the chemical stockroom staff must be
 automated and efficient.

Health
and Safety
Department staff
(favored)

1 manager The Health and Safety Department staff will use the system only to generate
predefined quarterly reports that comply with federal and state chemical
usage and disposal reporting regulations. The Health and Safety Department
manager will request changes in the reports periodically as government
 regulations change. These report changes are of the highest priority, and
implementation will be time critical.

 CHAPTER 6 Finding the voice of the user 107

Consider building a catalog of user classes that recur across multiple applications. Defining user
classes at the enterprise level lets you reuse those user class descriptions in future projects. The next
system you build might serve the needs of some new user classes, but it probably will also be used
by user classes from your earlier systems. If you do include the user-class descriptions in the project’s
SRS, you can incorporate entries from the reusable user-class catalog by reference and just write
descriptions of any new groups that are specific to that application.

User personas

To help bring your user classes to life, consider creating a persona for each one, a description of a
representative member of the user class (Cooper 2004; Leffingwell 2011). A persona is a description
of a hypothetical, generic person who serves as a stand-in for a group of users having similar
 characteristics and needs. You can use personas to help you understand the requirements and to
design the user experience to best meet the needs of specific user communities.

A persona can serve as a placeholder when the BA doesn’t have an actual user representative
at hand. Rather than having progress come to a halt, the BA can envision a persona performing
a particular task or try to assess what the persona’s preferences would be, thereby drafting a
 requirements starting point to be confirmed when an actual user is available. Persona details for a
commercial customer include social and demographic characteristics and behaviors, preferences,
 annoyances, and similar information. Make sure the personas you create truly are representative of
their user class, based on market, demographic, and ethnographic research.

Here’s an example of a persona for one user class on the Chemical Tracking System:

Fred, 41, has been a chemist at Contoso Pharmaceuticals since he received his Ph.D.
14 years ago. He doesn’t have much patience with computers. Fred usually works
on two projects at a time in related chemical areas. His lab contains approximately
300 bottles of chemicals and gas cylinders. On an average day, he’ll need four new
chemicals from the stockroom. Two of these will be commercial chemicals in stock,
one will need to be ordered, and one will come from the supply of proprietary Contoso
chemical samples. On occasion, Fred will need a hazardous chemical that requires
special training for safe handling. When he buys a chemical for the first time, Fred
wants the material safety data sheet emailed to him automatically. Each year, Fred will
synthesize about 20 new proprietary chemicals to go into the stockroom. Fred wants
a report of his chemical usage for the previous month to be generated automatically
and sent to him by email so that he can monitor his chemical exposure.

As the business analyst explores the chemists’ requirements, he can think about Fred as the archetype
of this user class and ask himself, “What would Fred need to do?” Working with a persona makes the
requirements thought process more tangible than if you simply contemplate what a whole faceless
group of people might want. Some people choose a random human face of the appropriate gender
to make a persona seem even more real.

108 PART II Requirements development

Dean Leffingwell (2011) suggests that you design the system to make it easy for the individual
described in your persona to use the application. That is, you focus on meeting that one (imaginary)
person’s needs. Provided you’ve created a persona that accurately represents the user class, this
should help you do a good job of satisfying the needs and expectations of the whole class. As one
colleague related, “On a project for servicing coin-operated vending machines, I introduced Dolly the
Serviceperson and Ralph the Warehouse Supervisor. We wrote scenarios for them and they became
part of the project team—virtually.”

Connecting with user representatives

Every kind of project—corporate information systems, commercial applications, embedded systems,
websites, contracted software—needs suitable representatives to provide the voice of the user. These
users should be involved throughout the development life cycle, not just in an isolated requirements
phase at the beginning of the project. Each user class needs someone to speak for it.

It’s easiest to gain access to actual users when you’re developing applications for deployment
 within your own company. If you’re developing commercial software, you might engage people
from your beta-testing or early-release sites to provide requirements input much earlier in the
 development process. (See the “External product champions” section later in this chapter). Consider
setting up focus groups of current users of your products or your competitors’ products. Instead of
just guessing at what your users might want, ask some of them.

One company asked a focus group to perform certain tasks with various digital cameras and
 computers. The results indicated that the company’s camera software took too long to perform the
most common operation because of a design decision that was made to accommodate less likely
 scenarios as well. The company changed their next camera to reduce customer complaints about speed.

Be sure that the focus group represents the kinds of users whose needs should drive your product
development. Include both expert and less experienced customers. If your focus group represents
only early adopters or blue-sky thinkers, you might end up with many sophisticated and technically
difficult requirements that few customers find useful.

Figure 6-3 illustrates some typical communication pathways that connect the voice of the user
to the ear of the developer. One study indicated that employing more kinds of communication
links and more direct links between developers and users led to more successful projects (Keil and
Carmel 1995). The most direct communication occurs when developers can talk to appropriate users
 themselves, which means that the developer is also performing the business analyst role. This can
work on very small projects, provided the developer involved has the appropriate BA skills, but it
doesn’t scale up to large projects with thousands of potential users and dozens of developers.

 CHAPTER 6 Finding the voice of the user 109

FIGURE 6-3 Some possible communication pathways between the user and the developer.

As in the children’s game “Telephone,” intervening layers between the user and the developer
 increase the chance of miscommunication and delay transmission. Some of these intervening layers
add value, though, as when a skilled BA works with users or other participants to collect, evaluate,
 refine, and organize their input. Recognize the risks that you assume by using marketing staff,
 product managers, subject matter experts, or others as surrogates for the actual voice of the user.
Despite the obstacles to—and the cost of—optimizing user representation, your product and your
customers will suffer if you don’t talk to the people who can provide the best information.

The product champion

Many years ago I worked in a small software development group that supported the scientific
 research activities at a major corporation. Each of our projects included a few key members of
our user community to provide the requirements. We called these people product champions
(Wiegers 1996). The product champion approach provides an effective way to structure that
all-important customer-development collaborative partnership discussed in Chapter 2.

110 PART II Requirements development

Each product champion serves as the primary interface between members of a single user class
and the project’s business analyst. Ideally, the champions will be actual users, not surrogates such as
funding sponsors, marketing staff, user managers, or software developers imagining themselves to be
users. Product champions gather requirements from other members of the user classes they represent
and reconcile inconsistencies. Requirements development is thus a shared responsibility of the BA and
selected users, although the BA should actually write the requirements documents. It’s hard enough
to write good requirements if you do it for a living; it is not realistic to expect users who have never
written requirements before to do a good job.

The best product champions have a clear vision of the new system. They’re enthusiastic because
they see how it will benefit them and their peers. Champions should be effective communicators
who are respected by their colleagues. They need a thorough understanding of the application
domain and the solution’s operating environment. Great product champions are in demand for other
 assignments, so you’ll have to build a persuasive case for why particular individuals are critical to
project success. For example, product champions can lead adoption of the application by the user
community, which might be a success metric that managers will appreciate. We have found that good
product champions made a huge difference in our projects, so we offer them public reward and
 recognition for their contributions.

Our software development teams enjoyed an additional benefit from the product champion
approach. On several projects, we had excellent champions who spoke out on our behalf with their
colleagues when the customers wondered why the software wasn’t done yet. “Don’t worry about it,”
the champions told their peers and their managers. “I understand and agree with the software team’s
approach to software engineering. The time we’re spending on requirements will help us get the
system we really need and will save time in the long run.” Such collaboration helps break down the
tension that can arise between customers and development teams.

The product champion approach works best if each champion is fully empowered to make binding
decisions on behalf of the user class he represents. If a champion’s decisions are routinely overruled
by others, his time and goodwill are being wasted. However, the champions must remember that they
are not the sole customers. Problems arise when the individual filling this critical liaison role doesn’t
adequately communicate with his peers and presents only his own wishes and ideas.

External product champions
When developing commercial software, it can be difficult to find product champions from outside
your company. Companies that develop commercial products sometimes rely on internal subject
matter experts or outside consultants to serve as surrogates for actual users, who might be unknown
or difficult to engage. If you have a close working relationship with some major corporate customers,
they might welcome the opportunity to participate in requirements elicitation. You might give
 external product champions economic incentives for their participation. Consider offering them
discounts on the product or paying for the time they spend working with you on requirements. You
still face the challenge of how to avoid hearing only the champions’ requirements and overlooking
the needs of other stakeholders. If you have a diverse customer base, first identify core requirements
that are common to all customers. Then define additional requirements that are specific to individual
corporate customers, market segments, or user classes.

 CHAPTER 6 Finding the voice of the user 111

Another alternative is to hire a suitable product champion who has the right background. One
company that developed a retail point-of-sale and back-office system for a particular industry hired
three store managers to serve as full-time product champions. As another example, my longtime
 family doctor, Art, left his medical practice to become the voice-of-the-physician at a medical
 software company. Art’s new employer believed that it was worth the expense to hire a doctor to help
the company build software that other doctors would accept. A third company hired several former
employees from one of their major customers. These people provided valuable domain expertise as
well as insight into the politics of the customer organization. To illustrate an alternative engagement
model, one company had several corporate customers that used their invoicing systems extensively.
Rather than bringing in product champions from the customers, the developing company sent BAs to
the customer sites. Customers willingly dedicated some of their staff time to helping the BAs get the
right requirements for the new invoicing system.

Anytime the product champion is a former or simulated user, watch out for disconnects between
the champion’s perceptions and the current needs of real users. Some domains change rapidly,
whereas others are more stable. Regardless, if people aren’t operating in the role anymore, they
 simply might have forgotten the intricacies of the daily job. The essential question is whether the
product champion, no matter what her background or current job, can accurately represent the
needs of today’s real users.

Product champion expectations
To help the product champions succeed, document what you expect your champions to do. These
written expectations can help you build a case for specific individuals to fill this critical role. Table 6-2
identifies some activities that product champions might perform (Wiegers 1996). Not every champion
will do all of these; use this table as a starting point to negotiate each champion’s responsibilities.

TABLE 6-2 Possible product champion activities

Category Activities

Planning ■ Refine the scope and limitations of the product.
 ■ Identify other systems with which to interact.
 ■ Evaluate the impact of the new system on business operations.
 ■ Define a transition path from current applications or manual operations.
 ■ Identify relevant standards and certification requirements.

Requirements ■ Collect input on requirements from other users.
 ■ Develop usage scenarios, use cases, and user stories.
 ■ Resolve conflicts between proposed requirements within the user class.
 ■ Define implementation priorities.
 ■ Provide input regarding performance and other quality requirements.
 ■ Evaluate prototypes.
 ■ Work with other decision makers to resolve conflicts among requirements from different

stakeholders.
 ■ Provide specialized algorithms.

112 PART II Requirements development

Category Activities

Validation and
 verification

 ■ Review requirements specifications.
 ■ Define acceptance criteria.
 ■ Develop user acceptance tests from usage scenarios.
 ■ Provide test data sets from the business.
 ■ Perform beta testing or user acceptance testing.

User aids ■ Write portions of user documentation and help text.
 ■ Contribute to training materials or tutorials.
 ■ Demonstrate the system to peers.

Change management ■ Evaluate and prioritize defect corrections and enhancement requests.
 ■ Dynamically adjust the scope of future releases or iterations.
 ■ Evaluate the impact of proposed changes on users and business processes.
 ■ Participate in making change decisions.

Multiple product champions
One person can rarely describe the needs for all users of an application. The Chemical Tracking
System had four major user classes, so it needed four product champions selected from the internal
user community at Contoso Pharmaceuticals. Figure 6-4 illustrates how the project manager set up
a team of BAs and product champions to elicit the right requirements from the right sources. These
champions were not assigned full time, but each one spent several hours per week working on the
project. Three BAs worked with the four product champions to elicit, analyze, and document their
requirements. (One BA worked with two product champions because the Buyer and the Health and
Safety Department user classes were small and had few requirements.) One of the BAs assembled all
the input into a unified SRS.

FIGURE 6-4 Product champion model for the Chemical Tracking System.

We didn’t expect a single person to provide all the diverse requirements for the hundreds of
 chemists at Contoso. Don, the product champion for the Chemist user class, assembled a backup

 CHAPTER 6 Finding the voice of the user 113

team of five chemists from other parts of the company. They represented subclasses within the broad
Chemist user class. This hierarchical approach engaged additional users in requirements development
while avoiding the expense of massive workshops or dozens of individual interviews. Don always
strove for consensus. However, he willingly made the necessary decisions when agreement wasn’t
achieved so the project could move ahead. No backup team was necessary when the user class was
small enough or cohesive enough that one individual truly could represent the group’s needs.1

The voiceless user class
A business analyst at Humongous Insurance was delighted that an influential user, Rebecca,
agreed to serve as product champion for the new claims processing system. Rebecca had many
ideas about the system features and user interface design. Thrilled to have the guidance of an
expert, the development team happily complied with her requests. After delivery, though, they
were shocked to receive many complaints about how hard the system was to use.

Rebecca was a power user. She specified usability requirements that were great for experts,
but the 90 percent of users who weren’t experts found the system unintuitive and difficult to
learn. The BA didn’t recognize that the claims processing system had at least two user classes.
The large group of non–power users was disenfranchised in the requirements and user interface
design processes. Humongous paid the price in an expensive redesign. The BA should have
engaged at least one more product champion to represent the large class of nonexpert users.

Selling the product champion idea
Expect to encounter resistance when you propose the idea of having product champions on your
projects. “The users are too busy.” “Management wants to make the decisions.” “They’ll slow us down.”
“We can’t afford it.” “They’ll run amok and scope will explode.” “I don’t know what I’m supposed to
do as a product champion.” Some users won’t want to cooperate on a project that will make them
change how they work or might even threaten their jobs. Managers are sometimes reluctant to
 delegate authority for requirements to ordinary users.

Separating business requirements from user requirements alleviates some of these discomforts. As
an actual user, the product champion makes decisions at the user requirements level within the scope
boundaries imposed by the business requirements. The management sponsor retains the authority
to make decisions that affect the product vision, project scope, business-related priorities, schedule,
or budget. Documenting and negotiating each product champion’s role and responsibilities give
 candidate champions a comfort level about what they’re being asked to do. Remind management
that a product champion is a key contributor who can help the project achieve its business objectives.

1 There’s an interesting coda to this story. Years after I worked on this project, a man in a class I was teaching said he
had worked at the company that Contoso Pharmaceuticals had contracted to build the Chemical Tracking System. The
developers found that the requirements specification we created using this product champion model provided a solid
foundation for the development work. The system was delivered successfully and was used at Contoso for many years.

114 PART II Requirements development

If you encounter resistance, point out that insufficient user involvement is a leading cause of
 software project failure. Remind the protesters of problems they’ve experienced on previous projects
that trace back to inadequate user input. Every organization has horror stories of new systems that
didn’t satisfy user needs or failed to meet unstated usability or performance expectations. You
can’t afford to rebuild or discard systems that don’t measure up because no one understood the
 requirements. Product champions provide one way to get that all-important customer input in a
timely way, not at the end of the project when customers are disappointed and developers are tired.

Product champion traps to avoid
The product champion model has succeeded in many environments. It works only when the product
champions understand and sign up for their responsibilities, have the authority to make decisions
at the user requirements level, and have time available to do the job. Watch out for the following
 potential problems:

 ■ Managers override the decisions that a qualified and duly authorized product champion
makes. Perhaps a manager has a wild new idea at the last minute, or thinks he knows what the
users need. This behavior often results in dissatisfied users and frustrated product champions
who feel that management doesn’t trust them.

 ■ A product champion who forgets that he is representing other customers and presents only
his own requirements won’t do a good job. He might be happy with the outcome, but others
likely won’t be.

 ■ A product champion who lacks a clear vision of the new system might defer decisions to the
BA. If all of the BA’s ideas are fine with the champion, the champion isn’t providing much help.

 ■ A senior user might nominate a less experienced user as champion because she doesn’t have
time to do the job herself. This can lead to backseat driving from the senior user who still
wishes to strongly influence the project’s direction.

Beware of users who purport to speak for a user class to which they do not belong. Rarely, an
individual might actively try to block the BA from working with the ideal contacts for some reason.
On the Chemical Tracking System, the product champion for the chemical stockroom staff—herself
a former chemist—initially insisted on providing what she thought were the needs of the chemist
user class. Unfortunately, her input about current chemist needs wasn’t accurate. It was difficult to
 convince her that this wasn’t her job, but the BA didn’t let her intimidate him. The project manager
lined up a separate product champion for the chemists, who did a great job of collecting, evaluating,
and relaying that community’s requirements.

 CHAPTER 6 Finding the voice of the user 115

User representation on agile projects

Frequent conversations between project team members and appropriate customers are the most
effective way to resolve many requirements issues and to flesh out requirements specifics when they
are needed. Written documentation, however detailed, is an incomplete substitute for these ongoing
communications. A fundamental tenet of Extreme Programming, one of the early agile development
methods, is the presence of a full-time, on-site customer for these discussions (Jeffries, Anderson, and
Hendrickson, 2001).

Some agile development methods include a single representative of stakeholders called a
product owner in the team to serve as the voice of the customer (Schwaber 2004; Cohn 2010;
Leffingwell 2011). The product owner defines the product’s vision and is responsible for developing
and prioritizing the contents of the product backlog. (The backlog is the prioritized list of user
 stories—requirements—for the product and their allocation to upcoming iterations, called sprints
in the agile development method called Scrum.) The product owner therefore spans all three levels
of requirements: business, user, and functional. He essentially straddles the product champion and
 business analyst functions, representing the customer, defining product features, prioritizing them,
and so forth. Ultimately, someone does have to make decisions about exactly what capabilities to
deliver in the product and when. In Scrum, that’s the product owner’s responsibility.

The ideal state of having a single product owner isn’t always practical. We know of one company
that was implementing a package solution to run their insurance business. The organization was
too big and complex to have one person who understood everything in enough detail to make all
 decisions about the implementation. Instead, the customers selected a product owner from each
department to own the priorities for the functionality used by that department. The company’s CIO
served as the lead product owner. The CIO understood the entire product vision, so he could ensure
that the departments were on track to deliver that vision. He had responsibility for decision making
when there were conflicts between department-level product owners.

The premises of the on-site customer and close customer collaboration with developers that
agile methods espouse certainly are sound. In fact, we feel strongly that all development projects
 warrant this emphasis on user involvement. As you have seen, though, all but the smallest projects
have multiple user classes, as well as numerous additional stakeholders whose interests must be
 represented. In many cases it’s not realistic to expect a single individual to be able to adequately
 understand and describe the needs of all relevant user classes, nor to make all the decisions
 associated with product definition. Particularly with internal corporate projects, it will generally work
better to use a representative structure like the product champion model to ensure adequate user
engagement.

116 PART II Requirements development

The product owner and product champion schemes are not mutually exclusive. If the product
owner is functioning in the role of a business analyst, rather than as a stakeholder representative
himself, he could set up a structure with one or more product champions to see that the most
 appropriate sources provide input. Alternatively, the product owner could collaborate with one or
more business analysts, who then work with stakeholders to understand their requirements. The
product owner would then serve as the ultimate decision maker.

“On-sight” customer
I once wrote programs for a research scientist who sat about 10 feet from my desk. John
could provide instantaneous answers to my questions, provide feedback on user interface
designs, and clarify our informally written requirements. One day John moved to a new office,
around the corner on the same floor of the same building, about 100 feet away. I perceived an
 immediate drop in my programming productivity because of the cycle time delay in getting
John’s input. I spent more time fixing problems because sometimes I went down the wrong
path before I could get a course correction. There’s no substitute for having the right customers
continuously available to the developers both on-site and “on-sight.” Beware, though, of
 too-frequent interruptions that make it hard for people to refocus their attention on their work.
It can take up to 15 minutes to reimmerse yourself into the highly productive, focused state of
mind called flow (DeMarco and Lister 1999).

An on-site customer doesn’t guarantee the desired outcome. My colleague Chris, a project
manager, established a development team environment with minimal physical barriers and engaged
two product champions. Chris offered this report: “While the close proximity seems to work for the
development team, the results with product champions have been mixed. One sat in our midst and
still managed to avoid us all. The new champion does a fine job of interacting with the developers
and has truly enabled the rapid development of software.” There is no substitute for having the right
people, in the right role, in the right place, with the right attitude.

Resolving conflicting requirements

Someone must resolve conflicting requirements from different user classes, reconcile inconsistencies,
and arbitrate questions of scope that arise. The product champions or product owner can handle this
in many, but likely not all, cases. Early in the project, determine who the decision makers will be for
requirements issues, as discussed in Chapter 2. If it’s not clear who is responsible for making these
decisions or if the authorized individuals abdicate their responsibilities, the decisions will fall to the
developers or analysts by default. Most of them don’t have the necessary knowledge and perspective

 CHAPTER 6 Finding the voice of the user 117

to make the best business decisions, though. Analysts sometimes defer to the loudest voice they hear
or to the person highest on the food chain. Though understandable, this is not the best strategy.
Decisions should be made as low in the organization’s hierarchy as possible by well-informed people
who are close to the issues.

Table 6-3 identifies some requirements conflicts that can arise on projects and suggests ways
to handle them. The project’s leaders need to determine who will decide what to do when such
 situations arise, who will make the call if agreement is not reached, and to whom significant issues
must be escalated when necessary.

TABLE 6-3 Suggestions for resolving requirements disputes

Disagreement between How to resolve

Individual users Product champion or product owner decides

User classes Favored user class gets preference

Market segments Segment with greatest impact on business success gets preference

Corporate customers Business objectives dictate direction

Users and user managers Product owner or product champion for the user class decides

Development and customers Customers get preference, but in alignment with business objectives

Development and marketing Marketing gets preference

Trap Don’t justify doing whatever any customer demands because “The customer is always
right.” We all know the customer is not always right (Wiegers 2011). Sometimes, a customer
is unreasonable, uninformed, or in a bad mood. The customer always has a point, though,
and the software team must understand and respect that point.

These negotiations don’t always turn out the way the analyst might hope. Certain customers
might reject all attempts to consider reasonable alternatives and other points of view. We’ve seen
cases where marketing never said no to a customer request, no matter how infeasible or expensive.
The team needs to decide who will be making decisions on the project’s requirements before they
confront these types of issues. Otherwise, indecision and the revisiting of previous decisions can stall
the project in endless wrangling. If you’re a BA caught in this dilemma, rely on your organizational
structure and processes to work through the disagreements. But, as we’ve cautioned before, there
aren’t any easy solutions if you’re working with truly unreasonable people.

118 PART II Requirements development

Next steps

 ■ Relate Figure 6-3 to the way you hear the voice of the user in your own environment. Do
you encounter any problems with your current communication links? Identify the shortest
and most effective communication paths that you can use to elicit user requirements in
the future.

 ■ Identify the different user classes for your project. Which ones are favored? Which, if any,
are disfavored? Who would make a good product champion for each important user class?
Even if the project is already underway, the team likely would benefit from having product
champions involved.

 ■ Starting with Table 6-2, define the activities you would like your product champions to
perform. Negotiate the specific contributions with each candidate product champion and
his or her manager.

 ■ Determine who the decision makers are for requirements issues on your project. How well
does your current decision-making approach work? Where does it break down? Are the
right people making decisions? If not, who should be doing it? Suggest processes that the
decision makers should use for reaching agreement on requirements issues.

 119

C H A P T E R 7

Requirements elicitation

“Good morning, Maria. I’m Phil, the business analyst for the new employee information system we’re
going to build for you. Thanks for agreeing to be the product champion for this project. Your input will
help us a lot. So, can you tell me what you want?”

“Hmmm, what do I want?” mused Maria. “I hardly know where to start. The new system should be
a lot faster than the old one. And you know how the old system crashes if an employee has a really
long name and we have to call the help desk and ask them to enter the name for us? The new system
should take long names without crashing. Also, a new law says we can’t use Social Security numbers for
 employee IDs anymore, so we’ll have to change all of the IDs when the new system goes in. Oh, yes, it’d
be great if I could get a report of how many hours of training each employee has had so far this year.”

Phil dutifully wrote down everything Maria said, but his head was spinning. Maria’s desires were
so scattered that he wasn’t sure he was getting all her requirements. He had no idea if Maria’s needs
aligned with the project’s business objectives. And he didn’t know exactly what to do with all these bits
of information. Phil wasn’t sure what to ask next.

The heart of requirements development is elicitation, the process of identifying the needs and
 constraints of the various stakeholders for a software system. Elicitation is not the same as
 “gathering requirements.” Nor is it a simple matter of transcribing exactly what users say. Elicitation
is a collaborative and analytical process that includes activities to collect, discover, extract, and
define requirements. Elicitation is used to discover business, user, functional, and nonfunctional
 requirements, along with other types of information. Requirements elicitation is perhaps the most
challenging, critical, error-prone, and communication-intensive aspect of software development.

Engaging users in the elicitation process is a way to gain support and buy-in for the project. If
you’re the business analyst, try to understand the thought processes behind the requirements the
users state. Walk through the processes that users follow to make decisions about their work, and
extract the underlying logic. Make sure that everyone understands why the system must perform
 certain functions. Look for proposed requirements that reflect obsolete or ineffective business
 processes or rules that should not be incorporated into a new system.

The BA must create an environment conducive to a thorough exploration of the product being
specified. To facilitate clear communication, use the vocabulary of the business domain instead of
forcing customers to understand technical jargon. Record significant application domain terms in
a glossary, rather than assuming that all participants share the same definitions. Customers must
 understand that a discussion about possible functionality is not a commitment to include it in the

120 PART II Requirements development

product. Brainstorming and imagining the possibilities is a separate matter from analyzing priorities,
feasibility, and the constraining realities. It’s never too early for stakeholders to prioritize their
 blue-sky wish lists to avoid defining an enormous project that never delivers anything useful.

The output of requirements development is a common understanding of the needs held by
the diverse project stakeholders. When the developers understand those needs, they can explore
 alternative solutions to address them. Elicitation participants should resist the temptation to design
the system until they understand the problem. Otherwise, they can expect to do considerable
design rework as the requirements become better defined. Emphasizing user tasks rather than user
 interfaces, and focusing on true needs more than on expressed desires, help keep the team from
 being sidetracked by prematurely specifying design details.

As Figure 7-1 shows, the nature of requirements development is cyclic. You will do some elicitation,
study what you learned, write some requirements, perhaps determine that you are missing some
 information, perform additional elicitation, and so forth. Don’t expect to just hold a couple of
 elicitation workshops and then declare victory and move on.

FIGURE 7-1 The cyclic nature of requirements elicitation, analysis, and specification.

This chapter describes a variety of effective elicitation techniques, including when to use each one,
as well as tips and challenges for each. The rest of the chapter describes the overall elicitation process,
from planning elicitation activities to organizing the session outputs. Later in the chapter, we offer
cautions about a few traps to watch out for during elicitation, and specific suggestions for identifying
missing requirements. Figure 7-2 depicts the activities for a single requirements elicitation session.
Before we walk through this process, though, let’s explore some of the requirements elicitation
 techniques you might find valuable.

FIGURE 7-2 Activities for a single requirements elicitation session.

 CHAPTER 7 Requirements elicitation 121

Requirements elicitation techniques

Numerous elicitation techniques can be employed on software projects. In fact, no project team
should expect to use only one elicitation technique. There are always many types of information to
be discovered, and different stakeholders will prefer different approaches. One user might be able to
clearly articulate how he uses the system, whereas you might need to observe another performing
her job to reach the same level of understanding.

Elicitation techniques include both facilitated activities, in which you interact with stakeholders to
elicit requirements, and independent activities, in which you work on your own to discover information.
Facilitated activities primarily focus on discovering business and user requirements. Working directly
with users is necessary because user requirements encompass the tasks that users need to accomplish
with the system. To elicit business requirements, you will need to work with people such as the project
sponsor. The independent elicitation techniques supplement requirements that users present and reveal
needed functionality that end users might not be aware of. Most projects will use a combination of both
facilitated and independent elicitation activities. Each technique offers a different exploration of the
requirements or might even reveal completely different requirements. The following sections describe
several techniques commonly used to elicit requirements.

Interviews
The most obvious way to find out what the users of a software system need is to ask them. Interviews
are a traditional source of requirements input for both commercial products and information systems,
across all software development approaches. Most BAs will facilitate some form of individual or
small-group interviews to elicit requirements on their projects. Agile projects make extensive use of
interviews as a mechanism to get direct user involvement. Interviews are easier to schedule and lead
than large-group activities such as requirements workshops.

If you are new to an application domain, interviews with experts can help you get up to speed
quickly. This will allow you to prepare draft requirements and models to use in other interviews or
in workshops. If you can establish rapport with the interviewees, they will feel safer when sharing
their thoughts one-on-one or in a small group than in a larger workshop, particularly about touchy
topics. It’s also easier to get user buy-in about participating in the project or reviewing existing
 requirements during a one-on-one or small-group interview than in a large group setting. Interviews
are appropriate for eliciting business requirements from executives who do not have a lot of time to
meet.

For guidance on how to conduct user interviews, see Ian Alexander and Ljerka Beus-Dukic (2009)
and Howard Podeswa (2009). A few suggestions for conducting interviews follow. These are useful
tips for conducting elicitation workshops as well.

Establish rapport To begin an interview, introduce yourself if the attendees don’t already know
you, review the agenda, remind attendees of the session objectives, and address any preliminary
questions or concerns attendees have.

122 PART II Requirements development

Stay in scope As with any elicitation session, keep the discussion focused on its objective. Even
when you are talking with just one person or a small group, there’s a chance the interview will go off
topic.

Prepare questions and straw man models ahead of time Prepare for interviews by drafting any
materials you can beforehand, such as a list of questions to guide the conversation. Draft materials
will give your users a starting point to think from. People can often critique content more easily than
they can create it. Preparing questions and drafting straw man models are described further in the
“Preparing for elicitation” section later in this chapter.

Suggest ideas Rather than simply transcribing what customers say, a creative BA proposes ideas
and alternatives during elicitation. Sometimes users don’t realize the capabilities developers can
 provide; they might get excited when you suggest functionality that will make the system especially
valuable. When users truly can’t express what they need, perhaps you can watch them work and
 suggest ways to automate portions of the job (see the “Observations” section later in this chapter).
BAs can think outside the mental box that limits people who are too close to the problem domain.

Listen actively Practice the techniques of active listening (leaning forward, showing patience,
 giving verbal feedback, and inquiring when something is unclear) and paraphrasing (restating the
main idea of a speaker’s message to show your understanding of that message).

Workshops
Workshops encourage stakeholder collaboration in defining requirements. Ellen Gottesdiener (2002)
defines a requirements workshop as “a structured meeting in which a carefully selected group of
stakeholders and content experts work together to define, create, refine, and reach closure on
 deliverables (such as models and documents) that represent user requirements.” Workshops are
 facilitated sessions with multiple stakeholders and formal roles, such as a facilitator and a scribe.
Workshops often include several types of stakeholders, from users to developers to testers. They
are used to elicit requirements from multiple stakeholders concurrently. Working in a group is more
 effective for resolving disagreements than is talking to people individually. Also, workshops are
 helpful when quick elicitation turnaround is needed because of schedule constraints.

According to one authority, “Facilitation is the art of leading people through processes toward
agreed-upon objectives in a manner that encourages participation, ownership, and productivity
from all involved” (Sibbet 1994). The facilitator plays a critical role in planning the workshop,
 selecting participants, and guiding them to a successful outcome. Business analysts frequently
 facilitate elicitation workshops. When a team is getting started with new approaches to requirements
 elicitation, consider having an outside facilitator or a second BA facilitate the initial workshops.
This way the lead BA can devote his full attention to the discussion. If the sole BA is also acting
as facilitator, she needs to be mindful of when she is speaking as a facilitator and when she is
 participating in the discussion. A scribe assists the facilitator by capturing the points that come up
during the discussion. It’s extremely challenging to facilitate, scribe, and participate simultaneously
and do a good job on all three.

 CHAPTER 7 Requirements elicitation 123

Workshops can be resource intensive, sometimes requiring numerous participants for several days
at a time. They must be well planned to avoid wasting time. Minimize wasted time by coming into a
workshop with drafts of materials prepared ahead of time. For example, you might draft use cases that
can be reviewed as a group rather than having the entire group draft them together. Rarely does it
make sense to start a workshop with a completely blank slate. Use other elicitation techniques prior to
the workshops, and then bring the stakeholders together to work through only the necessary areas.

General facilitation practices apply to requirements elicitation (Schwarz 2002). A definitive resource
specific to facilitating requirements elicitation workshops is Gottesdiener’s Requirements by Collaboration
(2002). She describes a wealth of techniques and tools for workshop facilitation. Following are a few tips
for conducting effective elicitation workshops, many of which also apply to interviews.

Establish and enforce ground rules The workshop participants should agree on some basic
operating principles. Examples include starting and ending on time; returning from breaks promptly;
silencing electronic devices; holding one conversation at a time; expecting everyone to contribute;
and focusing comments and criticisms on issues rather than individuals. After the rules are set, ensure
that participants follow them.

Fill all of the team roles A facilitator must make sure that the following tasks are covered by
 people in the workshop: note taking, time keeping, scope management, ground rule management,
and making sure everyone is heard. A scribe might record what’s going on, while someone else
watches the clock.

Plan an agenda Each workshop needs a clear plan, as discussed in the “Preparing for elicitation”
section later in this chapter. Create the plan and workshop agenda ahead of time, and communicate
them to participants so they know the objectives and what to expect and can prepare accordingly.

Stay in scope Refer to the business requirements to confirm whether proposed user requirements
lie within the current project scope. Keep each workshop focused on the right level of abstraction for
that session’s objectives. Groups easily dive into distracting detail during requirements discussions.
Those discussions consume time that the group should spend on developing a higher-level
 understanding of user requirements; the details will come later. The facilitator will have to reel in the
elicitation participants periodically to keep them on topic.

Trap Watch out for off-topic discussions, such as design explorations, during elicitation
sessions. Keep the participants focused on the session’s objectives, while assuring them
that they’ll have future opportunities to work through other issues that arise.

Use parking lots to capture items for later consideration An array of random but important
information will surface during elicitation discussions: quality attributes, business rules, user interface
ideas, and more. Organize this information on flipcharts—parking lots—so you don’t lose it and
to demonstrate respect for the participant who brought it up. Don’t be distracted into discussing
 off-topic details unless they turn out to be showstoppers. Describe what will happen with the parking
lot issues following the meeting.

124 PART II Requirements development

Timebox discussions Consider allocating a fixed period of time to each discussion topic. The
 discussion might need to be completed later, but timeboxing helps avoid the trap of spending far
more time than intended on the first topic and neglecting other important topics entirely. When
 closing a timeboxed discussion, summarize status and next steps before leaving the topic.

Keep the team small but include the right stakeholders Small groups can work much faster than
larger teams. Elicitation workshops with more than five or six active participants can become mired in
side trips, concurrent conversations, and bickering. Consider running multiple workshops in parallel to
explore the requirements of different user classes. Workshop participants could include the product
champion and other user representatives, perhaps a subject matter expert, a BA, a developer, and a
tester. Knowledge, experience, and the authority to make decisions are qualifications for participating
in elicitation workshops.

Too many cooks
Requirements elicitation workshops that involve too many participants can slow to a
 contentious crawl. My colleague Debbie was frustrated at the sluggish progress of the first
use case workshop she facilitated for a website project. The 12 participants held extended
 discussions of unnecessary details and couldn’t agree on how each use case ought to work. The
team’s progress accelerated nicely when Debbie reduced the number of participants to about
six who represented the key roles of analyst, customer, system architect, developer, and visual
designer. The workshop lost some input by using the smaller team, but the rate of progress
more than compensated for that loss. The workshop participants should exchange information
off-line with colleagues who don’t attend and then bring the collected input to the workshops.

Keep everyone engaged Sometimes certain participants will stop contributing to the discussion.
These people might be frustrated for a variety of reasons. Perhaps their input isn’t being taken
 seriously because other participants don’t find their concerns interesting, or maybe they don’t want
to disrupt the work that the group has completed so far. Perhaps the stakeholder who has withdrawn
is deferring to more aggressive participants or a domineering analyst. The facilitator must read the
body language (lack of eye contact, fidgeting, sighing, checking the clock), understand why someone
has tuned out of the process, and try to re-engage the person. Visual cues are absent when you are
facilitating via a teleconference, so you have to listen carefully to learn who is not participating and
the tones being used. You might ask these silent individuals directly if they have any thoughts about
the discussion they’d like to share. The facilitator must ensure that everyone is heard.

Focus groups
A focus group is a representative group of users who convene in a facilitated elicitation activity to
generate input and ideas on a product’s functional and quality requirements. Focus group sessions
must be interactive, allowing all users a chance to voice their thoughts. Focus groups are useful for
 exploring users’ attitudes, impressions, preferences, and needs (IIBA 2009). They are particularly
 valuable if you are developing commercial products and don’t have ready access to end users within
your company.

 CHAPTER 7 Requirements elicitation 125

When conflicts erupt
Differing perspectives, priorities, and personalities can lead to conflict and even anger within
a group. If this happens, deal with it immediately. Look for nonverbal clues showing conflict or
anger and try to understand the cause. When the group is clear on the reason for the conflict,
you might be able to find a solution to it (if one is needed).

If an individual simply will not participate in a productive way, talk with him privately to
 determine whether his presence will prevent the group from moving forward. If so, you might
need to thank the person for his time and continue without him. Sometimes this will not be
an option and you need to simply abandon the session or topic completely for now. Conflict
 management is a complex skill to develop and there are numerous resources on this (Fisher,
Ury, and Patton 2011; Patterson et al. 2011).

I once scheduled a session to elicit business requirements from a new director of sales. He
was known to have an antagonistic personality, so I came to the meeting prepared to really
listen to and understand his desires. In the very first minute of the meeting, he started yelling
at me, asking why we were holding this meeting at all. He said, “Who are you to think you have
a right to ask me about my business objectives?” I took a deep breath and a long pause. Then
I tried to explain why I needed to understand his business objectives—that without them, the
team would be guessing at what we needed to develop to meet the customers’ desires, and
he would be sorely disappointed with the results. And as fast as he got mad, he got over it.
 Without hesitation, he started rattling off his business objectives. Thankfully my scribe was
there to catch them because I was still a bit taken aback by the whole exchange.

Often, you will have a large and diverse user base to draw from, so select the focus group
 members carefully. Include users who have used previous versions or products similar to the one
you’re implementing. Either select a pool of users who are of the same type (and hold multiple focus
groups for the different user classes) or select a pool representing the full spectrum of user classes so
everyone is equally represented.

Focus groups must be facilitated. You will need to keep them on topic, but without influencing
the opinions being expressed. You might want to record the session so you can go back and listen
 carefully to comments. Do not expect quantitative analysis from focus groups, but rather a lot of
 subjective feedback that can be further evaluated and prioritized as requirements are developed.
 Elicitation sessions with focus groups benefit from many of the same tips described previously
for workshops. Participants in focus groups normally do not have decision-making authority for
 requirements.

Observations
When you ask users to describe how they do their jobs, they will likely have a hard time being
 precise—details might be missing or incorrect. Often this is because tasks are complex and it’s hard
to remember every minute detail. In other cases, it is because users are so familiar with executing a

126 PART II Requirements development

task that they can’t articulate everything they do. Perhaps the task is so habitual that they don’t even
think about it. Sometimes you can learn a lot by observing exactly how users perform their tasks.

Observations are time consuming, so they aren’t suitable for every user or every task. To avoid
 disrupting the users’ regularly assigned work activities, limit each observation time to two hours
or less. Select important or high-risk tasks and multiple user classes for observations. If you use
 observations in agile projects, have the user demonstrate only the specific tasks related to the
 forthcoming iteration.

Observing a user’s workflow in the task environment allows the BA to validate information
 collected from other sources, to identify new topics for interviews, to see problems with the current
system, and to identify ways that the new system can better support the workflow. The BA must
 abstract and generalize beyond the observed user’s activities to ensure that the requirements
 captured apply to the user class as a whole, not just to that individual. A skillful BA can also often
 suggest ideas for improving the user’s current business processes.

Watch me bake a cake
To demonstrate the power of observations, tell some friends the steps to bake a cake from a
mix. You’ll likely remember the steps to turn on the oven, get out the necessary dishes and
utensils, add each ingredient, mix the ingredients, prepare the pan, put the batter in the pan,
bake it, and pull it out of the oven when done. But when you told your friends to add each
 ingredient, did you remember to say to open the bag with the mix in it? Did you remember
to say to crack the eggshell, add only the contents of the egg, and discard the shell? These
 seemingly obvious steps might not be so obvious to someone who has never baked before.

Observations can be silent or interactive. Silent observations are appropriate when busy users
cannot be interrupted. Interactive observations allow the BA to interrupt the user mid-task and ask a
question. This is useful to understand immediately why a user made a choice or to ask him what he
was thinking about when he took some action. Document what you observe for further analysis after
the session. You might also consider video recording the session, if policies allow, so you can refresh
your memory later.

I was developing a call-center application for customer service representatives (CSRs) who were
used to having to page through printed catalogs to find products that customers wanted to order.
The BA team met with several CSRs to elicit use cases for the new application. Each one said how
difficult it was to have to flip through multiple catalogs to find exactly what product a customer was
referring to. Each BA sat with a different CSR while the CSRs took orders over the phone. We saw the
difficulty they faced by watching them first try to find the catalog by date, then try to locate the right
product. The observation sessions helped us understand what features they would need in an online
product catalog.

 CHAPTER 7 Requirements elicitation 127

Questionnaires
Questionnaires are a way to survey large groups of users to understand their needs. They are
 inexpensive, making them a logical choice for eliciting information from large user populations,
and they can be administered easily across geographical boundaries. The analyzed results of
 questionnaires can be used as an input to other elicitation techniques. For example, you might use
a questionnaire to identify users’ biggest pain points with an existing system, then use the results to
discuss prioritization with decision makers in a workshop. You can also use questionnaires to survey
commercial product users for feedback.

Preparing well-written questions is the biggest challenge with questionnaires. Many tips are
 available for writing questionnaires (Colorado State University 2013), and we suggest the most
 important ones here:

 ■ Provide answer options that cover the full set of possible responses.

 ■ Make answer choices both mutually exclusive (no overlaps in numerical ranges) and exhaustive
(list all possible choices and/or have a write-in spot for a choice you didn’t think of).

 ■ Don’t phrase a question in a way that implies a “correct” answer.

 ■ If you use scales, use them consistently throughout the questionnaire.

 ■ Use closed questions with two or more specific choices if you want to use the questionnaire
results for statistical analysis. Open-ended questions allows users to respond any way they
want, so it’s hard to look for commonalities in the results.

 ■ Consider consulting with an expert in questionnaire design and administration to ensure that
you ask the right questions of the right people.

 ■ Always test a questionnaire before distributing it. It’s frustrating to discover too late that a
question was phrased ambiguously or to realize that an important question was omitted.

 ■ Don’t ask too many questions or people won’t respond.

System interface analysis
Interface analysis is an independent elicitation technique that entails examining the systems to
which your system connects. System interface analysis reveals functional requirements regarding the
 exchange of data and services between systems (IIBA 2009). Context diagrams and ecosystem maps
(see Chapter 5, “Establishing the business requirements”) are an obvious choice to begin finding
 interfaces for further study. In fact, if you find an interface that has associated requirements and that
is not represented in one of these diagrams, the diagrams are incomplete.

For each system that interfaces with yours, identify functionality in the other system that might
lead to requirements for your system. These requirements could describe what data to pass to the
other system, what data is received from it, and rules about that data, such as validation criteria. You
might also discover existing functionality that you do not need to implement in your system. Suppose
you thought you needed to implement validation rules for a shopping-cart order in an e-commerce

128 PART II Requirements development

website before passing it to an order-management system. Through system interface analysis, you
might learn that multiple systems pass orders to the order-management system, which performs the
validation, so you don’t need to build this function.

User interface analysis
User interface (UI) analysis is an independent elicitation technique in which you study existing
systems to discover user and functional requirements. It’s best to interact with the existing systems
directly, but if necessary you can use screen shots. User manuals for purchased packaged-software
 implementations often contain screen shots that will work fine as a starting point. If there is no
 existing system, you might be able to look at user interfaces of similar products.

When working with packaged solutions or an existing system, UI analysis can help you identify a
complete list of screens to help you discover potential features. By navigating the existing UI, you can
learn about the common steps users take in the system and draft use cases to review with users. UI
analysis can reveal pieces of data that users need to see. It’s a great way to get up to speed on how
an existing system works (unless you need a lot of training to do so). Instead of asking users how they
interact with the system and what steps they take, perhaps you can reach an initial understanding
yourself.

Do not assume that certain functionality is needed in the new system just because you found it in
an existing one. Furthermore, do not assume that because the UI looks or flows a certain way in the
 current system that it must be implemented that way in the future system.

Document analysis
Document analysis entails examining any existing documentation for potential software requirements.
The most useful documentation includes requirements specifications, business processes, lessons-
learned collections, and user manuals for existing or similar applications. Documents can describe
corporate or industry standards that must be followed or regulations with which the product must
comply. When replacing an existing system, past documentation can reveal functionality that might
need to be retained, as well as obsolete functionality. For packaged-solution implementations, the
vendor documentation mentions functionality that your users might need, but you might have to
further explore just how to implement it in the target environment. Comparative reviews point out
shortcomings in other products that you could address to gain a competitive advantage. Problem
reports and enhancement requests collected from users by help desk and field support personnel can
offer ideas for improving the system in future releases.

Document analysis is a way to get up to speed on an existing system or a new domain. Doing some
research and drafting some requirements beforehand reduces the elicitation meeting time needed.
 Document analysis can reveal information people don’t tell you, either because they don’t think of it
or because they aren’t aware of it. For example, if you are building a new call-center application, you
might find some complicated business logic described in the user manual for an existing application.
Perhaps users don’t even know about this logic. You can use the results of this analysis as input to
user interviews.

 CHAPTER 7 Requirements elicitation 129

A risk with this technique is that the available documents might not be up to date. Requirements
might have changed without the specifications being updated, or functionality might be documented
that is not needed in a new system.

Planning elicitation on your project

Early in a project, the business analyst should plan the project’s approach to requirements elicitation.
Even a simple plan of action increases the chance of success and sets realistic expectations for the
stakeholders. Only by gaining explicit commitment on elicitation resources, schedule, and deliverables
can you avoid having participants pulled away to do other work. An elicitation plan includes the
techniques you’ll use, when you plan to use them, and for what purpose. As with any plan, use it as
a guide and reminder throughout the project, but realize that you might need to change the plan
throughout the project. Your plan should address the following items:

 ■ Elicitation objectives Plan the elicitation objectives for the entire project and the objectives
for each planned elicitation activity.

 ■ Elicitation strategy and planned techniques Decide which techniques to use with
 different stakeholder groups. You might use some combination of questionnaires, workshops,
customer visits, individual interviews, and other techniques, depending on the access you have
to stakeholders, time constraints, and your knowledge of the existing system.

 ■ Schedule and resource estimates Identify both customer and development participants for
the various elicitation activities, along with estimates of the effort and calendar time required.
You might only be able to identify the user classes and not specific individuals up front, but
that will allow managers to begin planning for upcoming resource needs. Estimate the BA
time, including time to prepare for elicitation and to perform follow-up analysis.

 ■ Documents and systems needed for independent elicitation If you are conducting
document, system interface, or user interface analysis, identify the materials needed to ensure
that you have them when you need them.

 ■ Expected products of elicitation efforts Knowing you are going to create a list of use
cases, an SRS, an analysis of questionnaire results, or quality attribute specifications helps
 ensure that you target the right stakeholders, topics, and details during elicitation.

 ■ Elicitation risks Identify factors that could impede your ability to complete the elicitation
activities as intended, estimate the severity of each risk, and decide how you can mitigate or
control it. See Chapter 32, “Software requirements and risk management,” for more on risk
management. See Appendix B, “Requirements troubleshooting guide,” for symptoms, root
causes, and possible solutions for common elicitation problems.

Many BAs have their “go-to” elicitation technique—commonly interviews and workshops—and
do not think to use other techniques that might reduce resource needs or increase the quality of the
information discovered. Rarely will a BA get the best results by using only one elicitation technique on

130 PART II Requirements development

a project. Elicitation techniques apply across the spectrum of development approaches. The selection
of elicitation techniques should be based on the characteristics of the project.

Figure 7-3 suggests the elicitation techniques that are most likely to be useful for various types of
projects. Select the row or rows that represent characteristics of your project and read to the right to
see which elicitation techniques are most likely to be helpful (marked with an X). For instance, if you’re
developing a new application, you’re likely to get the best results with a combination of stakeholder
interviews, workshops, and system interface analysis. Most projects can make use of interviews and
workshops. Focus groups are more appropriate than workshops for mass-market software because
you have a large external user base but limited access to representatives. These suggestions for
 elicitation techniques are just that—suggestions. For instance, you might conclude that you do want
to apply user interface analysis on mass-market software projects.

FIGURE 7-3 Suggested elicitation techniques by project characteristic.

Preparing for elicitation

Facilitated elicitation sessions require preparation to make the best use of everyone’s time. The larger
the group participating in the session, the more important preparation is. Figure 7-4 highlights the
activities to prepare for a single requirements elicitation session.

FIGURE 7-4 Activities to prepare for a single elicitation session.

 CHAPTER 7 Requirements elicitation 131

Prepare for each session by deciding on the scope of the session, communicating an agenda,
preparing questions, and drafting materials that might be useful during the session. The following tips
will help you prepare for elicitation.

Plan session scope and agenda Decide on the scope of the elicitation session, taking into account
how much time is available. You might define the session scope by using a set of topics or questions,
or you might list a specific set of process flows or use cases to be explored. Align the scope of the
 session with the overall project scope defined in the business requirements so you can keep the
 conversation on topic. The agenda should itemize what topics will be covered, the available time for
each topic, and targeted objectives. Share the session agenda with stakeholders in advance.

Prepare resources Schedule the physical resources needed, such as rooms, projectors,
 teleconference numbers, and videoconferencing equipment. Also, schedule the participants, being
sensitive to time zone differences if you are not all in the same location. For geographically dispersed
groups, change the schedule each time you meet so the sessions do not always inconvenience the
same people in a particular part of the world. Collect documentation from various sources. Gain
 access to systems as necessary. Take online training to learn about existing systems.

Learn about the stakeholders Identify the relevant stakeholders for the session (see Chapter 6,
“Finding the voice of the user”). Learn about the stakeholders’ cultural and regional preferences for
meetings. If some of the participants are not native speakers of the language in which the session
will be conducted, consider providing them with supporting documentation, such as slides, ahead of
time so they can read ahead or follow along. The slides can list specific questions you will be asking
or simply provide context for the session that you might also verbally explain. Avoid creating an “us”
versus “them” tension.

Prepare questions Go into every facilitated elicitation session with a set of prepared questions.
Use areas of uncertainty in straw man models (described in the next section) as a source of questions.
If you are preparing for an interview or workshop, use results from other elicitation techniques to
 identify unresolved questions. There are many sources of suggested questions for elicitation
(Wiegers 2006; Miller 2009).

Phrase your questions to avoid leading customers down an unintended path or toward a specific
answer. As an analyst, you must probe beneath the surface of the requirements the customers present
to understand their true needs. Simply asking users, “What do you want?” generates a mass of random
information that leaves the analyst floundering. “What do you need to do?” is a much better question.
Asking “why” several times can move the discussion from a presented solution to a solid understanding
of the problem that needs to be solved. Ask open-ended questions to help you understand the users’
current business processes and to see how the new system could improve their performance.

Imagine yourself learning the user’s job, or actually do the job under the user’s direction. What
tasks would you perform? What questions would you have? Another approach is to play the role of an
apprentice learning from a master user. The user you are interviewing then guides the discussion and
describes what he views as the important topics for discussion.

Probe around the exceptions. What could prevent the user from successfully completing a task?
How should the system respond to various error conditions? Ask questions that begin with “What else
could . . . ,” “What happens when . . . ,” “Would you ever need to . . . ,” “Where do you get . . . ,” “Why

132 PART II Requirements development

do you (or don’t you) . . . ,” and “Does anyone ever . . .” Document the source of each requirement so
that you can obtain further clarification if needed and trace development activities back to specific
customer origins.

As with any improvement activity, dissatisfaction with the current situation provides excellent
fodder for the new and improved future state. When you’re working on a replacement project for a
legacy system, ask the users, “What three things annoy you the most about the existing system?” This
question surfaces expectations that the users hold for the follow-on system.

You won’t have—nor do you need—a perfect script going into an interview or a workshop.
The prepared questions are to help you if you get stuck. The questions should seem natural and
 comfortable—like a conversation, not an interrogation. Five minutes into a session, you might realize
that you missed an important area for discussion. Be ready to abandon your questions if needed. At
the end of your session, ask “Is there anything else you expected me to ask?” to try to surface issues
you just didn’t think of.

Prepare straw man models Analysis models can be used during elicitation sessions to help users
provide better requirements. Some of the most useful models are use cases and process flows
 because they closely align with how people think about doing their jobs. Create straw man, or draft,
models ahead of your elicitation sessions. A straw man serves as a starting point that helps you learn
about the topic and inspires your users to think of ideas. It is easier to revise a draft model than to
create one from scratch.

If you are new to the project’s domain, it might be hard to create a draft model on your own. Use
other elicitation techniques to glean enough knowledge to work from. Read existing documents,
 examine existing systems for models you can reuse as a starting point, or hold a one-on-one
 interview with a subject matter expert to learn enough to get started. Then tell the group you’re
working with, “This model will probably be wrong. Please tear it apart and tell me how it should look.
You won’t hurt my feelings.”

Performing elicitation activities

Figure 7-5 highlights the activity to perform elicitation in a single requirements elicitation session.

FIGURE 7-5 The perform elicitation activities step for a single elicitation session.

Executing the elicitation activity itself is relatively obvious—if you are interviewing, you talk to
people; if you are performing document analysis, you read the document. However, when facilitating
an elicitation activity, the following tips might be useful.

 CHAPTER 7 Requirements elicitation 133

Educate stakeholders Teach your stakeholders about your elicitation approach and why you chose
it. Explain the exploration techniques you’ll be using, such as use cases or process flows, and how
they can help stakeholders provide better requirements. Also describe how you will capture their
 information and send them materials for review after the session.

Take good notes Assign someone who isn’t actively participating in the discussion to be the scribe,
responsible for taking accurate notes. Session notes should contain an attendee list, invitees who did
not attend, decisions made, actions to be taken and who is responsible for each, outstanding issues,
and the high points of key discussions. Unfortunately, BAs sometimes hold facilitated elicitation
 sessions without a dedicated scribe and have to fill the role themselves. If you’re in this situation,
be prepared to write shorthand, type fast, or use a recording device (if the participants agree).
Audio pens can translate handwritten notes to electronic form and tie them to the recorded audio
 discussion. You can also use whiteboards and paper on the walls and photograph them.

Prepare questions ahead of time to eliminate some of the on-the-spot thinking necessary to keep
the conversation going. Come up with a shorthand notation to capture a question that comes to
mind while someone is talking, so you can quickly flip back to it when you have an opportunity. Don’t
try to capture diagrams in complicated diagramming software; just photograph sketched diagrams or
draw quickly by hand.

Exploit the physical space Most rooms have four walls, so use them during facilitation to draw
diagrams or create lists. If there aren’t whiteboards available, attach big sheets of paper to the walls.
Have sticky notes and markers available. Invite other participants to get up and contribute to the wall
as well; moving around helps to keep people engaged. Gottesdiener (2002) refers to this technique as
the “Wall of Wonder” collaboration pattern. If there are existing artifacts to look at (such as straw man
models, existing requirements, or existing systems), project them on the wall.

Facilitating collaborative sessions with participants in multiple locations requires more creativity.
You can use online conferencing tools to share slides and permit interactions. If several participants
are in the same room, use videoconferencing tools to show remote participants what’s on the walls
and whiteboards.

Stakeholders on the move
I once facilitated a workshop to elicit process flows for a semiconductor fabrication plant
with a dozen engineers. I started out by working at the whiteboard, drawing the flows as we
talked. Each time we completed a flow, I’d stop to photograph it before moving on to the
next. Half a day into the first session, one of the engineers asked if he could have a turn at the
 whiteboard. I happily handed him the marker. He had learned the flowchart notation, and since
he was already an expert in the system, he could easily draw the flow on the board. He then
walked us through it, asking his peers at each step to validate or correct it. He was leading the
 process, which allowed me to focus on asking probing questions and taking notes. Soon, all the
 engineers were passing the marker around, so everyone got a turn.

134 PART II Requirements development

If it’s culturally appropriate, use toys to stimulate participants’ minds or give them something to
do with their hands. Simple toys can help inspire ideas. One team held a brainstorming session to
 establish the business objectives for their project. To start the day, I gave every participant some
modeling clay and asked them to model their product vision using the clay—with no more instruction
than that. It woke them up, got them thinking creatively, and they had some fun with it. We
 transitioned that energy into actually writing down a real vision for the product.

Following up after elicitation

After each elicitation activity is complete, there’s still a lot to do. You need to organize and share your
notes, document open issues, and classify the newly gathered information. Figure 7-6 highlights the
activities to follow up after a single requirements elicitation session.

FIGURE 7-6 Activities to follow up after an elicitation session.

Organizing and sharing the notes
If you led an interview or workshop, organizing your notes probably requires more effort than if you
organized information as you encountered it during an independent elicitation activity. Consolidate
your input from multiple sources. Review and update your notes soon after the session is complete,
while the content is still fresh in your mind.

Editing the elicitation notes is a risk. You might be incorrectly remembering what something
meant, thereby unknowingly changing the meaning. Keep a set of the raw notes to refer to later if
necessary. Soon after each interview or workshop, share the consolidated notes with the participants
and ask them to review them to ensure that they accurately represent the session. Early review is
 essential to successful requirements development because only those people who supplied the
requirements can judge whether they were captured correctly. Hold additional discussions to resolve
any inconsistencies and to fill in any blanks. Consider sharing the consolidated notes with other
project stakeholders who weren’t present in the session, so that they are aware of progress. This gives
them the opportunity to flag any issues or concerns immediately.

 CHAPTER 7 Requirements elicitation 135

Documenting open issues
During elicitation activities, you might have encountered items that need to be further explored
at a later date or knowledge gaps you need to close. Or you might have identified new questions
while reviewing your notes. Examine any parking lots from elicitation sessions for issues that are still
open and record them in an issue-tracking tool. For each issue, record any relevant notes related
to resolving the issues, progress already made, an owner, and a due date. Consider using the same
 issue-tracking tool that the development and testing teams use.

Classifying customer input

Don’t expect your customers to present a succinct, complete, and well-organized list of their needs.
Analysts must classify the myriad bits of requirements information they hear into various categories
so that they can document and use it appropriately. Figure 7-7 illustrates nine such categories. During
elicitation activities, make quick notations in your notes if you detect that some bit of information is
one of these types. For example, write “DD” in a little circle if you recognize a data definition.

FIGURE 7-7 Classifying customer input.

As with many categorizations, the information gathered might not fit precisely into these nine
buckets. You will probably have pieces of information left over after this classification. Anything that
doesn’t fit into one of these categories might be:

 ■ A project requirement not related to the software development, such as the need to train
 users on the new system.

 ■ A project constraint, such as a cost or schedule restriction (as opposed to the design or
 implementation constraints described in this chapter).

 ■ An assumption or a dependency.

136 PART II Requirements development

 ■ Additional information of a historical, context-setting, or descriptive nature.

 ■ Extraneous information that does not add value.

Elicitation participants won’t simply tell you, “Here comes a business requirement.” As an analyst,
you need to determine what type of information each provided statement you hear represents. The
following discussion suggests some phrases to listen for that will help you in this classification process.

Business requirements Anything that describes the financial, marketplace, or other business
 benefit that either customers or the developing organization wish to gain from the product is a
 business requirement (see Chapter 5). Listen for statements about the value that buyers or users of
the software will receive, such as these:

 ■ “Increase market share in region X by Y percent within Z months.”

 ■ “Save $X per year on electricity now wasted by inefficient units.”

User requirements General statements of user goals or business tasks that users need to perform
are user requirements, most typically represented as use cases, scenarios, or user stories (see Chapter 8,
“Understanding user requirements”). A user who says, “I need to <do something>” is probably
 describing a user requirement, as in the following examples:

 ■ “I need to print a mailing label for a package.”

 ■ “As the lead machine operator, I need to calibrate the pump controller first thing every
morning.”

Business rules When a customer says that only certain users can perform an activity under specific
conditions, he might be presenting a business rule (see Chapter 9, “Playing by the rules”). These aren’t
software requirements as they stand, but you might derive some functional requirements to enforce
the rules. Phrases such as “Must comply with . . . ,” “If <some condition is true>, then <something
 happens>,” or “Must be calculated according to . . . ” suggest that the user is describing a business
rule. Here are some examples:

 ■ “A new client must pay 30 percent of the estimated consulting fee and travel expenses in
advance.”

 ■ “Time-off approvals must comply with the company’s HR vacation policy.”

Functional requirements Functional requirements describe the observable behaviors the system
will exhibit under certain conditions and the actions the system will let users take. Here are some
examples of functional requirements as you might hear them from users:

 ■ “If the pressure exceeds 40.0 psi, the high-pressure warning light should come on.”

 ■ “The user must be able to sort the project list in forward and reverse alphabetical order.”

These statements illustrate how users typically present functional requirements, but they don’t
represent good ways to write functional requirements. The BA will need to craft these into more
precise specifications. See Chapter 11, “Writing excellent requirements,” for guidance on writing good
functional requirements.

 CHAPTER 7 Requirements elicitation 137

Quality attributes Statements that describe how well the system does something are quality
 attributes (see Chapter 14, “Beyond functionality”). Listen for words that describe desirable system
characteristics: fast, easy, user-friendly, reliable, secure. You’ll need to work with the users to
 understand just what they mean by these ambiguous and subjective terms so that you can write clear,
verifiable quality goals. The following examples suggest what quality attributes might sound like
when described by users:

 ■ “The mobile software must respond quickly to touch commands.”

 ■ “The shopping cart mechanism has to be simple to use so my new customers don’t abandon
the purchase.”

External interface requirements Requirements in this category describe the connections
 between your system and the rest of the universe. The SRS template in Chapter 10, “Documenting
the requirements,” includes sections for interfaces to users, hardware, and other software systems.
Phrases such as “Must read signals from . . . ,” “Must send messages to . . . ,” “Must be able to read files
in <format>,” and “User interface elements must conform to <a standard>” indicate that the customer
is describing an external interface requirement. Following are some examples:

 ■ “The manufacturing execution system must control the wafer sorter.”

 ■ “The mobile app should send the check image to the bank after I photograph the check I’m
depositing.”

Constraints Design and implementation constraints legitimately restrict the options available to the
developer (see Chapter 14). Devices with embedded software often must respect physical constraints
such as size, weight, and interface connections. Phrases that indicate that the customer is describing
a design or implementation constraint include: “Must be written in <a specific programming
 language>,” “Cannot exceed <some limit>,” and “Must use <a specific user interface control>.” The
following are examples of constraints that a customer might present:

 ■ “Files submitted electronically cannot exceed 10 MB in size.”

 ■ “The browser must use 256-bit encryption for all secure transactions.”

As with functional requirements, don’t just transcribe the user’s statement of a constraint. Ask why
the constraint exists, confirm its validity, and record the rationale for including it as a requirement.

Data requirements Customers are presenting a data requirement whenever they describe the
format, data type, allowed values, or default value for a data element; the composition of a complex
business data structure; or a report to be generated (see Chapter 13, “Specifying data requirements”).
Some examples of data requirements are as follows:

 ■ “The ZIP code has five digits, followed by an optional hyphen and four digits that default to
0000.”

 ■ “An order consists of the customer’s identity, shipping information, and one or more products,
each of which includes the product number, number of units, unit price, and total price.”

138 PART II Requirements development

Solution ideas Many “requirements” from users are really solution ideas. Someone who describes a
specific way to interact with the system to perform some action is suggesting a solution. The business
analyst needs to probe below the surface of a solution idea to get to the real requirement. Repeatedly
asking “why” the user needs it to work this way will likely reveal the true need (Wiegers 2006). For
instance, passwords are just one of several possible ways to implement a security requirement. Two
other examples of solution ideas are the following:

 ■ “Then I select the state where I want to send the package from a drop-down list.”

 ■ “The phone has to allow the user to swipe with a finger to navigate between screens.”

In the first example, the phrase from a drop-down list indicates that this is a solution idea because
it’s describing a specific user interface control. The prudent BA will ask, “Why from a drop-down list?”
If the user replies, “That just seemed like a good way to do it,” then the real requirement is something
like, “The system shall permit the user to specify the state where he wants to send the package.” But
maybe the user says, “We do the same thing in several other places and I want it to be consistent.
Also, the drop-down list prevents the user from entering invalid data.” These are legitimate reasons
to specify a specific solution. Recognize, though, that embedding a solution in a requirement imposes
a design constraint on that requirement: it limits the requirement to being implemented in only one
way. This isn’t necessarily wrong or bad; just make sure the constraint is there for a good reason.

Classifying the customer input is just the beginning of the process to create requirements
 specifications. You still need to assemble the information into clearly stated and well-organized
 requirements collections. As you work through the information, craft clear individual requirements
and store them in the appropriate sections of the team’s document templates or repository.
Make additional passes through this information to ensure that each statement demonstrates
the characteristics of high-quality requirements as described in Chapter 11. As you process your
 elicitation notes, mark the items complete as you store them in the right place.

How do you know when you’re done?

No simple signal will indicate when you’ve completed requirements elicitation. In fact, you’ll never
be entirely done, particularly if you are deliberately implementing a system incrementally, as on
agile projects. As people muse in the shower each morning and talk with their colleagues, they’ll
 generate ideas for additional requirements and want to change some of the ones they already have.
The following cues suggest that you’re reaching the point of diminishing returns on requirements
 elicitation, at least for now. Perhaps you are done if:

 ■ The users can’t think of any more use cases or user stories. Users tend to identify user require-
ments in sequence of decreasing importance.

 ■ Users propose new scenarios, but they don’t lead to any new functional requirements. A “new”
use case might really be an alternative flow for a use case you’ve already captured.

 ■ Users repeat issues they already covered in previous discussions.

 CHAPTER 7 Requirements elicitation 139

 ■ Suggested new features, user requirements, or functional requirements are all deemed to be
out of scope.

 ■ Proposed new requirements are all low priority.

 ■ The users are proposing capabilities that might be included “sometime in the lifetime of the
product” rather than “in the specific product we’re talking about right now.”

 ■ Developers and testers who review the requirements for an area raise few questions.

Amalgamating requirements input from numerous users is difficult without using a structured
organizing scheme, such as use cases or the sections in an SRS template. Despite your best efforts
to discover all the requirements, you won’t, so expect to make changes as construction proceeds.
Remember, your goal is to accumulate a shared understanding of requirements that is good enough
to let construction of the next release or increment proceed at an acceptable level of risk.

Some cautions about elicitation

Skill in conducting elicitation discussions comes with experience and builds on training in
 interviewing, group facilitation, conflict resolution, and similar activities. However, a few cautions will
decrease the learning curve.

Balance stakeholder representation Collecting input from too few representatives or
 hearing the voice of only the loudest, most opinionated customer is a problem. It can lead to
 overlooking requirements that are important to certain user classes or to including requirements
that don’t represent the needs of a majority of the users. The best balance involves a few product
 champions who can speak for their respective user classes, with each champion backed up by other
 representatives from the same user class.

Define scope appropriately During requirements elicitation, you might find that the project
scope is improperly defined, being either too large or too small. If the scope is too large, you’ll
 accumulate more requirements than are needed to deliver adequate business and customer value,
and the elicitation process will drag on. If the project is scoped too small, customers will present
needs that are clearly important yet just as clearly lie beyond the limited scope currently established
for the project. The current scope could be too small to yield a satisfactory product. Eliciting user
 requirements therefore can lead to modifying the product vision or the project scope.

Avoid the requirements-versus-design argument It’s often stated that requirements are about
what the system has to do, whereas how the solution will be implemented is the realm of design.
Although attractively concise, this is an oversimplification. Requirements elicitation should indeed
focus on the what, but there’s a gray area—not a sharp line—between analysis and design (Wiegers
2006). Hypothetical hows help to clarify and refine the understanding of what users need. Analysis
models, screen sketches, and prototypes help to make the needs expressed during elicitation more
tangible and to reveal errors and omissions. Make it clear to users that these screens and prototypes
are illustrative only, not necessarily the ultimate solution.

140 PART II Requirements development

Research within reason The need to do exploratory research sometimes disrupts elicitation. An
idea or a suggestion arises, but extensive research is required to assess whether it should even be
considered for the product. Treat these explorations of feasibility or value as project tasks in their own
right. Prototyping is one way to explore such issues. If your project requires extensive research, use an
incremental development approach to explore the requirements in small, low-risk portions.

Assumed and implied requirements

You will never document 100 percent of the requirements for a system. But the requirements you
don’t specify pose a risk that the project might deliver a solution different from what stakeholders
expect. Two likely culprits behind missed expectations are assumed and implied requirements:

 ■ Assumed requirements are those that people expect without having explicitly expressed
them. What you assume as being obvious might not be the same as assumptions that various
 developers make.

 ■ Implied requirements are necessary because of another requirement but aren’t explicitly
stated. Developers can’t implement functionality they don’t know about.

To reduce these risks, try to identify knowledge gaps waiting to be filled with implied and assumed
requirements. Ask, “What are we assuming?” during elicitation sessions to try to surface those hidden
thoughts. If you come across an assumption during requirements discussions, record it and confirm
its validity. People often assume that things have to be the way they’ve always been because they’re
so familiar with an existing system or business process. If you’re developing a replacement system,
review the previous system’s features to determine whether they’re truly required in the replacement.

To identify implied requirements, study the results of initial elicitation sessions to identify areas
of incompleteness. Does a vague, high-level requirement need to be fleshed out so the stakeholders
all understand it? Is a requirement that might be part of a logical set (say, saving an incomplete
web form) lacking its counterpart (retrieving a saved form for further work)? You might need to
 re-interview some of the same stakeholders to have them look for missing requirements (Rose-Coutré
2007). Also, think of new stakeholders who know the topic and can spot gaps.

Read between the lines to identify features or characteristics the customers expect to be included
without having said so. Ask context-free questions, high-level and open-ended questions that elicit
information about global characteristics of both the business problem and the potential solution
(Gause and Weinberg 1989). The customer’s response to questions such as “What kind of precision is
required in the product?” or “Can you help me understand why you don’t agree with Miguel’s reply?”
can lead to insights that questions with standard yes/no or A/B/C answers do not.

 CHAPTER 7 Requirements elicitation 141

No assumed requirements
I once encountered a development team that was implementing a content portal that was
 intended to do many things, including upload, edit, and publish content to a website. There
were approximately 1,000 pieces of existing content, organized in a hierarchy. The content
management team assumed that users would be able to navigate the hierarchy to quickly find
a specific piece of content. They did not specify requirements regarding the user interface
 navigation. However, when the developers implemented the user interface to navigate to
content, they organized all of the content in a single level, not hierarchically, and showed only
20 items per screen. To find a specific piece of content, a user might have to navigate through
as many as 50 screens. A little more specification and dialogue between developers and the
content management team could have avoided considerable rework.

Finding missing requirements

Missing requirements constitute a common type of requirement defect. Missing requirements are
hard to spot because they’re invisible! The following techniques will help you detect previously
 undiscovered requirements:

 ■ Decompose high-level requirements into enough detail to reveal exactly what is being
 requested. A vague, high-level requirement that leaves much to the reader’s interpretation will
lead to a gap between what the requester has in mind and what the developer builds.

 ■ Ensure that all user classes have provided input. Make sure that each user requirement has at
least one identified user class who will receive value from the requirement.

 ■ Trace system requirements, user requirements, event-response lists, and business rules to their
corresponding functional requirements to make sure that all the necessary functionality was
derived.

 ■ Check boundary values for missing requirements. Suppose that one requirement states, “If
the price of the order is less than $100, the shipping charge is $5.95” and another says, “If the
price of the order is more than $100, the shipping charge is 6 percent of the total order price.”
But what’s the shipping charge for an order with a price of exactly $100? It’s not specified, so a
requirement is missing, or at least poorly written.

 ■ Represent requirements information in more than one way. It’s difficult to read a mass of text
and notice the item that’s absent. Some analysis models visually represent requirements at a
high level of abstraction—the forest, not the trees. You might study a model and realize that
there should be an arrow from one box to another; that missing arrow represents a missing
requirement. Analysis models are described in Chapter 12, “A picture is worth 1024 words.”

142 PART II Requirements development

 ■ Sets of requirements with complex Boolean logic (ANDs, ORs, and NOTs) often are incomplete.
If a combination of logical conditions has no corresponding functional requirement, the
 developer has to deduce what the system should do or chase down an answer. “Else”
 conditions frequently are overlooked. Represent complex logic by using decision tables or
decision trees to cover all the possible situations, as described in Chapter 12.

 ■ Create a checklist of common functional areas to consider for your projects. Examples include
error logging, backup and restore, access security, reporting, printing, preview capabilities,
and configuring user preferences. Periodically compare this list with the functions you’ve
already specified to look for gaps.

 ■ A data model can reveal missing functionality. All data entities that the system will manipulate
must have corresponding functionality to create them, read them from an external source,
update current values, and/or delete them. The acronym CRUD is often used to refer to these
four common operations. Make sure you can identify functionality in your application to
 perform these operations on all of your entities that need them (see Chapter 13).

Trap Watch out for the dreaded analysis paralysis, spending too much time on
 requirements elicitation in an attempt to avoid missing any requirements.

You’ll likely never discover all of the requirements for your product, but nearly every software team
can do a better job of requirements elicitation by applying the practices described in this chapter.

Next steps
 ■ Think about requirements that were found late on your last project. Why were they

overlooked during elicitation? How could you have discovered each of these requirements
earlier? What would that have been worth to your organization?

 ■ Select a portion of any documented customer input on your project or a section from
the SRS. Classify every item in that requirements fragment into the categories shown in
Figure 7-7. If you find items that were organized incorrectly, move them to the correct
place in your requirements documentation.

 ■ List the requirements elicitation techniques used on your previous or current project.
Which ones worked well? Why? Which ones did not work so well? Why not? Identify
 elicitation techniques that you think would work better and decide how you’d apply them
next time. Identify any barriers you might encounter to making those techniques work,
and brainstorm ways to overcome those barriers.

 143

C H A P T E R 8

Understanding user requirements

The Chemical Tracking System (CTS) project was holding its first requirements elicitation workshop to
learn what chemists would need to do with the system. The participants included a business analyst,
Lori; the product champion for the chemists, Tim; two other chemist representatives, Sandy and Peter;
and the lead developer, Ravi.

“Tim, Sandy, and Peter have identified 14 use cases that chemists would need to perform using the
Chemical Tracking System,” Lori told the group. “You said the use case called ‘Request a Chemical’ is top
priority and Tim already wrote a brief description for it, so let’s begin there. Tim, how do you visualize
the process to request a chemical with the system?”

“First,” said Tim, “you should know that only people who have been authorized by their lab managers
are allowed to request chemicals.”

“Okay, that sounds like a business rule,” Lori replied. “I’ll start a list of business rules because we’ll
 probably find others. It looks like we’ll have to verify that the user is on the approved list.” Lori then
guided the group through a discussion of how they envisioned creating a request for a new chemical.
She used flipcharts and sticky notes to collect information about preconditions, postconditions, and the
interactions between the user and the system. Lori asked how a session would be different if the user
were requesting a chemical from a vendor rather than from the stockroom. She asked what could go
wrong and how the system should handle each error condition. After about 30 minutes, the group had
a solid handle on how a user would request a chemical. They moved on to the next use case.

A necessary prerequisite to designing software that meets user needs is to understand what the
users intend to do with it. Some teams take a product-centric approach. They focus on defining the
features to implement in the software, with the hope that those features will appeal to prospective
customers. In most cases, though, you’re better off taking a user-centric and usage-centric approach
to requirements elicitation. Focusing on users and their anticipated usage helps reveal the necessary
functionality, avoids implementing features that no one will use, and assists with prioritization.

User requirements are found in the second level of requirements that you saw in Figure 1-1 in
Chapter 1, “The essential software requirement.” They lie between the business requirements that set
the objectives for the project and the functional requirements that describe what developers must
implement. This chapter addresses two of the most commonly employed techniques for exploring
user requirements: use cases and user stories.

144 PART II Requirements development

Analysts have long employed usage scenarios to elicit user requirements (Alexander and Maiden
2004). The usage-centered perspective was formalized into the use case approach to requirements
modeling (Jacobson et al. 1992; Cockburn 2001; Kulak and Guiney 2004). More recently, proponents
of agile development introduced the concept of a “user story,” a concise statement that articulates a
user need and serves as a starting point for conversations to flesh out the details (Cohn 2004).

Both use cases and user stories shift from the product-centric perspective of requirements
 elicitation to discussing what users need to accomplish, in contrast to asking users what they want the
system to do. The intent of this approach is to describe tasks that users will need to perform with the
system, or user-system interactions that will result in a valuable outcome for some stakeholder. That
 understanding leads the BA to derive the necessary functionality that must be implemented to enable
those usage scenarios. It also leads to tests to verify whether the functionality was implemented
 correctly. Usage-centric elicitation strategies will bring you closer to understanding the user’s
 requirements on many classes of projects than any other technique we have used.

Use cases and user stories work well for exploring the requirements for business applications,
 websites, kiosks, and systems that let a user control a piece of hardware. However, they are
 inadequate for understanding the requirements of certain types of applications. Applications such as
batch processes, computationally intensive systems, business analytics, and data warehousing might
have just a few use cases. The complexity of these applications lies in the computations performed,
the data found and compiled, or the reports generated, not in the user-system interactions.

Nor are use cases and user stories sufficient for specifying many embedded and other real-time
systems. Consider an automated car wash. The driver of the car has just one goal—to wash the
car—with perhaps a few options: underbody spray, sealer wax, polish. However, the car wash has a
lot going on. It has a drive mechanism to move your car; numerous motors, pumps, valves, switches,
dials, and lights; and timers or sensors to control the activation of these physical components.
You also have to worry about diagnostic functionality, such as notifying the operator when a tank
of liquid is nearly empty, as well as fault detection and safety requirements. What happens if the
drive mechanism fails while a car is in the tunnel, or if the motor on a blower fails? A requirements
 technique often used for real-time systems is to list the external events to which the system must
react and the corresponding system responses. See Chapter 12, “A picture is worth 1024 words,” for
more about event analysis.

Use cases and user stories

A use case describes a sequence of interactions between a system and an external actor that results in
the actor being able to achieve some outcome of value. The names of use cases are always written in
the form of a verb followed by an object. Select strong, descriptive names to make it evident from the
name that the use case will deliver something valuable for some user. Table 8-1 lists some sample use
cases from a variety of applications.

 CHAPTER 8 Understanding user requirements 145

TABLE 8-1 Sample use cases from various applications

Application Sample use case

Chemical tracking system Request a Chemical
Print Material Safety Data Sheet
Change a Chemical Request
Check Status of an Order
Generate Quarterly Chemical-Usage Reports

Airport check-in kiosk Check in for a Flight
Print Boarding Passes
Change Seats
Check Luggage
Purchase an Upgrade

Accounting system Create an Invoice
Reconcile an Account Statement
Enter a Credit Card Transaction
Print Tax Forms for Vendors
Search for a Specific Transaction

Online bookstore Update Customer Profile
Search for an Item
Buy an Item
Track a Shipped Package
Cancel an Unshipped Order

As used on agile development projects, a user story is a “short, simple description of a feature told
from the perspective of the person who desires the new capability, usually a user or customer of the
system” (Cohn 2010). User stories often are written according to the following template, although
other styles also are used:

As a <type of user>, I want <some goal> so that <some reason>.

Using this template provides an advantage over the even shorter use case name because, although
they both state the user’s goal, the user story also identifies the user class and the rationale behind
the request for that system capability. These are valuable additions. The user class—which need not
be a human being—in a user story corresponds to the primary actor in a use case (described later in
this chapter). The rationale could be provided in the brief description of the use case. Table 8-2 shows
how we could state some of the use cases from Table 8-1 in the form of user stories.

TABLE 8-2 Some sample use cases and corresponding user stories

Application Sample use case Corresponding user story

Chemical tracking system Request a Chemical As a chemist, I want to request a chemical so that I can
 perform experiments.

Airport check-in kiosk Check in for a Flight As a traveler, I want to check in for a flight so that I can
fly to my destination.

Accounting system Create an Invoice As a small business owner, I want to create an invoice
so that I can bill a customer.

Online bookstore Update Customer Profile As a customer, I want to update my customer profile
so that future purchases are billed to a new credit card
number.

146 PART II Requirements development

At this level, use cases look much like user stories. Both are focused on understanding what
 different types of users need to accomplish through interactions with a software system. However,
the two processes move in different directions from these similar starting points, as illustrated
in Figure 8-1. Both approaches can also produce other deliverables, such as visual analysis models,
but Figure 8-1 illustrates the core distinction.

FIGURE 8-1 How user requirements lead to functional requirements and tests with the use case approach and the
user story approach.

With use cases, the next step is for the BA to work with user representatives to understand how
they imagine a dialog taking place with the system to perform the use case. The BA structures
the information collected according to a use case template; you’ll see an example later in the
 chapter. The template contains numerous spaces in which to store information that can provide
a rich understanding of the use case, its variants, and related information. It’s not necessary to
fully complete the template if the developers can get the information they need from a briefer
 specification, but referring to the template during elicitation will help the participants discover all the
pertinent information. From the use case specification, the BA can derive the functional requirements
that developers must implement, and a tester can identify tests to judge whether the use case was
properly implemented. Developers might implement an entire use case in a single release or iteration.
Alternatively, they might implement just a portion of a particular use case initially, either for size or
priority reasons, and then implement additional parts in future releases.

As employed on agile projects, a user story serves as a placeholder for future conversations
that need to take place on a just-in-time basis among developers, customer representatives, and
a business analyst (if one is working on the project). Those conversations reveal the additional
 information that developers must know to be able to implement the story. Refining the user stories
through conversations leads to a collection of smaller, focused stories that describe individual chunks
of system functionality. User stories that are too large to implement in one agile development
 iteration (called epics) are split into smaller stories that can be implemented within a single iteration.
See Chapter 20, “Agile projects,” for more about epics and user stories.

Rather than specifying functional requirements, agile teams typically elaborate a refined user story
into a set of acceptance tests that collectively describe the story’s “conditions of satisfaction.” Thinking
about tests at this early stage is an excellent idea for all projects, regardless of their development

 CHAPTER 8 Understanding user requirements 147

approach. Test thinking helps you identify variations of the basic user story (or use case), exception
conditions that must be handled, and nonfunctional requirements such as performance and security
considerations. If the developer implements the necessary code to satisfy the acceptance tests—and
hence to meet conditions of satisfaction—the user story is considered to be correctly implemented.

User stories provide a concise statement of a user’s needs. Use cases dive further into describing
how the user imagines interacting with the system to accomplish his objective. The use case should
not get into design specifics, just into the user’s mental image about the interaction. User stories
offer the advantage of simplicity and conciseness, but there is a tradeoff. Use cases provide project
 participants with a structure and context that a collection of user stories lacks. They provide an
 organized way for the BA to lead elicitation discussions beyond simply collecting a list of things that
users need to achieve with the system as a starting point for planning and discussion.

Not everyone is convinced that user stories are an adequate requirements solution for large
or more demanding projects (Gilb and Gilb 2011). You can examine each element of a use case
(flows, preconditions, postconditions, and so on) to look for pertinent functional and nonfunctional
 requirements and to derive tests. This helps you avoid overlooking any requirements that developers
must implement to let users perform the use case. But user stories do not replicate that structure
and rigor, so it’s easier for the team to miss some acceptance tests. A BA or developer must have
 experience in effective user story development to avoid overlooking relevant functionality. A use-case
analysis might reveal that several use cases involve similar exceptions (or other commonalities) that
could perhaps be implemented as a single consistent error-handling strategy within the application.
Such commonalities are more difficult to discern with a collection of user stories.

For more information about how to elicit and apply user stories when exploring user requirements,
see Cohn (2004), Cohn (2010), or Leffingwell (2011). The rest of this chapter will focus on the use case
technique, pointing out similarities and contrasts with the user story approach where appropriate.

The use case approach

As mentioned earlier, a use case describes a sequence of interactions between a system and an
 external actor that results in some outcome that provides value to the actor. An actor is a person
(or sometimes another software system or a hardware device) that interacts with the system to
 perform a use case. For example, the Chemical Tracking System’s “Request a Chemical” use case
involves an actor named Requester. There is no CTS user class named Requester. Both chemists
and members of the chemical stockroom staff may request chemicals, so members of either user
class may perform the Requester role. Following are some questions you might ask to help user
 representatives identify actors:

 ■ Who (or what) is notified when something occurs within the system?

 ■ Who (or what) provides information or services to the system?

 ■ Who (or what) helps the system respond to and complete a task?

148 PART II Requirements development

Users and actors
The distinction between users and actors can get confusing (Wiegers 2006). Think of a human
user as having a collection of hats available, each labeled with the name of an actor that the
system will recognize as participating in certain use cases. When the user wants to perform a
certain action with the system, he puts on the appropriate hat. The system will recognize that
person as the labeled actor when he launches whatever use case he’s interested in performing.
When a chemist wants to request a chemical, he puts on his Requester cap, and the Chemical
Tracking System will think of him as a Requester, no matter what his real job title is. That is, the
user is playing the role of a Requester at that moment. A member of the chemical stockroom
staff also has a hat labeled Requester. Both chemists and chemical stockroom people have an
assortment of other hats labeled with different actor names that the CTS knows about. Well,
okay, they don’t really have all those hats, but this is a helpful way to think about it. Users are
actual people (or systems); actors are abstractions.

Use case diagrams provide a high-level visual representation of the user requirements. Figure 8-2
shows a partial use case diagram for the CTS, using the Unified Modeling Language (UML) notation
(Booch, Rumbaugh, and Jacobson 1999; Podeswa 2010). The box frame represents the system
boundary. Arrows from each actor (stick figure) connect to the use cases (ovals) with which the actor
interacts. An arrow from an actor to a use case indicates that he is the primary actor for the use case.
The primary actor initiates the use case and derives the main value from it. An arrow goes from a
use case to a secondary actor, who participates somehow in the successful execution of the use case.
Other software systems often serve as secondary actors, contributing behind the scenes to the use
case execution. The Training Database is just such a secondary actor in Figure 8-2. This system gets
involved when a Requester is requesting a hazardous chemical that requires the Requester to have
been trained in how to safely handle such dangerous materials.

Compare this use case diagram to the context diagram shown earlier in Figure 5-6 in Chapter 5,
“Establishing the business requirements.” Both define the scope boundary between objects that lie
outside the system and things inside the system. In the use case diagram, the box separates some
 internal aspects of the system—use cases—from the external actors. The context diagram also depicts
objects that lie outside the system, but it provides no visibility into the system internals. The arrows in
a context diagram indicate the flow of data, control signals, or physical materials (if you defined the
“system” to include manual processes) across the system boundary. In contrast, the arrows in a use
case diagram simply indicate the connections between actors and use cases in which they participate;
they do not represent a flow of any kind. As with all forms of requirements representations, all readers
of the models you create must have a consistent understanding of the notations used.

 CHAPTER 8 Understanding user requirements 149

FIGURE 8-2 Partial use case diagram for the Chemical Tracking System.

Use cases and usage scenarios
A use case describes a discrete, standalone activity that an actor can perform to achieve some outcome
of value. A use case might encompass a number of related activities having a common goal. A scenario
is a description of a single instance of usage of the system. A use case is therefore a collection of related
usage scenarios, and a scenario is a specific instance of a use case. When exploring user requirements,
you can begin with a general use case statement and develop more specific usage scenarios, or you can
generalize from a specific scenario example to the broader use case.

Figure 8-3 shows a comprehensive use case template filled in with an example drawn from
the Chemical Tracking System. Appendix C shows more sample use cases written according to
this template. As with all templates, you don’t complete this from top to bottom, and you don’t
 necessarily need all of the template information for every use case. The template is simply a structure
in which to store the information you encounter during a use case discussion in an organized
and consistent fashion. The template reminds you of all the information you should contemplate
 regarding each use case. If information that belongs in the template already exists somewhere else,
simply point to it to include that information by reference. For instance, don’t incorporate the actual
text of each business rule that affects the use case in the template; just list the identifiers for the
 relevant business rules so the reader can find that information when necessary.

150 PART II Requirements development

FIGURE 8-3 Partial specification of the Chemical Tracking System’s “Request a Chemical” use case.

The essential elements of a use case are the following:

 ■ A unique identifier and a succinct name that states the user goal

 ■ A brief textual description that describes the purpose of the use case

 ■ A trigger condition that initiates execution of the use case

 ■ Zero or more preconditions that must be satisfied before the use case can begin

 ■ One or more postconditions that describe the state of the system after the use case is
 successfully completed

 ■ A numbered list of steps that shows the sequence of interactions between the actor and the
system—a dialog—that leads from the preconditions to the postconditions

 CHAPTER 8 Understanding user requirements 151

Use case labeling convention
Use case specifications consist of numerous small packets of information: normal and alternative
flows, exceptions, preconditions and postconditions, and so on. The example in Figure 8-3
 illustrates a simple labeling convention that can help keep these elements straight. Each use
case has a sequence number and a meaningful name that reflects the user’s goal: UC-4 Request
a Chemical. The identifier for the normal flow for this use case is 4.0. Alternative flows are
identified by incrementing the number to the right of the decimal, so the first alternative flow is
4.1, a second would be 4.2, and so on. Both the normal flow and alternative flows can have their
own exceptions. The first exception on the normal flow of use case number 4 would be labeled
4.0.E1. The second exception for the first alternative flow for this use case would be 4.1.E2.

Preconditions and postconditions
Preconditions define prerequisites that must be met before the system can begin executing the use
case. The system should be able to test all preconditions to see if it’s possible to proceed with the
use case. Preconditions could describe the system state (for a use case to withdraw cash from an
 automated teller machine, the ATM must contain money), but they don’t describe the user’s intent
(“I need some cash”).

When the system detects the trigger event that indicates that a user wants to execute a particular
use case, the system says to itself (though not necessarily to the user!), “Hold on a moment while
I check these preconditions.” The trigger event itself is not one of the preconditions. If the
 preconditions are all satisfied, the system can begin executing the use case; otherwise, it cannot.
Checking preconditions can prevent some errors that might otherwise take place if the system
knows at the outset that it can’t successfully complete the use case but proceeds anyway. If the
ATM is empty, it shouldn’t let a user even begin a withdrawal transaction. This is a way to make your
 applications more robust. Users aren’t likely to be aware of all of a use case’s preconditions, so the BA
might need to get some input from other sources.

Postconditions describe the state of the system after the use case executed successfully.
 Postconditions can describe:

 ■ Something observable to the user (the system displayed an account balance).

 ■ Physical outcomes (the ATM has dispensed money and printed a receipt).

 ■ Internal system state changes (the account has been debited by the amount of a cash
 withdrawal, plus any transaction fees).

Many postconditions are evident to the user, because they reflect the outcome that delivers user
value: “I’ve got my cash!” However, no user will ever tell a BA that the system should reduce its record
of the amount of cash remaining in the ATM by the amount the user just withdrew. Users neither
know nor care about such internal housekeeping details. But developers and testers need to know
about them, which means that the BA needs to discover those—perhaps by working with a subject
matter expert—and record them as additional postconditions.

152 PART II Requirements development

Normal flows, alternative flows, and exceptions
One scenario is identified as the normal flow of events for the use case. It’s also called the main flow,
basic flow, normal course, primary scenario, main success scenario, sunny-day scenario, and happy
path. The normal flow for the “Request a Chemical” use case is to request a chemical that’s available
in the chemical stockroom. As Figure 8-3 illustrates, the normal flow is written as a numbered list of
steps, indicating which entity—the system or a specific actor—performs each step.

Other success scenarios within the use case are called alternative flows or secondary scenarios.
Alternative flows deliver the same business outcome (sometimes with variations) as the normal
flow but represent less common or lower-priority variations in the specifics of the task or how it is
 accomplished. The normal flow can branch off into an alternative flow at some decision point in the
dialog sequence; it might (or might not) rejoin the normal flow later. The steps in the normal flow
indicate where the user can branch into an alternative flow. A user who says, “The default should
be. . .” is describing the normal flow of the use case. A statement such as “The user should also be able
to request a chemical from a vendor” suggests an alternative flow, shown as 4.1 in Figure 8-3, which
branches from step 4 in the normal flow.

Recall that user stories are concise statements of user needs, in contrast to the richer description
that a use case provides. In the agile world, a user story sometimes covers the same scope as an entire
use case, but in other cases a user story represents just a single scenario or alternative flow. If an agile
development team were discussing requirements for the CTS, they might come up with user stories
such as the following:

As a chemist, I want to request a chemical so that I can perform experiments.

As a chemist, I want to request a chemical from the Chemical Stockroom so that I
can use it immediately.

As a chemist, I want to request a chemical from a vendor because I don’t trust the
purity of any of the samples available in the Chemical Stockroom.

The first of these three stories corresponds to the use case as a whole. The second and third user
 stories represent the normal flow of the use case and the first alternative flow, from Figure 8-3.

Conditions that have the potential to prevent a use case from succeeding are called exceptions.
 Exceptions describe anticipated error conditions that could occur during execution of the use case
and how they are to be handled. In some cases, the user can recover from an exception, perhaps by
re-entering some data that was incorrect. In other situations, though, the use case must terminate
without reaching its success conditions. One exception for the “Request a Chemical” use case
is “Chemical Is Not Commercially Available,” labeled as 4.1.E1 in Figure 8-3. If you don’t specify
 exception handling during requirements elicitation, there are two possible outcomes:

 CHAPTER 8 Understanding user requirements 153

 ■ Each developer will make his best guess at how to deal with the exceptions he sees, leading to
 inconsistent error handling throughout the application and less robust software.

 ■ The system will fail when a user hits the error condition because no one thought about it.

It’s a safe bet that system crashes aren’t on the user’s list of requirements.

Some error conditions could affect multiple use cases or multiple steps in a use case’s normal
flow. Examples are a loss of network connectivity, a database failure partway through an operation,
or a physical device failure such as a paper jam. Treat these as additional functional requirements to
be implemented, instead of repeating them as exceptions for all the potentially affected use cases.
The goal is not to force-fit all known functionality into a use case. You’re employing usage-centric
 elicitation to try to discover as much of the essential system functionality as you can.

You won’t necessarily implement every alternative flow that you identify for a use case. You might
defer some to later iterations or releases. However, you must implement the exceptions that can
prevent the flows that you do implement from succeeding. Experienced programmers know that
 handling exceptions represents a lot of the coding effort. Overlooked exceptions are a common
source of missing requirements. Specifying exception conditions during requirements elicitation helps
teams build robust products. The steps in the normal flow indicate where known exceptions could
take place, pointing to the section in the use case template for how the system should handle the
exception.

Agile projects employing the user story approach address exceptions through the acceptance
tests they create for each story. The third user story above pertained to requesting a chemical from
a vendor. Conversations about this story might raise questions such as, “What if the chemical you
want is not commercially available from any vendor?” This could lead to an acceptance test like, “If
the chemical isn’t found in any available vendor catalogs, show a message to that effect.” As with
any good testing approach, the set of acceptance tests for a user story must cover both expected
 behavior and things that could go wrong.

Although many use cases can be described in simple prose, a flowchart or a UML activity diagram
is a useful way to visually represent the logic flow in a complex use case, as illustrated in Figure 8-4.
Flowcharts and activity diagrams show the decision points and conditions that cause a branch from
the normal flow into an alternative flow.

In the example in Figure 8-3, the actor’s ultimate goal—to request a chemical—is the same in both
situations. Therefore, requesting a chemical from the stockroom or from a vendor are two scenarios
within the same use case, not separate use cases. Some of the steps in an alternative flow will be the
same as those in the normal flow, but certain unique actions are needed to accomplish the alternative
path. This alternative flow might allow the user to search vendor catalogs for a desired chemical, then
rejoin the normal flow and continue with the requesting process back at step 4.

154 PART II Requirements development

FIGURE 8-4 An activity diagram illustrating the step sequence in the normal and alternative flows of a use case.

Dressing the use cases
You don’t always need a comprehensive use case specification. Cockburn (2001) describes
 casual and fully dressed use case templates. A casual use case is simply a textual narrative of the
user goal and interactions with the system, perhaps just the “Description” section from Figure 8-3.
The completed template in Figure 8-3 illustrates a fully dressed use case. And, of course, you
can do anything in between. Nor must you document all of your use cases to the same
 degree of detail. Sometimes, the use case name and short description suffice to convey the
 functionality to implement. Other times, you can simply list the alternative flows and exceptions
but not elaborate them further. In some cases, though, the team will benefit from a more
 comprehensive specification of a complex use case. Fully dressed use cases are valuable when:

 ■ User representatives are not closely engaged with the development team throughout the
project.

 ■ The application is complex and system failures carry a high risk.

 ■ The use cases represent novel requirements with which the developers are not familiar.

 CHAPTER 8 Understanding user requirements 155

 ■ The use cases are the most detailed requirements that the developers will receive.

 ■ You intend to develop comprehensive test cases based on the user requirements.

 ■ Collaborating remote teams need a detailed, shared group memory.

Instead of being dogmatic about how much detail to include in a use case, remember your
goal: to understand the user’s objectives well enough to enable developers to proceed at low
risk of having to do rework.

Extend and include
You can show two types of relationships, called extend and include, between use cases in a use case
diagram. Figure 8-3 showed that the normal flow for the “Request a Chemical” use case is to request a
chemical from the Chemical Stockroom; an alternative flow is to request a chemical from a vendor. In
the use case diagram in Figure 8-2, the Buyer has a use case called “Search Vendor Catalogs.” Suppose
you wanted to let the Requester execute that same “Search Vendor Catalog” use case as an option
when requesting a chemical, as part of the alternative flow processing. A use case diagram can show
that a standalone use case like “Search Vendor Catalogs” extends the normal flow into an alternative
flow, as illustrated in Figure 8-5 (Armour and Miller 2001).

FIGURE 8-5 An example of the use case extend relationship for the Chemical Tracking System.

Sometimes several use cases share a common set of steps. To avoid duplicating these steps in each
such use case, you can define a separate use case that contains the shared functionality and indicate
that the other use cases include that subordinate use case. This is analogous to calling a common
 subroutine in a computer program. Consider an accounting software package. Two use cases are
“Pay a Bill” and “Reconcile Credit Card,” both of which might involve the user writing a check to make
the payment. You can create a separate use case called “Write a Check” that contains the common
steps involved in writing the check. The two transaction use cases both include the “Write a Check”
use case, as shown with the notation in Figure 8-6. “Write a Check” is a standalone use case, because
that’s another task someone might perform with the accounting software.

FIGURE 8-6 An example of the use case include relationship for an accounting application.

156 PART II Requirements development

Trap Don’t have protracted debates with your colleagues over when, how, and whether to
use the extend and include relationships. One author of a book on use cases told me that
extend and include are best discussed by friends over beer.

Aligning preconditions and postconditions
In many applications, the user can chain together a sequence of use cases into a “macro” use case that
describes a larger task. Some use cases for an e-commerce website might be “Search Catalog,” “Add
Item to Shopping Cart,” and “Pay for Items in Shopping Cart.” If you could perform each of these
activities independently, they are individual use cases. That is, you could have one session with the
website in which you just searched the catalog, a second session in which you just added an item to
your shopping cart without searching (perhaps by typing in the product number), and a third session
in which you paid for the items in the shopping cart (implying that your cart must persist across logon
sessions). However, you might also be able to perform all three activities in sequence as a single large
use case called “Buy Product,” as shown in Figure 8-7. The description of the “Buy Product” use case
could simply say to perform each of those other three use cases in turn: “Search Catalog,” “Add Item
to Shopping Cart,” and then “Pay for Items in Shopping Cart.”

FIGURE 8-7 Preconditions and postconditions define the boundaries of the individual use cases that can be
chained together to perform a larger task.

To make this process work, each use case must leave the system in a state that enables the user to
commence the next use case immediately. That is, the postconditions of one use case must satisfy the
preconditions of the next one in the sequence. Similarly, in a transaction-processing application such
as an ATM, each use case must leave the system in a state that permits the next transaction to begin.

Use cases and business rules
Use cases and business rules are intertwined. Some business rules constrain which roles can perform
all or parts of a use case. Perhaps only users who have certain privilege levels can perform specific
alternative flows. That is, the rule might impose preconditions that the system must test before letting
the user proceed. Business rules can influence specific steps in the normal flow by defining valid input
values or dictating how computations are to be performed. Suppose an airline charges a premium for

 CHAPTER 8 Understanding user requirements 157

passengers who want certain preferred seats. If the passenger executes a use case to select a new seat
on the airline’s website, the relevant business rules would change the passenger’s airfare if he chooses
one of those seats. When specifying a use case, record the identifiers of any known business rules that
affect the use case, and indicate which part of the use case each rule affects.

While you are exploring use cases you might uncover pertinent business rules. When the chemists
who participated in requirements elicitation for the Chemical Tracking System discussed the use case
to view an order stored in the system, one of them said, “Fred shouldn’t be able to see my orders,
and I don’t want to see Fred’s orders.” That is, they came up with a business rule: a user may view only
chemical orders that he placed. Sometimes you invent business rules during elicitation and analysis,
sometimes your discussions reveal relevant rules that already exist in the organization, and sometimes
you already know about existing rules that the system will have to respect.

Identifying use cases
You can identify use cases in several ways (Ham 1998; Larman 1998):

 ■ Identify the actors first, then lay out the business processes being supported by the system,
and define the use cases for activities where actors and systems interact.

 ■ Create a specific scenario to illustrate each business process, then generalize the scenarios into
use cases and identify the actors involved in each one.

 ■ Using a business process description, ask, “What tasks must the system perform to complete
this process or convert the inputs into outputs?” Those tasks might be use cases.

 ■ Identify the external events to which the system must respond, then relate these events to
participating actors and specific use cases.

 ■ Use a CRUD analysis to identify data entities that require use cases to create, read, update,
delete, or otherwise manipulate them (see Chapter 13, “Specifying data requirements”).

 ■ Examine the context diagram and ask, “What objectives do each of these external entities
want to achieve with the help of the system?”

The CTS team followed the first approach, using the process described in the next several sections
of this chapter. The three business analysts facilitated a series of two-hour use case elicitation
 workshops, which were held twice a week. They chose to use workshops for elicitation partly because
none of them had tried the use case method before, so they needed to learn together. Also, they saw
the value of group synergy in the workshop format over individual interviews. Members of the various
user classes participated in separate, parallel workshops, working with different BAs. This worked well
because only a few use cases were common to multiple user classes. Each workshop included the
user class’s product champion, other selected user representatives, and a developer. Participating in
elicitation workshops gives developers early insight into the product they will be expected to build.
Developers also serve as the voice of reality when infeasible requirements are suggested.

158 PART II Requirements development

Prior to beginning the workshops, each BA asked the users to think of tasks they would need to
perform with the new system. Each of these tasks became a candidate use case. This is a bottom-up
approach to use case elicitation, which complements the top-down strategy of identifying all the
business processes the system will support and gleaning use cases from those. Comparing the lists of
use cases generated from these different thought processes reduces the chance of overlooking one.

A few candidates were judged to be out of scope and weren’t pursued. As the group explored the
remaining in-scope use cases in the workshops, they found that some of them were related scenarios
that could be consolidated into a single, more general use case. The group also discovered additional
use cases beyond those in the initial set. Expect to perform these sorts of adjustments as you go
along.

Some users proposed use cases that were not phrased as tasks, such as “Material Safety Data
Sheet.” A use case’s name should indicate a goal the user wants to accomplish, so you need to start
with a verb. Does the user want to request, view, print, download, order, revise, delete, or create a
material safety data sheet? Sometimes a suggested use case was just a single step the actor would
perform as part of process, such as “Scan Bar Code.” The BA needs to learn what objective the user
has in mind that involves scanning a bar code. The BA might ask, “When you scan the bar code on the
chemical container, what are you trying to accomplish?” Suppose the reply is, “As a chemist, I need to
scan the container’s bar code so I can log the chemical into my laboratory.” (Note how this is stated
in the style of a user story.) The real use case, therefore, is “Log Chemical into Lab.” Scanning the bar
code label is just one step in the interaction between the actor and the system that logs the chemical
into the lab.

Don’t dive into high-resolution analysis of the first use case that someone proposes. Learn just
enough about each use case so the team can prioritize them and do an initial allocation of use
cases, or portions thereof, to forthcoming releases or iterations. Then you can begin exploring the
 highest-priority use cases, those that are allocated to the next development cycle, so developers can
begin implementing them as soon as possible. Lower-priority use cases can wait for detailing until
just before they’re scheduled to be implemented. This is the same strategy you would pursue when
 working with user stories on an agile project.

Trap Don’t try to force every requirement to fit into a use case. Use cases can reveal
most—but probably not all—of the functional requirements. If the BA already knows of
certain functionality that must be implemented, there’s little value in creating a use case
simply to hold that functionality.

Exploring use cases
The participants in the CTS elicitation workshops began each use case discussion by identifying
the actor who would benefit from the use case and writing the short description. Estimating the
 frequency of use provided an early indicator of concurrent usage and capacity requirements. Then

 CHAPTER 8 Understanding user requirements 159

they began defining the preconditions and postconditions, which are the boundaries of the use case;
all use case steps take place between these boundaries. The preconditions and postconditions were
adjusted as more information surfaced during the discussion.

Next, the BA asked the participants how they envisioned interacting with the system to perform
the task. The resulting sequence of actor actions and system responses became the normal flow
for the use case. Although each participant had a different mental image of what the future
user interface would look like, the group reached a common vision of the essential steps in the
 actor-system dialog.

Staying in bounds
While reviewing a use case whose normal flow had eight steps, I realized that the
 postconditions were satisfied after step 5. Steps 6, 7, and 8 therefore were unnecessary, being
outside the boundary of the use case. Similarly, a use case’s preconditions must be satisfied
prior to commencing step 1 of the normal flow. When you review a use case flow, make sure
that its preconditions and postconditions properly frame it.

The BA captured the actor actions and their corresponding system responses on sticky notes,
which he placed on a flipchart sheet. Sticky notes work well for such workshops. It’s easy to move
them around, group them together, and replace them as the discussion progresses. Another way to
conduct such a workshop is to project a use case template onto a large screen from a computer and
populate the template during the discussion. The elicitation team developed similar dialogs for the
alternative flows and exceptions. Many exceptions were discovered when the analyst asked questions
similar to “What should happen if the database isn’t online at that moment?” or “What if the chemical
isn’t commercially available?” The workshop is also a good time to discuss the user’s expectations of
quality, such as response times and availability, security requirements, and UI design constraints.

After the workshop participants described each use case and no one proposed additional
 variations, exceptions, or other information, they moved on to another one. They didn’t try to cover
all the use cases in one marathon workshop or to pin down every detail of every use case they
discussed. Instead, they explored the use cases in layers, beginning with the broad strokes for the
 top-priority use cases and iteratively refining them just prior to implementation.

Figure 8-8 shows the sequence of work products created during the CTS use case elicitation
 process. Following the workshop, the analyst documented each use case by using the template
 illustrated in Figure 8-3, using his judgment to decide how complete the template needed to be for
each use case.

160 PART II Requirements development

FIGURE 8-8 Use case elicitation work products.

When writing the steps in the use case flows, avoid language that refers to specific user interface
interactions. “Requester specifies the desired chemical” is nicely general and UI-independent. It
 allows for multiple ways to accomplish the user’s intention of indicating the chemical to be requested:
enter a chemical ID number, import a chemical structure from a file, draw the structure on the screen
with the mouse (or a stylus on a tablet), or select a chemical from a list. Proceeding too quickly into
 specific interaction details constrains the thinking of the workshop participants.

Use cases often involve some additional information or requirements that do not fit within any
of the template sections. Use the “Other Information” section to record pertinent performance
and other quality requirements, constraints, and external interface knowledge. Eventually, all this
 information should find a home in the SRS or other elements of your requirements documentation.
Also note any information that might not be visible to the users, such as the need for one system to
communicate behind the scenes with another to complete the use case.

Validating use cases
The process in Figure 8-8 shows that after each workshop, the BAs on the Chemical Tracking System
derived software functional requirements from the use cases. (For more about this, see the next
 section, “Use cases and functional requirements.”) The BAs also drew some analysis models, such
as a state-transition diagram that showed all possible chemical request statuses and the permitted
status changes. Multiple use cases can manipulate a chemical request, so the diagram pulls together
 information and operations that span several use cases. Chapter 12 illustrates several analysis models
for the CTS; the state-transition diagram is in Figure 12-3.

A day or two after each workshop, the BA gave the use cases and functional requirements to
the workshop participants, who reviewed them prior to the next workshop. These informal reviews
revealed many errors: previously undiscovered alternative flows, new exceptions, incorrect functional

 CHAPTER 8 Understanding user requirements 161

requirements, and missing dialog steps. The team quickly learned to allow at least one day between
successive workshops. The mental relaxation that comes after a day or two away allows people to
examine their earlier work from a fresh perspective. One BA who held daily workshops found that the
participants had difficulty spotting errors in the materials they reviewed because the information was
too fresh in their minds. They mentally recited the recent discussion and didn’t see the errors.

Trap Don’t wait until requirements specification is complete to solicit review feedback
from users, developers, and other stakeholders. Early reviews help improve the subsequent
requirements work.

Early in requirements development, the Chemical Tracking System’s test lead began creating
conceptual tests—independent of implementation and user-interface specifics—from the use cases
(Collard 1999). These tests helped the team reach a shared understanding of how the system should
behave in specific scenarios. The tests let the BAs verify whether they had derived the functionality
needed to let users perform each use case. During the final elicitation workshop, the participants
walked through the tests together to be sure they agreed on how the use cases should work.

Early conceptual test thinking like this is much cheaper and faster than writing code, building part
of the system, executing tests, and only then discovering problems with requirements. It is analogous
to the agile approach of fleshing out user stories with acceptance tests, but the CTS team wrote both
functional requirements and tests. Comparing the two revealed errors in both before any code was
written. Chapter 17, “Validating the requirements,” discusses generating tests from requirements.

The CTS team created multiple representations of the requirements they identified: a list of
 functional requirements, a set of corresponding tests, and analysis models, all based on use cases.
Comparing these alternative views of the requirements is a powerful quality technique (Wiegers
2006). The team used the tests to verify the functional requirements, looking for tests that couldn’t be
“executed” with the set of requirements and for requirements that were not covered by tests.

If you create just a single representation, or view, of the requirements, you must trust it. You have
nothing to compare it against to look for errors, gaps, and different interpretations. Agile project
teams do not typically document functional requirements, preferring to create acceptance tests.
 Although thinking about testing during requirements exploration is an excellent idea on every
project, it still leaves you with only a single representation of the requirements that you must trust as
being correct. Similarly, traditional project teams that create only a set of functional requirements and
leave testing until later in the project have only one representation. You’ll get the best results with a
judicious combination of written requirements, tests, analysis models, and prototypes.

Use cases and functional requirements
Software developers don’t implement business requirements or user requirements. They implement
functional requirements, specific bits of system behavior. Some practitioners regard the use cases
as being the functional requirements. However, we have seen many organizations get into trouble
when they simply pass their use cases to developers for implementation. Use cases describe the

162 PART II Requirements development

user’s perspective, looking at the externally visible behavior of the system. They don’t contain all the
information that a developer needs to write the software. The user of an ATM doesn’t know about
any back-end processing involved, such as communicating with the bank’s computer. This detail is
 invisible to the user, yet the developer needs to know about it. Developers who receive even fully
dressed use cases often have many questions. To reduce this uncertainty, consider having a BA
 explicitly specify the functional requirements necessary to implement each use case (Arlow 1998).

Many functional requirements fall right out of the dialog steps between the actor and the system.
Some are obvious, such as “The system shall assign a unique sequence number to each request.”
There is no point in duplicating those elsewhere if they’re clear from the use case. Other functional
requirements don’t appear in the use case description. For instance, the way use cases are typically
documented does not specify what the system should do if a precondition is not satisfied. This is an
example of how use cases often do not provide all the necessary information for a developer to know
what to build. The BA must derive those missing requirements and communicate them to developers
and testers (Wiegers 2006). This analysis to get from the user’s view of the requirements to the
 developer’s view is one of the many ways the BA adds value to a project.

The Chemical Tracking System employed the use cases primarily as a tool to reveal the necessary
functional requirements. The analysts wrote only casual descriptions of the less complex use cases.
They then derived all the functional requirements that, when implemented, would allow an actor to
perform the use case, including alternative flows and exception handlers. The analysts documented
these functional requirements in the SRS, which was organized by product feature.

You can document the functionality associated with a use case in several ways. None of the
 following methods is perfect, so select the approach that best fits with how you want to document
and manage your project’s software requirements.

Use cases only
One possibility is to include the functional requirements along with each use case specification, if they
aren’t already evident. You’ll still need to document nonfunctional requirements and any functionality
that’s not associated with a use case. Additionally, several use cases might need the same functional
requirement. If five use cases require that the user’s identity be authenticated, you don’t want to
write five different blocks of code for that purpose. Rather than duplicate them, cross-reference
functional requirements that appear in multiple use cases. The use cases could be collected in a user
 requirements document.

Use cases and functional requirements
Another option is to write fairly simple use cases and document the functional requirements derived
from each one in an SRS or a requirements repository. In this approach, you should establish
 traceability between the use cases and their associated functional requirements. That way, if a use
case changes, you can quickly find the affected functional requirements. The best way to manage the
traceability is with a requirements management tool.

 CHAPTER 8 Understanding user requirements 163

Functional requirements only
One more option is to organize your functional requirements by use case or by feature, and include
both the use cases and the functional requirements in the SRS or requirements repository. This is
the approach that the CTS team used, and we’ve done the same on several website development
projects. We wrote most of our use cases in very concise form, not completing the full template from
Figure 8-3. The details were then specified through a set of functional requirements. This approach
doesn’t result in a separate user requirements document.

Use cases and tests
If you write both detailed use case specifications and functional requirements, you might notice some
duplication, particularly around the normal flow. There is little value in writing the same requirement
twice. So another strategy is to write fairly complete use case specifications, but then write acceptance
tests to determine if the system properly handles the basic behavior of the use case, alternative
 success paths, and the various things that could go wrong.

Use case traps to avoid
As with any software engineering technique, there are many ways to go astray when applying the use
case approach (Lilly 2000; Kulak and Guiney 2004). Watch out for the following traps:

 ■ Too many use cases If you’re caught in a use case explosion, you might not be writing them
at the appropriate level of abstraction. Don’t create a separate use case for every possible
scenario. You’ll typically have many more use cases than business requirements and features,
but many more functional requirements than use cases.

 ■ Highly complex use cases I once reviewed a use case with four dense pages of dialog steps,
with a lot of embedded logic and branching conditions. It was incomprehensible. I’ve heard
of even longer use cases, going on page after page. You can’t control the complexity of the
business tasks, but you can control how you represent them in use cases. Select one success
path through the use case and call that the normal flow. Use alternative flows for the other
logic branches that lead to success, and use exceptions to handle branches that lead to failure.
You might have many alternatives, but each one will be short and easy to understand. If a flow
exceeds 10 to 15 steps in length, confirm whether it truly describes just a single scenario. Don’t
arbitrarily split a legitimately long flow just because it has a lot of steps, though.

 ■ Including design in the use cases Use cases should focus on what the users need to
 accomplish with the system’s help, not on how the screens will look. Emphasize the conceptual
interactions between the actors and the system. For example, say “System presents choices”
instead of “System displays drop-down list.” Don’t let the UI design drive the requirements
exploration. Use screen sketches and dialog maps (see Chapter 12) to help visualize the
 actor-system interactions, not as firm design specifications.

164 PART II Requirements development

 ■ Including data definitions in the use cases Use case explorations naturally stimulate
data discussions, thinking about what data elements serve as inputs and outputs during the
 interaction. Some use case authors include definitions of the pertinent data elements right in
the use case specification. This makes it difficult for people to find the information because
it isn’t obvious which use case contains each data definition. It can also lead to duplicate
 definitions, which get out of sync when one instance is changed and others are not. Store data
definitions in a project-wide data dictionary and data model, as discussed in Chapter 13.

 ■ Use cases that users don’t understand If users can’t relate a use case to their business
processes or goals, there’s a problem. Write use cases from the user’s perspective, not the
system’s point of view, and ask users to review them. Keep the use cases as simple as you can
while still achieving the goal of clear and effective communication.

Benefits of usage-centric requirements

The power of both use cases and user stories comes from their user-centric and usage-centric
 perspective. The users will have clearer expectations of what the new system will let them do than if
you take a feature-centric approach. The customer representatives on several Internet development
projects found that use cases clarified their notions of what visitors to their websites should be able
to do. Use cases help BAs and developers understand the user’s business. Thinking through the
 actor-system dialogs reveals ambiguity and vagueness early in the development process, as does
generating tests from the use cases.

Overspecifying the requirements up front and trying to include every conceivable function can
lead to implementing unnecessary requirements. The usage-centric approach leads to functionality
that will allow the user to perform certain known tasks. This helps prevent “orphan functionality” that
seems like a good idea but that no one uses because it doesn’t relate directly to user goals.

Developing user requirements helps with requirements prioritization. The highest-priority
 functional requirements are those that originate in the top-priority user requirements. A use case or
user story could be of high priority for several reasons:

 ■ It describes part of a core business process that the system enables.

 ■ Many users will use it frequently.

 ■ A favored user class requested it.

 ■ It’s required for regulatory compliance.

 ■ Other system functions depend on its presence.

Trap Don’t spend a lot of time detailing use cases that won’t be implemented for months
or years. They’re likely to change or disappear before construction begins.

 CHAPTER 8 Understanding user requirements 165

There are technical benefits to use cases, too. They reveal some of the important domain objects
and their responsibilities to each other. Developers using object-oriented design methods can turn
use cases into object models such as class and sequence diagrams. As business processes change over
time, the tasks that are embodied in specific user requirements will change. If you’ve traced functional
requirements, designs, code, and tests back to their parent user requirements—the voice of the
user—it will be easier to cascade those changes through the entire system.

Next steps
 ■ Write several use cases for your current project by using the template in Figure 8-3.

 Include alternative flows and exceptions. Identify the functional requirements that will
 allow the user to successfully complete each use case. Check whether your project’s
 requirements repository already includes all those requirements.

 ■ If your organization is considering adopting agile practices, then try writing one use case
as a user story or set of user stories to assess the differences between the two approaches.

 ■ Walk through a use case, trying to derive the necessary functional requirements at each
step and from the preconditions, postconditions, business rules, and other requirements.

 ■ Review the use case with customers to make sure the steps are correct, that variations
from the normal flow have been considered, and that exceptions have been anticipated
and handled in a way the customers think is sensible.

 167

C H A P T E R 9

Playing by the rules

“Hi, Tim, this is Jackie. I’m having a problem requesting a chemical with the Chemical Tracking System.
My lab manager suggested that I ask you about it. He said you were the product champion who
 provided many of the requirements for this system.”

“Yes, that’s correct,” Tim replied. “What’s the problem?”

“I need to get some more phosgene for those dyes that I make for my research project,” said Jackie,
“but the system won’t accept my request. It says I haven’t taken a training class in handling hazardous
chemicals in more than a year. What’s that all about? I’ve been using phosgene for years with no
 problem. Why can’t I get some more?”

“You’re probably aware that Contoso requires an annual refresher class in the safe handling of
 hazardous chemicals,” Tim pointed out. “This is a corporate policy based on OSHA regulations. The
Chemical Tracking System just enforces it. I know the stockroom guys used to give you whatever you
wanted, but they can’t do that anymore. Sorry about the inconvenience, but you’ll have to take the
refresher training before the system will let you request more phosgene.”

Every organization operates according to an extensive set of policies, laws, and industry standards.
Industries such as banking, aviation, and medical device manufacture must comply with volumes
of government regulations. Such controlling principles are known collectively as business rules or
 business logic. Business rules often are enforced through manual implementation of policies and
 procedures. In many cases, though, software applications also need to enforce these rules.

Most business rules originate outside the context of any specific software application. The
 corporate policy requiring annual training in handling hazardous chemicals applies even if all
 chemical purchasing and dispensing is done manually. Standard accounting practices were in use
long before the digital computer was invented. Because business rules are a property of the business,
they are not in themselves software requirements. However, business rules are a rich source of
 requirements because they dictate properties the system must possess to conform to the rules. As
Figure 1-1 in Chapter 1, “The essential software requirement” showed, business rules can be the origin
of several types of requirements. Table 9-1 illustrates and provides examples of how business rules
influence several types of requirements.

168 PART II Requirements development

TABLE 9-1 How business rules can influence various types of software requirements

Requirement type Illustration of business rules’ influence Example

Business
 requirement

Government regulations can lead to
 necessary business objectives for a project.

The Chemical Tracking System must enable
compliance with all federal and state chemical
usage and disposal reporting regulations within
five months.

User requirement Privacy policies dictate which users can
and cannot perform certain tasks with the
 system.

Only laboratory managers are allowed to
 generate chemical exposure reports for anyone
other than themselves.

Functional
 requirement

Company policy is that all vendors must be
registered and approved before an invoice
will be paid.

If an invoice is received from an unregistered
vendor, the Supplier System shall email the
 vendor editable PDF versions of the supplier
intake form and the W-9 form.

Quality attribute Regulations from government agencies,
such as OSHA and EPA, can dictate safety
 requirements, which must be enforced
through system functionality.

The system must maintain safety training
 records, which it must check to ensure that users
are properly trained before they can request a
hazardous chemical.

People sometimes confuse business rules with business processes or business requirements. As you
saw in Chapter 5, “Establishing the business requirements,” a business requirement states a desirable
outcome or a high-level objective of the organization that builds or procures a software solution.
Business requirements serve as the justification for undertaking a project. A business process describes
a series of activities that transform inputs into outputs to achieve a specific result. Information systems
frequently automate business processes, which could lead to efficiencies and other benefits that
achieve stated business requirements. Business rules influence business processes by establishing
 vocabulary, imposing restrictions, triggering actions, and governing how computations are carried
out. The same business rule could apply to multiple manual or automated processes, which is one
reason why it’s best to treat business rules as a separate set of information.

Not all companies treat their essential business rules as the valuable enterprise asset they are.
Certain departments might document their local rules, but many companies lack a unified effort to
document business rules in a common repository accessible to the IT organization. Treating this vital
information as corporate folklore leads to numerous problems. If business rules are not properly
documented and managed, they exist only in the heads of select individuals. A BA needs to know
who to call to learn about rules that affect his project. Individuals can have conflicting understandings
of the rules, which can lead to different software applications enforcing the same business rule
 inconsistently or overlooking it entirely. Having a master repository of business rules makes it easier
for all projects that are affected by certain rules to learn about them and implement them in a
 consistent fashion.

Trap Having undocumented business rules known only to certain experts results in a
knowledge vacuum when those experts leave the organization.

As an example, your organization likely has security policies that control access to information
systems. Such policies might state the minimum and maximum length and the allowed characters in
passwords, dictate the frequency of required password changes, state how many failed login attempts

 CHAPTER 9 Playing by the rules 169

a user gets before his account is locked, and the like. Applications that the organization develops
should apply these policies—these business rules—consistently. Tracing each rule into the code that
implements it makes it easier to update systems to comply with changes in the rules, such as altering
the required frequency of password changes. It also facilitates code reuse across projects.

A business rules taxonomy

The Business Rules Group (2012) provides definitions for business rules from the perspectives of both
the business and its information systems:

 ■ From the business perspective: “A business rule is guidance that there is an obligation
 concerning conduct, action, practice, or procedure within a particular activity or sphere.”
(There ought to be an explicit motivation for the rule, as well as enforcement methods and an
understanding of what the consequences would be if the rule were broken.)

 ■ From the information system perspective: “A business rule is a statement that defines or
 constrains some aspect of the business. It is intended to assert business structure or to control
or influence the behavior of the business.”

Whole methodologies have been developed based on the discovery and documentation of
 business rules and their implementation in automated business rules systems (von Halle 2002; Ross
1997; Ross and Lam 2011). Unless you’re building a system that is heavily rules-driven, you don’t need
an elaborate methodology. Simply identify and document the rules that pertain to your system and
link them to the specific requirements that implement them.

Numerous classification schemes have been proposed for organizing business rules (Ross 2001;
Morgan 2002; von Halle 2002; von Halle and Goldberg 2010). The simple taxonomy shown in Figure 9-1,
with five types of rules, will work for most situations. A sixth category is terms, defined words, phrases,
and abbreviations that are important to the business. You could group terms with factual business rules.
A glossary is another convenient place to define terms.

FIGURE 9-1 A simple business rule taxonomy.

Recording the business rules in a consistent way is more important than having heated arguments
about precisely how to classify each one. However, a taxonomy is helpful to identify business rules you
might not have thought of otherwise. Classifying the rules also gives you an idea of how you might
apply them in a software application. For instance, constraints often lead to system functionality that
enforces the restrictions, and action enablers lead to functionality to make something happen under
certain conditions. Let’s see some examples of these five kinds of business rules.

170 PART II Requirements development

Facts
Facts are simply statements that are true about the business at a specified point in time. A fact
 describes associations or relationships between important business terms. Facts about data entities
that are important to the system might appear in data models. (See Chapter 13, “Specifying data
requirements,” for more about data modeling.) Examples of facts include the following:

 ■ Every chemical container has a unique bar code identifier.

 ■ Every order has a shipping charge.

 ■ Sales tax is not computed on shipping charges.

 ■ Nonrefundable airline tickets incur a fee when the purchaser changes the itinerary.

 ■ Books taller than 16 inches are shelved in the library’s Oversize section.

Of course, there are countless facts floating around about businesses. Collecting irrelevant facts
can bog down business analysis. Even if they’re true, it might not be obvious how the development
team is to use the information. Focus on facts that are in scope for the project, rather than trying to
amass a complete collection of business knowledge. Try to connect each fact to the context diagram’s
inputs and outputs, to system events, to known data objects, or to specific user requirements.

Constraints
A constraint is a statement that restricts the actions that the system or its users are allowed to
 perform. Someone describing a constraining business rule might say that certain actions must or must
not or may not be performed, or that only certain people or roles can perform particular actions.
 Following are some examples of constraints with various origins.

Organizational policies

 ■ A loan applicant who is less than 18 years old must have a parent or a legal guardian as
 cosigner on the loan.

 ■ A library patron may have a maximum of 10 items on hold at any time.

 ■ Insurance correspondence may not display more than four digits of the policyholder’s Social
Security number.

Government regulations

 ■ All software applications must comply with government regulations for usage by visually
impaired persons.

 ■ Airline pilots must receive at least 8 continuous hours of rest in every 24-hour period.

 ■ Individual federal income tax returns must be postmarked by midnight on the first business
day after April 14 unless an extension has been granted.

 CHAPTER 9 Playing by the rules 171

Industry standards

 ■ Mortgage loan applicants must satisfy the Federal Housing Authority qualification standards.

 ■ Web applications may not contain any HTML tags or attributes that are deprecated according
to the HTML 5 standard.

So many constraints
Software projects have many kinds of constraints. Project managers must work within schedule,
staff, and budget limitations. Such project-level constraints belong in the project management
plan. Product design and implementation constraints represent imposed conditions that one
might otherwise expect to be left to the discretion of the people building the solution. Such
 restrictions on the developer’s choices belong in the SRS or design specification. Certain
 business rules impose constraints on the way the business operates; these should be stored
in a business rules repository. Whenever these constraints are reflected in the software
 requirements, indicate the pertinent rule as the rationale for each such derived requirement.

Constraining business rules can convey implications for software development even if they don’t
translate directly into functionality. Consider a retail store’s policy that only supervisors and managers
are allowed to issue cash refunds larger than $50. If you’re developing a point-of-sale application for
use by store employees, this rule implies that each user must have a privilege level. The software must
check to see if the current user is of sufficiently high privilege level to perform certain actions, such as
opening the cash register drawer so a cashier can issue a refund to a customer.

Because many constraint-type business rules deal with which types of users can perform which
functions, a concise way to document such rules is with a roles and permissions matrix (Beatty and
Chen 2012). Figure 9-2 illustrates such a matrix for various users of a public library’s information
system. The roles have been separated into employees and non-employees. The system functions are
grouped into system operations, operations dealing with patron records, and operations involving
individual library items. An X in a cell indicates that the role named in the column has permission to
perform the operation shown in the row.

Action enablers
A rule that triggers some activity if specific conditions are true is an action enabler. A person could
perform the activity in a manual process. Alternatively, the rule might lead to specifying software
functionality that makes an application exhibit the correct behavior when the system detects the
triggering event. The conditions that lead to the action could be a complex combination of true and
false values for multiple individual conditions. A decision table (described in Chapter 12, “A picture is
worth 1024 words”) provides a concise way to document action-enabling business rules that involve
extensive logic. A statement in the form “If <some condition is true or some event takes place>, then

172 PART II Requirements development

<something happens>” is a clue that someone might be describing an action enabler. Following are
some examples of action-enabling business rules for the Chemical Tracking System:

 ■ If the chemical stockroom has containers of a requested chemical in stock, then offer existing
containers to the requester.

 ■ On the last day of a calendar quarter, generate the mandated OSHA and EPA reports on
chemical handling and disposal for that quarter.

 ■ If the expiration date for a chemical container has been reached, then notify the person who
currently possesses that container.

Businesses often develop policies that are intended to enhance their commercial success. Consider
how an online bookstore might use the following business rules to try to stimulate impulse purchases
after a customer has asked to buy a specific product:

 ■ If the customer ordered a book by an author who has written multiple books, then offer the
author’s other books to the customer before completing the order.

 ■ After a customer places a book into the shopping cart, display related books that other
 customers also bought when they bought this one.

FIGURE 9-2 Constraining business rules sometimes can be represented in a roles and permissions matrix.

 CHAPTER 9 Playing by the rules 173

Overruled by constraints
I recently redeemed some of my frequent-flyer miles on Blue Yonder Airlines to buy a ticket
for my wife, Chris. When I attempted to finalize the purchase, BlueYonder.com said that it had
encountered an error and couldn’t issue the ticket. It told me to call the airline immediately. The
reservation agent I (finally!) spoke with told me that the airline couldn’t issue a mileage award
ticket through the mail or by email because Chris and I have different last names. I had to go to
the airport ticket counter and show identification to have the ticket issued.

This incident resulted from a constraining business rule that probably went something like
this: “If the passenger has a different last name from the mileage redeemer, then the redeemer
must pick up the ticket in person.” This is probably for fraud prevention. The software driving
the Blue Yonder website enforces the rule, but in a way that resulted in usability shortcomings
and customer inconvenience. Rather than simply telling me about the issue with different last
names and what I needed to do, the system displayed an alarming error message. It wasted
my time and the reservation agent’s time with an unnecessary phone call. Poorly thought-out
 business rule implementations can adversely affect your customer and hence your business.

Inferences
Sometimes called inferred knowledge or a derived fact, an inference creates a new fact from other
facts. Inferences are often written in the “if/then” pattern also found in action-enabling business rules,
but the “then” clause of an inference simply provides a piece of knowledge, not an action to be taken.
Some examples of inferences are:

 ■ If a payment is not received within 30 calendar days after it is due, then the account is delinquent.

 ■ If the vendor cannot ship an ordered item within five days of receiving the order, then the item
is considered back-ordered.

 ■ Chemicals with an LD50 toxicity lower than 5 mg/kg in mice are considered hazardous.

Computations
The fifth class of business rules defines computations that transform existing data into new data
by using specific mathematical formulas or algorithms. Many computations follow rules that are
 external to the enterprise, such as income tax withholding formulas. Following are a few examples of
 computational business rules written in text form.

 ■ The domestic ground shipping charge for an order that weighs more than two pounds is
$4.75 plus 12 cents per ounce or fraction thereof.

 ■ The total price for an order is the sum of the price of the items ordered, less any volume
 discounts, plus state and county sales taxes for the location to which the order is being
shipped, plus the shipping charge, plus an optional insurance charge.

174 PART II Requirements development

 ■ The unit price is reduced by 10 percent for orders of 6 to 10 units, by 20 percent for orders of
11 to 20 units, and by 30 percent for orders of more than 20 units.

Representing the details of computations in natural language like this can be wordy and confusing.
As an alternative, you could represent these in some symbolic form, such as a mathematical
 expression or in a table of rules that is clearer and easier to maintain. Table 9-2 represents the
 previous unit-price discount computation rule in a clearer fashion.

TABLE 9-2 Using a table to represent computational business rules

ID Number of units purchased Percent discount

DISC-1 1 through 5 0

DISC-2 6 through 10 10

DISC-3 11 through 20 20

DISC-4 More than 20 30

Trap Watch out for boundary value overlaps when you are writing a set of business rules or
requirements that define ranges. It’s easy to inadvertently define ranges like 1–5, 5–10, and
10–20, which introduces ambiguity about which range the values of exactly 5 and 10 fit into.

Atomic business rules
Suppose you walk up to your friendly local librarian with a question. “How long can I check out a
DVD for?” you ask. The librarian replies, “You can check out a DVD or Blu-ray Disc for one week,
and you may renew it up to two times for three days each, but only if another patron hasn’t placed
a hold on it.” The librarian’s answer is based on the library’s business rules. However, her answer
combines several rules into a single statement. Composite business rules like this can be hard to
understand and maintain. It’s also hard to confirm that all possible conditions are covered. If several
 functionality segments trace back to this complex rule, it can be time-consuming to find and modify
the appropriate code when just one part of the rule changes in the future.

A better strategy is to write your business rules at the atomic level, rather than combining
 multiple details into a single rule. This keeps your rules short and simple. It also facilitates reusing
the rules, modifying them, and combining them in various ways. To write inferred knowledge and
 action-enabling business rules in an atomic way, don’t use “or” logic on the left-hand side of an
“if/then” construct, and avoid “and” logic on the right-hand side (von Halle 2002). You might break
that complex library rule down into several atomic business rules, as shown in Table 9-3. (Chapter 10,
“Documenting the requirements,” describes the hierarchical labeling notation illustrated in Table 9-3.)
These business rules are called atomic because they can’t be decomposed further. You will likely
end up with many atomic business rules, and your functional requirements will depend on various
 combinations of them.

 CHAPTER 9 Playing by the rules 175

TABLE 9-3 Some atomic business rules for a library

ID Rule

Video.Media.Types DVD discs and Blu-ray Discs are video items.

Video.Checkout.Duration Video items may be checked out for one week at a time.

Renewal.Video.Times Video items may be renewed up to two times.

Renewal.Video.Duration Renewing a checked-out video item extends the due date by three
days.

Renewal.HeldItem A patron may not renew an item that another patron has on hold.

To illustrate how using atomic business rules facilitates maintenance, when the next generation video
technology comes along, or the library purges all of its DVD discs, the library could just update the
Video.Media.Types rule and none of the others are affected.

Documenting business rules

Because business rules can influence multiple applications, organizations should manage their
rules as enterprise-level assets. A simple business rules catalog will suffice initially. If you’re using a
 requirements management tool, you can store business rules as a requirement type, provided they
are accessible to all of your software projects. Large organizations or those whose operations and
information systems are heavily business-rule driven should establish a database of business rules.
Commercial rule-management tools become valuable if your rules catalog outgrows a solution using
a word processor, spreadsheet, Wiki, or other collaboration tool. Some business-rule management
systems contain rules engines, which can automate the implementation of the rules in your
 applications. The Business Rules Group (2012) maintains a list of products for managing business
rules. As you identify new rules while working on an application, add them to the catalog rather than
embedding them in the documentation for that specific application or—worse—only in its code.
Rules related to safety, security, finance, or regulatory compliance pose the greatest risk if they are
not managed and enforced appropriately.

Trap Don’t make your business rules catalog more complex than necessary. Use the simplest
form of documenting business rules that ensures that your development teams will use
them effectively. The business should own the rules repository, not the IT department or the
 project team.

As you gain experience with identifying and documenting business rules, you can apply structured
templates for defining rules of different types (Ross 1997; von Halle 2002). These templates describe
patterns of keywords and clauses that structure the rules in a consistent fashion. They also facilitate
storing the rules in a database, a commercial business-rule management tool, or a business rules
 engine. Sets of related rules can also be represented by using tools such as decision trees and decision
tables (particularly when complex logic is involved) and roles and permissions matrices. To begin,
though, try the simple format illustrated in Table 9-4 (Kulak and Guiney 2004).

176 PART II Requirements development

TABLE 9-4 Some sample business rules catalog entries

ID Rule definition Type of rule Static or
dynamic

Source

ORDER-5 If the customer ordered a book by an author
who has written multiple books, then offer the
author’s other books to the customer before
completing the order.

Action enabler Static Marketing policy XX

ACCESS-8 All website images must include alternative
text to be used by electronic reading devices
to meet accessibility requirements for visually
impaired users.

Constraint Static ADA Standards for
Accessible Design

DISCOUNT-13 A discount is calculated based on the size of the
current order, as defined in Table BR-060.

Computation Dynamic Corporate pricing
policy XX

Giving each business rule a unique identifier lets you link requirements back to a specific rule. For
instance, some templates for use cases contain a field for business rules that influence the use case.
Instead of including the rule definition in the use case description, simply enter the identifiers for the
relevant rules. Each ID serves as a pointer to the master instance of the business rule. This way you
don’t have to worry about the use case specification becoming obsolete if the rule changes.

The “Type of rule” column identifies each business rule as being a fact, constraint, action enabler,
inference, or computation. The “Static or dynamic” column indicates how likely the rule is to change
over time. This information is helpful to developers. If they know that certain rules are subject to
periodic change, they can structure the software to make the affected functionality or data easy to
update. Income tax calculations change at least every year. If the developer structures the income tax
information into tables or a database, rather than hard-coding it into the software, it’s a lot easier to
update those values when necessary. It’s safe to hard-code laws of nature, such as calculations based
on the laws of thermodynamics; laws of humans are much more volatile.

The laws of separation
Air traffic control (ATC) systems must ensure minimum separation between aircraft in four
dimensions—altitude, lateral, longitudinal, and time—to avoid collisions. The on-board aircraft
systems, pilots, controllers on the ground, and the ATC system itself need to assemble flight
path and speed information from hundreds of sources to anticipate when one plane might
get dangerously close to another. Many business rules govern the minimum legal separation
distances and times. These rules are dynamic: they change periodically as technology improves
(GPS positioning versus radar, for example) and regulations are updated. This implies that the
system needs to be able to accept a new set of rules on a regular schedule, validate the rules’
self-consistency and completeness, and switch over to using the new rules at the same time the
pilots and controllers do. One ATC project initially hard-coded the current set of such business
rules into their software, thinking of them as being static. Major rework was required when the
stakeholders realized the need to cope with periodic changes in these safety-critical rules.

 CHAPTER 9 Playing by the rules 177

The final column in Table 9-4 identifies the source of each rule. Sources of business rules include
corporate and management policies, subject matter experts and other individuals, and documents
such as government laws and regulations. Knowing the source helps people know where to go if they
need more information about the rule or need to learn about changes.

Discovering business rules

Just as asking “What are your requirements?” doesn’t help much when eliciting user requirements,
asking users “What are your business rules?” doesn’t get you very far. Sometimes you invent business
rules as you go along, sometimes they come up during requirements discussions, and sometimes you
need to hunt for them. Barbara von Halle (2002) describes a comprehensive process for discovering
business rules. Following are several common places and ways to look for rules (Boyer and Mili 2011):

 ■ “Common knowledge” from the organization, often collected from individuals who have
worked with the business for a long time and know the details of how it operates.

 ■ Legacy systems that embed business rules in their requirements and code. This requires
 reverse-engineering the rationale behind the requirements or code to understand the
 pertinent rules. This sometimes yields incomplete knowledge about the business rules.

 ■ Business process modeling, which leads the analyst to look for rules that can affect each
 process step: constraints, triggering events, computational rules, and relevant facts.

 ■ Analysis of existing documentation, including requirements specifications from earlier projects,
regulations, industry standards, corporate policy documents, contracts, and business plans.

 ■ Analysis of data, such as the various states that a data object can have and the conditions
 under which a user or a system event can change the object’s state. These authorizations could
also be represented as a roles and permissions matrix like the one shown earlier in Figure 9-2
to provide information about rules regarding user privilege levels and security.

 ■ Compliance departments in companies building systems subject to regulation.

Just because you found some business rules in these various sources doesn’t mean they necessarily
apply to your current project or that they are even still valid. Computational formulas implemented
in the code of legacy applications could be obsolete. Be sure to confirm whether rules gleaned from
older documents and applications need to be updated. Assess the scope of applicability of rules you
discover. Are they local to the project, or do they span a business domain or the entire enterprise?

Often, project stakeholders already know about business rules that will influence the application.
Certain employees sometimes deal with particular types or classes of rules. If that’s the case in your
environment, find out who those people are and bring them into the discussion. The BA can glean
business rules during elicitation activities that also define other requirements artifacts and models.
During interviews and workshops, the BA can ask questions to probe around the rationale for the
requirements and constraints that users present. These discussions frequently surface business rules

178 PART II Requirements development

as the underlying rationale. Figure 9-3 shows several potential origins of rules. It also suggests some
questions a BA can ask when discussing various requirements issues with users.

FIGURE 9-3 Discovering business rules by asking questions from different perspectives.

Business rules and requirements

After identifying and documenting business rules, determine which ones must be implemented in
the software. Business rules and their corresponding functional requirements sometimes look a lot
alike. However, the rules are external statements of policy that must be enforced in software, thereby
 driving system functionality. Every BA must decide which rules pertain to his application, which ones
must be enforced in the software, and how to enforce them.

Recall the constraint rule from the Chemical Tracking System requiring that training records be
current before a user can request a hazardous chemical. The analyst would derive different functional
requirements to comply with this rule depending on whether the training records database is
 accessible to the Chemical Tracking System. If it is, the system can look up the user’s training record
and decide whether to accept or reject the request. If the records aren’t available online, though, the
system might store the chemical request temporarily and send a message to the training coordinator,
who could approve or reject the request. The rule is the same in either situation, but the software
functionality—the actions to take when the business rule is encountered during execution—varies
depending on the system’s environment.

 CHAPTER 9 Playing by the rules 179

As another illustration, consider the following rules:

 ■ Rule #1 (action enabler): “If the expiration date for a chemical container has been reached,
then notify the person who currently possesses that container.”

 ■ Rule #2 (fact): “A container of a chemical that can form explosive decomposition products
expires one year after its manufacture date.”

Rule #1 serves as the origin for a system feature called “Notify chemical owner of expiration.”
 Additional rules like #2 would help the system determine which containers will have expiration
dates and thus require notifying their owners at the right time. For instance, an opened can of ether
 becomes unsafe because it can form explosive byproducts in the presence of oxygen. Based on such
rules, it’s clear that the Chemical Tracking System must monitor the status of chemical containers that
have expiration dates and inform the right people to return the containers for safe disposal. The BA
might derive some functional requirements for that feature such as the following:

Expired.Notify.Before If the status of a chemical container that has an expiration date is not
Disposed, the system shall notify the container’s current owner one week before the date the container
expires.

Expired.Notify.Date If the status of a chemical container that has an expiration date is not Disposed,
the system shall notify the container’s current owner on the date the container expires.

Expired.Notify.After If the status of a chemical container that has an expiration date is not Disposed,
the system shall notify the container’s current owner one week after the date the container expires.

Expired.Notify.Manager If the status of a chemical container that has an expiration date is not
Disposed, the system shall notify the manager of the container’s current owner two weeks after the date
the container expires.

Whenever you encounter a set of very similar requirements like these, consider laying them out
in the form of a table instead of a list (Wiegers 2006). This is more compact and easier to review,
understand, and modify. It also provides a more concise way to label the requirements, because the
table has to show just the suffixes to append to the parent requirement’s label. Here’s an alternative
representation for the preceding four functional requirements:

Expired.Notify If the status of a chemical container that has an expiration date is not Disposed, the
system shall notify the individuals shown in the following table at the times indicated.

Requirement ID Who to notify When to notify

.Before Container’s current owner One week before expiration date

.Date Container’s current owner On expiration date

.After Container’s current owner One week after expiration date

.Manager Manager of container’s current owner Two weeks after expiration date

180 PART II Requirements development

Tying everything together

To prevent redundancy, don’t duplicate rules from your business rules catalog in the requirements
documentation. Instead, refer back to specific rules as being the source of certain functionality or
algorithms. You can define the links between a functional requirement and its parent business rules in
several ways; following are three possibilities.

 ■ If you are using a requirements management tool, create a requirement attribute called “Origin”
and indicate the rules as being the origin of derived functional requirements. (See Chapter 27,
“Requirements management practices.”)

 ■ Define traceability links between functional requirements and the connected business rules in
a requirements traceability matrix or a requirements mapping matrix (Beatty and Chen 2012).
This is easiest when the business rules are stored in the same repository as the requirements.
(See Chapter 29, “Links in the requirements chain.”)

 ■ If the business rules and requirements are stored in word processing or spreadsheet files,
define hyperlinks from business rule ID references in the requirements back to the descriptions
of the business rules stored elsewhere. Be aware that hyperlinks are prone to breaking if the
location of the rules collection changes.

These links keep the requirements current with rule changes because the requirements simply
point to the master instance of the rule. If the rule changes, you can search for the linked rule ID to
find requirements—or implemented functionality—you might need to change. Using links like this
 facilitates reusing the same rule in multiple places and projects, because the rules are not buried in
the documentation for any single application. However, a developer reading the SRS will need to
 follow the cross-referenced link to access the rule details. This is the trade-off that results when you
elect not to duplicate information (Wiegers 2006).

As with so many aspects of requirements engineering, there is no simple, perfect solution
to managing business rules that works in all situations. But after you begin actively looking for,
 recording, and applying business rules, the rationale behind your application development choices
will become clearer to all stakeholders.

Next steps
 ■ Try to identify at least one of each business rule type from the taxonomy in Figure 9-1 for

your current project.

 ■ Begin populating a business rules catalog with the rules that pertain to your current project.
Classify the rules according to the scheme in Figure 9-1 and note the origin of each rule.

 ■ Set up a traceability matrix to indicate which functional requirements enforce each
 business rule you identified.

 ■ Identify the rationale behind each of your functional requirements to discover other,
 implicit business rules.

 181

C H A P T E R 1 0

Documenting the requirements

At the launch of a large project to build a commercial software company’s next-generation flagship
product, a senior manager convened about 60 employees in a daylong off-site “voice-of-the-customer
workshop.” These employees worked with facilitators to generate ideas for the new product. The
 manager compiled the results of these brainstorming sessions into a 100-page document. He called this
a requirements specification, but in fact it was nothing more than a pile of information.

The information from the brain dump by all these smart people wasn’t classified into various
 categories, organized logically, analyzed, or otherwise processed into anything that described a
 proposed software solution. Developers could not have gleaned what they needed to know about
the new product from this massive collection of ideas. Certainly there were nuggets of valuable
 requirements buried among all the chaff. But simply collecting raw ideas and needs into a long list isn’t
an effective way to document and communicate software requirements.

Clear and effective communication is the core principle of requirements development—communication
from people with needs to people who can conceive solutions, then to people who can implement and
verify those solutions. A skilled business analyst will choose the most effective way to communicate each
type of requirements information to each audience.

The result of requirements development is a documented agreement among stakeholders
about the product to be built. As you saw in earlier chapters, the vision and scope document contains
the business requirements, and user requirements can be captured in the form of use cases or user
 stories. The product’s functional and nonfunctional requirements often are stored in a software
requirements specification, or SRS, which is delivered to those who must design, build, and verify the
solution. Recording requirements in an organized fashion that key project stakeholders can review
helps ensure that they know what they’re agreeing to.

This chapter addresses the purpose, structure, and contents of the SRS. We will describe the SRS as
being a document, but it doesn’t have to be in the form of a traditional word-processing document.
In fact, documents pose numerous limitations:

 ■ It’s difficult to store descriptive attributes along with the requirements.

 ■ Change management is clumsy.

 ■ It’s difficult to retain historical versions of the requirements.

 ■ It’s not easy to subset out a portion of requirements that are allocated to a particular iteration
or keep track of those that were once approved but then deferred or canceled.

182 PART II Requirements development

 ■ It’s hard to trace requirements to other development artifacts.

 ■ Duplicating a requirement that logically fits in multiple places causes maintenance issues.

As alternatives, you might store information in a spreadsheet (which has many of the same limitations
as a document), a Wiki, a database, or a requirements management (RM) tool (see Chapter 30, “Tools
for requirements engineering”). Think of these as different possible repositories or containers for
 requirements information. No matter what form of requirements repository you use, you still need
the same kinds of information. The SRS template described here is a helpful reminder of information
to collect and how you might organize it.

Not everyone agrees that it’s worth the time to document requirements. And on exploratory or
highly volatile projects where you’re not sure what solution you’ll end up with, trying to keep up
with changes in the requirements details adds little value. However, the cost of recording knowledge
is small compared to the cost of acquiring that knowledge or regenerating it at some point in the
future. The acts of specification and modeling help project participants think through and precisely
state important things that a verbal discussion can leave ambiguous. If you are 100 percent certain
that no stakeholders will ever need a specific piece of information beyond the duration of their own
short-term memories, then you don’t need to record it. Otherwise, store it in some kind of a group
memory.

You will never get perfect requirements. Remember that you are writing requirements for certain
audiences. The amount of detail, the kinds of information you provide, and the way you organize
it should all be intended to meet the needs of your audiences. Analysts quite naturally write
 requirements from their own point of view, but really they should write them to be most meaningful
to those who have to understand the requirements and do work based on them. This is why it’s
 important to have representatives of those audiences review the requirements to make sure they’ll
meet their needs.

Progressive refinement of detail is a key principle for effective requirements development. On
most projects it’s neither realistic nor necessary to pin down every requirement detail early in the
project. Instead, think in terms of layers. You need to learn just enough about the requirements to be
able to roughly prioritize them and allocate them to forthcoming releases or iterations. Then you can
detail groups of requirements in a just-in-time fashion to give developers enough information so they
can avoid excessive and unnecessary rework.

Don’t expect even the finest requirements documentation to replace ongoing discussions
 throughout the project. Keep the communication lines open among the BA, development team,
 customer representatives, and other stakeholders so that they can quickly address the myriad issues
that will arise.

Trap Do not rely on telepathy and clairvoyance as substitutes for solid requirements
 specification practices. They don’t work, even though they seem to be the technical
 foundation for some software projects.

 CHAPTER 10 Documenting the requirements 183

You can represent software requirements in several ways, including:

 ■ Well-structured and carefully written natural language.

 ■ Visual models that illustrate transformational processes, system states and changes between
them, data relationships, logic flows, and the like.

 ■ Formal specifications that define requirements by using mathematically precise specification
languages.

Formal specifications provide the greatest rigor and precision, but few software developers—and
even fewer customers—are familiar with them. Most projects don’t demand this level of formality, but
I’d certainly hope that the designers of high-risk systems like nuclear power plant control systems
use formal specification methods. Structured natural language, augmented with visual models
and other representation techniques (such as tables, mock-ups, photographs, and mathematical
 expressions), remains the most practical way for most software projects to document their
 requirements. The rest of this chapter addresses how you might organize the information in a
 software requirements specification. Chapter 11, “Writing excellent requirements,” describes
 characteristics of high-quality requirements and offers many suggestions for how to write them.

The software requirements specification

The software requirements specification goes by many names in various organizations, although
organizations do not use these terms in the same way. It is sometimes called a business requirements
document (BRD), functional specification, product specification, system specification, or simply
 requirements document. Because “software requirements specification” is an industry-standard term,
that’s what we’ll call it here (ISO/IEC/IEEE 2011).

The SRS states the functions and capabilities that a software system must provide, its
 characteristics, and the constraints that it must respect. It should describe as completely as
 necessary the system’s behaviors under various conditions, as well as desired system qualities such
as performance, security, and usability. The SRS is the basis for subsequent project planning, design,
and coding, as well as the foundation for system testing and user documentation. However, it should
not contain design, construction, testing, or project management details other than known design
and implementation constraints. Even people working on agile projects need the kind of information
found in a good SRS. They don’t ordinarily collect all this information in a cohesive deliverable, but
an SRS template provides a convenient reminder of what kinds of knowledge to explore. This chapter
concludes with a section that describes how agile projects typically handle requirements specification.

184 PART II Requirements development

Important A single requirements deliverable often cannot meet the needs of all
 audiences. Some people need to know just the business objectives, others want only a
high-level big picture, still others want to see just the user’s perspective, and yet others
need all the details. This is one reason why we advocate creating the deliverables we call
the vision and scope document, user requirements document, and software requirements
specification. Don’t expect all of your user representatives to read the detailed SRS, and
don’t expect developers to learn all they need from a set of use cases or user stories.

Numerous audiences rely on the SRS:

 ■ Customers, the marketing department, and sales staff need to know what product they can
expect to be delivered.

 ■ Project managers base their estimates of schedule, effort, and resources on the requirements.

 ■ Software development teams need to know what to build.

 ■ Testers use it to develop requirements-based tests, test plans, and test procedures.

 ■ Maintenance and support staff use it to understand what each part of the product is supposed
to do.

 ■ Documentation writers base user manuals and help screens on the SRS and the user interface
design.

 ■ Training personnel use the SRS and user documentation to develop educational materials.

 ■ Legal staff ensures that the requirements comply with applicable laws and regulations.

 ■ Subcontractors base their work on—and can be legally held to—the specified requirements.

If a desired capability or quality doesn’t appear somewhere in the requirements agreement, no one
should expect it to appear in the product.

How many specifications?
Most projects will create just one software requirements specification. This isn’t practical for
large projects, though. Large systems projects often write a system requirements specification,
followed by separate software and perhaps hardware requirements specifications (ISO/IEC/IEEE
2011). One company was building a very complex process control application, with more than
100 people working for multiple years. This project had about 800 high-level requirements in its
system requirements specification. The project was divided into 20 subprojects, each of which had
its own software requirements specification with perhaps 800 or 900 requirements derived from
the system requirements. This makes for a lot of documentation, but a large project becomes
 unmanageable if you don’t take a divide-and-conquer approach.

 CHAPTER 10 Documenting the requirements 185

At the other extreme, another company created just a single guiding document for each
 medium-sized project, which they called simply “The Spec.” The Spec contained every piece
of known information about the project: requirements, estimates, project plans, quality plans,
test plans, tests, everything. Change management and version control on such an all-inclusive
 document is a nightmare. Nor is the information level in such an all-inclusive document suitable
for each audience for requirements information.

A third company that began to adopt agile development practices stopped writing any
 formal documentation. Instead, they wrote user stories for a large project on sticky notes that
they placed on their office walls. Unfortunately for one project, the adhesive on the sticky notes
gradually failed. A couple of months into the project, it was normal for no-longer-sticky notes
to flutter to the ground as someone walked by the wall.

Still another company took an intermediate approach. Although their projects weren’t huge
and could be specified in just 40 to 60 pages, some team members wanted to subdivide the
SRS into as many as 12 separate documents: one SRS for a batch process, one for the reporting
 engine, and one for each of 10 reports. A document explosion like this causes headaches
 because it’s hard to keep changes to them synchronized and to make sure the right people get
all the information they need efficiently.

A better alternative for all of these situations is to store the requirements in a requirements
management tool, as described in Chapter 30. An RM tool also helps greatly with the problem
of whether to create a single SRS or multiple specifications for a project that plans multiple
product releases or development iterations (Wiegers 2006). The SRS for any one portion of
the product or for a given iteration then is just a report generated from the database contents
based on certain query criteria.

You don’t have to write the SRS for the entire product before beginning development, but you
should capture the requirements for each increment before building that increment. Incremental
development is appropriate when you want to get some functionality into the users’ hands quickly.
Feedback from using the early increments will shape the rest of the project. However, every project
should baseline an agreement for each set of requirements before the team implements them.
Baselining is the process of transitioning an SRS under development into one that has been reviewed
and approved. Working from an agreed-upon set of requirements minimizes miscommunication and
unnecessary rework. See Chapter 2, “Requirements from the customer’s perspective,” and Chapter 27,
“Requirements management practices,” for more about baselining.

It’s important to organize and write the SRS so that the diverse stakeholders can understand it.
Keep the following readability suggestions in mind:

 ■ Use an appropriate template to organize all the necessary information.

 ■ Label and style sections, subsections, and individual requirements consistently.

186 PART II Requirements development

 ■ Use visual emphasis (bold, underline, italics, color, and fonts) consistently and judiciously.
Remember that color highlighting might not be visible to people with color blindness or when
printed in grayscale.

 ■ Create a table of contents to help readers find the information they need.

 ■ Number all figures and tables, give them captions, and refer to them by number.

 ■ If you are storing requirements in a document, define your word processor’s cross-reference
facility rather than hard-coded page or section numbers to refer to other locations within a
document.

 ■ If you are using documents, define hyperlinks to let the reader jump to related sections in the
SRS or in other files.

 ■ If you are storing requirements in a tool, use links to let the reader navigate to related
 information.

 ■ Include visual representations of information when possible to facilitate understanding.

 ■ Enlist a skilled editor to make sure the document is coherent and uses a consistent vocabulary
and layout.

Labeling requirements
Every requirement needs a unique and persistent identifier. This allows you to refer to specific
 requirements in a change request, modification history, cross-reference, or requirements traceability
matrix. It also enables reusing the requirements in multiple projects. Uniquely identified requirements
facilitate collaboration between team members when they’re discussing requirements, as in a peer
 review meeting. Simple numbered or bulleted lists aren’t adequate for these purposes. Let’s look
at the advantages and shortcomings of several requirements-labeling methods. Select whichever
 technique makes the most sense for your situation.

Number 8, with a bullet
I was chatting with my seatmate on a long airplane flight once. It turned out that Dave was also
in the software business. I mentioned that I had some interest in requirements. Dave pulled
an SRS out of his briefcase. I don’t know if he carried one with him everywhere he went for
 emergency purposes or what. I saw that the requirements in his document were organized
hierarchically, but they were all in bulleted list form. He had up to eight levels of bullet hierarchy
in some places. They all used different symbols—❍, ■, ◆, 3, q, ➭, and the like—but they had
no labels more meaningful than those simple symbols. It’s impossible to refer to a bulleted item
or to trace it to a design element, code segment, or test.

 CHAPTER 10 Documenting the requirements 187

Sequence number
The simplest approach gives every requirement a unique sequence number, such as UC-9 or
 FR-26. Commercial requirements management tools assign such an identifier when a user adds a
new requirement to the tool’s database. The prefix indicates the requirement type, such as FR for
 functional requirement. A number is not reused if a requirement is deleted, so you don’t have to
worry about a reader confusing the original FR-26 with a new FR-26. This simple numbering approach
doesn’t provide any logical or hierarchical grouping of related requirements, the number doesn’t
imply any kind of ordering, and the labels give no clue as to what each requirement is about. It does
make it easy to retain a unique identifier if you move requirements around in a document.

Hierarchical numbering
In the most commonly used convention, if the functional requirements appear in section 3.2 of your
SRS, they will all have labels that begin with 3.2. More digits indicate a more detailed, lower-level
requirement, so you know that 3.2.4.3 is a child requirement of 3.2.4. This method is simple, compact,
and familiar. Your word processor can probably assign the numbers automatically. Requirements
management tools generally also support hierarchical numbering.

However, hierarchical numbering poses some problems. The labels can grow to many digits in
even a medium-sized SRS. Numeric labels tell you nothing about the intent of a requirement. If you
are using a word processor, typically this scheme does not generate persistent labels. If you insert a
new requirement, the numbers of the following requirements in that section all will be incremented.
Delete or move a requirement, and the numbers following it in that section will be decremented.
Delete, insert, merge, or move whole sections, and a lot of labels change. These changes disrupt any
references to those requirements elsewhere in the system.

Trap A BA once told me in all seriousness, “We don’t let people insert requirements—it
messes up the numbering.” Don’t let ineffective practices hamper your ability to work
 effectively and sensibly.

An improvement over hierarchical numbering is to number the major sections of the requirements
hierarchically and then identify individual functional requirements in each section with a short text
code followed by a sequence number. For example, the SRS might contain “Section 3.5— Editor
 Functions,” and the requirements in that section could be labeled ED-1, ED-2, and so forth. This
 approach provides some hierarchy and organization while keeping the labels short, somewhat
meaningful, and less positionally dependent. It doesn’t totally solve the sequence number problem,
though.

Hierarchical textual tags
Consultant Tom Gilb (1988) suggests a text-based hierarchical tagging scheme for labeling individual
requirements. Consider this requirement: “The system shall ask the user to confirm any request to
print more than 10 copies.” This requirement might be tagged Print.ConfirmCopies. This indicates
that it is part of the print function and relates to the number of copies to print. Hierarchical textual

188 PART II Requirements development

tags are structured, meaningful, and unaffected by adding, deleting, or moving other requirements.
The sample SRS in Appendix C illustrates this labeling technique, as do other examples throughout
the book. This method also is suitable for labeling business rules if you’re maintaining them manually,
rather than in a dedicated business rules repository or tool.

Using hierarchical textual tags like this helps solve another problem. With any hierarchical
 organization you have parent-child relationships between requirements. If the parent is written as a
functional requirement, the relationship between the children and the parent can be confusing.
A good convention is to write the parent requirement to look like a title, a heading, or a feature name,
rather than looking like a functional requirement in itself. The children requirements of that parent, in
the aggregate, deliver the capability described in the parent. Following is an example that contains a
heading and four functional requirements.

The full unique ID of each requirement is built by appending each line’s label to the parent
labels above it. The Product statement is written as a heading, not as a discrete requirement.
The first functional requirement is tagged Product.Cart. The full ID for the third requirement is
Product.Discount.Error. This hierarchical scheme avoids the maintenance problems with the
 hierarchical numbering, but the tags are longer and you do have to think of meaningful names for
them, perhaps building from the name of the relevant feature. It can be challenging to maintain
 uniqueness, especially if you have multiple people working on the set of requirements. You can
 simplify the scheme by combining the hierarchical naming technique with a sequence number suffix
for small sets of requirements: Product.Cart.01, Product.Cart.02, and so on. Many schemes can work.

Dealing with incompleteness
Sometimes you know that you lack a piece of information about a specific requirement. Use the
 notation TBD (to be determined) to flag these knowledge gaps. Plan to resolve all TBDs before
 implementing a set of requirements. Any uncertainties that remain increase the risk of a developer
or a tester making errors and having to perform rework. When the developer encounters a TBD,
he might make his best guess—which won’t always be correct—instead of tracking down the
 requirement’s originator to resolve it. If you must proceed with construction of the next product
 increment while TBDs remain, either defer implementing the unresolved requirements or design
those portions of the product to be easily modifiable when the open issues are resolved. Record
TBDs and other requirements questions in an issues list. As the number of open issues dwindles, the
requirements are stabilizing. Chapter 27 further describes managing and resolving open issues.

 CHAPTER 10 Documenting the requirements 189

Trap TBDs won’t resolve themselves. Number the TBDs, record who is responsible for
 resolving each issue and by when, review their status at regular checkpoints, and track
them to closure.

User interfaces and the SRS
Incorporating user interface designs in the SRS has both benefits and drawbacks. On the plus
side, exploring possible user interfaces with paper prototypes, working mock-ups, wireframes, or
 simulation tools makes the requirements tangible to both users and developers. As discussed in
 Chapter 15, “Risk reduction through prototyping,” these are powerful techniques for eliciting and
validating requirements. If the product’s users have expectations of how portions of the product
might look and feel—and hence could be disappointed if their expectations weren’t fulfilled—those
expectations belong in the realm of requirements.

On the negative side, screen images and user interface architectures describe solutions and
might not truly be requirements. Including them in the SRS makes the document larger, and big
 requirements documents frighten some people. Delaying baselining of the SRS until the UI design
is complete can slow down development and try the patience of people who are already concerned
about spending too much time on requirements. Including UI design in the requirements can result
in the visual design driving the requirements, which often leads to functional gaps. The people who
write the requirements aren’t necessarily well qualified for designing user interfaces. Additionally,
after stakeholders see a user interface in an SRS (or anywhere else), they will not “unsee” it. Early
 visualization can clarify requirements, but it can also lead to resistance to improving the UI over time.

Screen layouts don’t replace written user and functional requirements. Don’t expect developers
to deduce the underlying functionality and data relationships from screen shots. One Internet
 development company repeatedly got in trouble because the team routinely went directly from
 signing a contract with a client into an eight-hour visual design workshop. They never sufficiently
 understood what a user would be able to do at each website they built, so they spent a lot of time
fixing the sites after delivery.

If you really do want to implement certain functionality with specific UI controls and screen
 layouts, it’s both appropriate and important to include that information in the SRS as design
 constraints. Design constraints restrict the choices available to the user interface designer. Just make
sure that you don’t impose constraints unnecessarily, prematurely, or for the wrong reasons. If the SRS
is specifying an enhancement to an existing system, it often makes sense to include screen displays
exactly as they are to be implemented. The developers are already constrained by the current reality
of the existing system, so it’s possible to know up front just how the modified—and perhaps also the
new—displays should look.

A sensible balance is to include conceptual images—I call them sketches, no matter how
nicely drawn they are—of selected displays in the requirements without demanding that the
 implementation precisely follow those models. See Figure 10-1 for a sample webpage sketch.
 Incorporating such sketches in the SRS helpfully communicates another view of the requirements,

190 PART II Requirements development

but makes it clear that the sketches are not the committed screen designs. For example, a preliminary
sketch of a complex dialog box will illustrate the intent behind a group of requirements, but a visual
designer might turn it into a tabbed dialog box to improve usability.

FIGURE 10-1 Example of a user interface “sketch” suitable for inclusion in a requirements document.

Teams working on projects that have many screens might find it more manageable to document
the user interface design specifics in a separate user interface specification or by using UI design
tools or prototyping tools. Use techniques such as display-action-response models to describe screen
 element names, their properties, and their behavior in detail (Beatty and Chen 2012).

A software requirements specification template

Every software development organization should adopt one or more standard SRS templates for
its projects. Various SRS templates are available (for example: ISO/IEC/IEEE 2011; Robertson and
 Robertson 2013). If your organization tackles various kinds or sizes of projects, such as new, large
system development as well as minor enhancements to existing systems, adopt an SRS template for
each major project class. See the “Template tactics” sidebar in Chapter 5, “Establishing the business
requirements,” for some thoughts about how to use document templates effectively.

Figure 10-2 illustrates an SRS template that works well for many types of projects. Appendix C
 contains a sample SRS that follows this template. This template, with usage guidance embedded in each
section, is available for downloading from this book’s companion content website. Some people format
such guidance text as “hidden text” in Microsoft Word. That way, you can leave the prompts in the
document. If you want a memory jogger, just turn on nonprinting characters to see the information.

 CHAPTER 10 Documenting the requirements 191

FIGURE 10-2 Proposed template for a software requirements specification.

Sometimes a piece of information could logically be recorded in several template sections. Pick
one section and use it consistently for that kind of information on your project. Avoid duplicating
information in multiple sections even if it could logically fit in more than one (Wiegers 2006).
Cross-references and hyperlinks can help readers find the information they need.

When you create requirements documents, use effective version control practices and tools to
make sure all readers know which version they are reading. Include a revision history to provide a
record of changes made in the document, who made each change, when it was made, and the reason
for it (see Chapter 27). The rest of this section describes the information to include in each section of
the SRS.

192 PART II Requirements development

Important You can incorporate material by reference to other existing project documents
instead of duplicating information in the SRS. Hyperlinks between documents are one way
to do this, as are traceability links defined in a requirements management tool. A risk with
hyperlinks is that they can break if the document folder hierarchy changes. Chapter 18,
“Requirements reuse,” discusses several techniques for reusing existing requirements
 knowledge.

1. Introduction
The introduction presents an overview to help the reader understand how the SRS is organized and
how to use it.

1.1 Purpose
Identify the product or application whose requirements are specified in this document, including the
revision or release number. If this SRS pertains to only part of a complex system, identify that portion
or subsystem. Describe the different types of reader that the document is intended for, such as
 developers, project managers, marketing staff, users, testers, and documentation writers.

1.2 Document conventions
Describe any standards or typographical conventions used, including the meaning of specific text
styles, highlighting, or notations. If you are manually labeling requirements, you might specify the
format here for anyone who needs to add one later.

1.3 Project scope
Provide a short description of the software being specified and its purpose. Relate the software to
user or corporate goals and to business objectives and strategies. If a separate vision and scope or
similar document is available, refer to it rather than duplicating its contents here. An SRS that specifies
an incremental release of an evolving product should contain its own scope statement as a subset of
the long-term strategic product vision. You might provide a high-level summary of the major features
the release contains or the significant functions that it performs.

1.4 References
List any documents or other resources to which this SRS refers. Include hyperlinks to them if they are
in a persistent location. These might include user interface style guides, contracts, standards, system
requirements specifications, interface specifications, or the SRS for a related product. Provide enough
information so that the reader can access each reference, including its title, author, version number,
date, source, storage location, or URL.

 CHAPTER 10 Documenting the requirements 193

2. Overall description
This section presents a high-level overview of the product and the environment in which it will be
used, the anticipated users, and known constraints, assumptions, and dependencies.

2.1 Product perspective
Describe the product’s context and origin. Is it the next member of a growing product line, the next
version of a mature system, a replacement for an existing application, or an entirely new product? If
this SRS defines a component of a larger system, state how this software relates to the overall system
and identify major interfaces between the two. Consider including visual models such as a context
diagram or ecosystem map (described in Chapter 5) to show the product’s relationship to other
 systems.

2.2 User classes and characteristics
Identify the various user classes that you anticipate will use this product, and describe their pertinent
characteristics. (See Chapter 6, “Finding the voice of the user.”) Some requirements might pertain
only to certain user classes. Identify the favored user classes. User classes represent a subset of the
 stakeholders described in the vision and scope document. User class descriptions are a reusable
 resource. If a master user class catalog is available, you can incorporate user class descriptions by
simply pointing to them in the catalog instead of duplicating information here.

2.3 Operating environment
Describe the environment in which the software will operate, including the hardware platform;
 operating systems and versions; geographical locations of users, servers, and databases; and
 organizations that host the related databases, servers, and websites. List any other software
 components or applications with which the system must peacefully coexist. If extensive technical
infrastructure work needs to be performed in conjunction with developing the new system, consider
creating a separate infrastructure requirements specification to detail that work.

2.4 Design and implementation constraints
There are times when a certain programming language must be used, a particular code library that
has already had time invested to develop it needs to be used, and so forth. Describe any factors
that will restrict the options available to the developers and the rationale for each constraint.
 Requirements that incorporate or are written in the form of solution ideas rather than needs are
imposing design constraints, often unnecessarily, so watch out for those. Constraints are described
further in Chapter 14, “Beyond functionality.”

194 PART II Requirements development

2.5 Assumptions and dependencies
An assumption is a statement that is believed to be true in the absence of proof or definitive
 knowledge. Problems can arise if assumptions are incorrect, are obsolete, are not shared, or change,
so certain assumptions will translate into project risks. One SRS reader might assume that the product
will conform to a particular user interface convention, whereas another might assume something
different. A developer might assume that a certain set of functions will be custom-written for this
 application, whereas the business analyst might assume that they will be reused from a previous
 project, and the project manager might expect to procure a commercial function library. The
 assumptions to include here are those related to system functionality; business-related assumptions
appear in the vision and scope document, as described in Chapter 5.

Identify any dependencies the project or system being built has on external factors or components
outside its control. For instance, if Microsoft .NET Framework 4.5 or a more recent version must be
installed before your product can run, that’s a dependency.

3. System features
The template in Figure 10-2 shows functional requirements organized by system feature, which is
just one possible way to arrange them. Other organizational options include arranging functional
requirements by functional area, process flow, use case, mode of operation, user class, stimulus, and
response. Hierarchical combinations of these elements are also possible, such as use cases within user
classes. There is no single right choice; select a method of organization that makes it easy for readers
to understand the product’s intended capabilities. We’ll describe the feature scheme as an example.

3.x System feature X
State the name of the feature in just a few words, such as “3.1 Spell Check.” Repeat section 3.x with its
subsections 3.x.1 and 3.x.2 for each system feature.

3.x.1 Description
Provide a short description of the feature and indicate whether it is of high, medium, or low priority.
(See Chapter 16, “First things first: Setting requirement priorities.”) Priorities often are dynamic,
changing over the course of the project. If you’re using a requirements management tool, define
a requirement attribute for priority. Requirement attributes are discussed in Chapter 27 and
 requirements management tools in Chapter 30.

3.x.2 Functional requirements
Itemize the specific functional requirements associated with this feature. These are the software
capabilities that must be implemented for the user to carry out the feature’s services or to perform
a use case. Describe how the product should respond to anticipated error conditions and to invalid
inputs and actions. Uniquely label each functional requirement, as described earlier in this chapter. If
you’re using a requirements management tool, you can create multiple attributes for each functional
requirement, such as rationale, origin, and status.

 CHAPTER 10 Documenting the requirements 195

4. Data requirements
Information systems provide value by manipulating data. Use this section of the template to describe
various aspects of the data that the system will consume as inputs, process in some fashion, or
create as outputs. Chapter 13, “Specifying data requirements,” addresses this topic in more detail.
Stephen Withall (2007) describes many patterns for documenting data (also known as information)
 requirements precisely.

4.1 Logical data model
As described in Chapter 13, a data model is a visual representation of the data objects and collections
the system will process and the relationships between them. Numerous notations exist for data
 modeling, including entity-relationship diagrams and UML class diagrams. You might include a data
model for the business operations being addressed by the system, or a logical representation for the
data that the system will manipulate. This is not the same thing as an implementation data model that
will be realized in the form of database design.

4.2 Data dictionary
The data dictionary defines the composition of data structures and the meaning, data type, length,
format, and allowed values for the data elements that make up those structures. Commercial data
modeling tools often include a data dictionary component. In many cases, you’re better off storing
the data dictionary as a separate artifact, rather than embedding it in the middle of an SRS. That also
increases its reusability potential in other projects. Chapter 13 discusses the data dictionary.

4.3 Reports
If your application will generate any reports, identify them here and describe their characteristics.
If a report must conform to a specific predefined layout, you can specify that here as a constraint,
perhaps with an example. Otherwise, focus on the logical descriptions of the report content, sort
 sequence, totaling levels, and so forth, deferring the detailed report layout to the design stage.
 Chapter 13 offers guidance on specifying reports.

4.4 Data acquisition, integrity, retention, and disposal
If relevant, describe how data is acquired and maintained. For instance, when starting a data
 inventory feed, you might need to do an initial dump of all the inventory data to the receiving system
and then have subsequent feeds that consist only of changes. State any requirements regarding the
need to protect the integrity of the system’s data. Identify any specific techniques that are necessary,
such as backups, checkpointing, mirroring, or data accuracy verification. State policies the system
must enforce for either retaining or disposing of data, including temporary data, metadata, residual
data (such as deleted records), cached data, local copies, archives, and interim backups.

196 PART II Requirements development

5. External interface requirements
This section provides information to ensure that the system will communicate properly with users and
with external hardware or software elements. Reaching agreement on external and internal system
interfaces has been identified as a software industry best practice (Brown 1996). A complex system
with multiple subcomponents should create a separate interface specification or system architecture
specification. The interface documentation could incorporate material from other documents by
reference. For instance, it could point to a hardware device manual that lists the error codes that the
device could send to the software.

Interface wars
Two software teams collaborated to build the A. Datum Corporation’s flagship product. The
knowledge base team built a complex inference engine in C++, and the applications team
implemented the user interface in Java. The two subsystems communicated through an
 application programming interface (API). Unfortunately, the knowledge base team periodically
modified the API, with the consequence that the complete system would not build and
 execute correctly. The applications team needed several hours to diagnose each problem
they discovered and determine the root cause as being an API change. These changes were
not agreed upon by the two teams, were not communicated to all affected parties, and were
not coordinated with corresponding modifications in the Java code. A change in an interface
demands communication with the person, group, or system on the other side of that interface.
The interfaces glue your system components—including the users—together, so document the
interface details and synchronize necessary modifications through your project’s change control
process.

5.1 User interfaces
Describe the logical characteristics of each user interface that the system needs. Some specific
 characteristics of user interfaces could appear in section 6.1 Usability. Some possible items to address
here are:

 ■ References to user interface standards or product line style guides that are to be followed

 ■ Standards for fonts, icons, button labels, images, color schemes, field tabbing sequences,
 commonly used controls, branding graphics, copyright and privacy notices, and the like

 ■ Screen size, layout, or resolution constraints

 ■ Standard buttons, functions, or navigation links that will appear on every screen, such as a
help button

 ■ Shortcut keys

 ■ Message display and phrasing conventions

 ■ Data validation guidelines (such as input value restrictions and when to validate field contents)

 CHAPTER 10 Documenting the requirements 197

 ■ Layout standards to facilitate software localization

 ■ Accommodations for users who are visually impaired, color blind, or have other limitations

5.2 Software interfaces
Describe the connections between this product and other software components (identified by name
and version), including other applications, databases, operating systems, tools, libraries, websites, and
integrated commercial components. State the purpose, formats, and contents of the messages, data,
and control values exchanged between the software components. Specify the mappings of input and
output data between the systems and any translations that need to be made for the data to get from
one system to the other. Describe the services needed by or from external software components and
the nature of the inter-component communications. Identify data that will be exchanged between or
shared across software components. Specify nonfunctional requirements affecting the interface, such
as service levels for response times and frequencies, or security controls and restrictions. Some of this
information might be specified as data requirements in section 4 or as interoperability requirements
in section 6, Quality attributes.

5.3 Hardware interfaces
Describe the characteristics of each interface between the software components and hardware
 components, if any, of the system. This description might include the supported device types, the data
and control interactions between the software and the hardware, and the communication protocols
to be used. List the inputs and outputs, their formats, their valid values or ranges, and any timing
issues developers need to be aware of. If this information is extensive, consider creating a separate
 interface specification document. For more about specifying requirements for systems containing
hardware, see Chapter 26, “Embedded and other real-time systems projects.”

5.4 Communications interfaces
State the requirements for any communication functions the product will use, including email, web
browser, network protocols, and electronic forms. Define any pertinent message formatting. Specify
communication security and encryption issues, data transfer rates, handshaking, and synchronization
mechanisms. State any constraints around these interfaces, such as whether certain types of email
 attachments are acceptable or not.

6. Quality attributes
This section specifies nonfunctional requirements other than constraints, which are recorded in
section 2.4, and external interface requirements, which appear in section 5. These quality requirements
should be specific, quantitative, and verifiable. Indicate the relative priorities of various attributes,
such as ease of use over ease of learning, or security over performance. A rich specification notation
such as Planguage clarifies the needed levels of each quality much better than can simple descriptive
 statements (see the “Specifying quality requirements with Planguage” section in Chapter 14).
Chapter 14 presents more information about these quality attribute requirements and many examples.

198 PART II Requirements development

6.1 Usability
Usability requirements deal with ease of learning, ease of use, error avoidance and recovery, efficiency
of interactions, and accessibility. The usability requirements specified here will help the user interface
designer create the optimum user experience.

6.2 Performance
State specific performance requirements for various system operations. If different functional
 requirements or features have different performance requirements, it’s appropriate to specify those
performance goals right with the corresponding functional requirements, rather than collecting them
in this section.

6.3 Security
Specify any requirements regarding security or privacy issues that restrict access to or use of the
product. These could refer to physical, data, or software security. Security requirements often
 originate in business rules, so identify any security or privacy policies or regulations to which the
product must conform. If these are documented in a business rules repository, just refer to them.

6.4 Safety
Specify requirements that are concerned with possible loss, damage, or harm that could result
from use of the product. Define any safeguards or actions that must be taken, as well as potentially
 dangerous actions that must be prevented. Identify any safety certifications, policies, or regulations to
which the product must conform.

6.x [Others]
Create a separate section in the SRS for each additional product quality attribute to describe
 characteristics that will be important either to customers or to developers and maintainers.
 Possibilities include availability, efficiency, installability, integrity, interoperability, modifiability,
 portability, reliability, reusability, robustness, scalability, and verifiability. Chapter 14 describes a
 procedure for focusing on those attributes that are of most importance to a particular project.

7. Internationalization and localization requirements
Internationalization and localization requirements ensure that the product will be suitable for
use in nations, cultures, and geographic locations other than those in which it was created. Such
 requirements might address differences in currency; formatting of dates, numbers, addresses, and
telephone numbers; language, including national spelling conventions within the same language
(such as American versus British English), symbols used, and character sets; given name and
 family name order; time zones; international regulations and laws; cultural and political issues;
paper sizes used; weights and measures; electrical voltages and plug shapes; and many others.
 Internationalization and localization requirements could well be reusable across projects.

 CHAPTER 10 Documenting the requirements 199

8. [Other requirements]
Define any other requirements that are not covered elsewhere in the SRS. Examples are legal,
 regulatory, or financial compliance and standards requirements; requirements for product installation,
configuration, startup, and shutdown; and logging, monitoring, and audit trail requirements. Instead
of just combining these all under “Other,” add any new sections to the template that are pertinent
to your project. Omit this section if all your requirements are accommodated in other sections.
 Transition requirements that are necessary for migrating from a previous system to a new one could
be included here if they involve software being written (as for data conversion programs), or in the
project management plan if they do not (as for training development or delivery).

Appendix A: Glossary
Define any specialized terms that a reader needs to know to understand the SRS, including acronyms
and abbreviations. Spell out each acronym and provide its definition. Consider building a reusable
enterprise-level glossary that spans multiple projects and incorporating by reference any terms that
pertain to this project. Each SRS would then define only those terms specific to an individual project
that do not appear in the enterprise-level glossary. Note that data definitions belong in the data
dictionary, not the glossary.

Appendix B: Analysis models
This optional section includes or points to pertinent analysis models such as data flow diagrams,
feature trees, state-transition diagrams, or entity-relationship diagrams. (See Chapter 12, “A picture is
worth 1024 words.”) Often it’s more helpful for the reader if you incorporate certain models into the
relevant sections of the specification instead of collecting them at the end.

Requirements specification on agile projects

Projects following agile development life cycles take a variety of approaches to specifying
 requirements that differ from the method just described. As you saw in Chapter 8, “Understanding
user requirements,” many agile projects employ user stories during elicitation. Each user story is a
statement of a user need or functionality that will be valuable to the user or purchaser of the system
(Cohn 2004; Cohn 2010). Teams might begin specification on agile projects by writing just enough
information for each user story so that the stakeholders have a general understanding of what the
story is about and can prioritize it relative to other stories. This allows the team to begin planning
allocations of specific stories to iterations. The team might aggregate a group of related stories into a
“minimally marketable feature” that needs to be fully implemented prior to a product release so the
feature delivers the expected customer value.

User stories are accumulated and prioritized into a dynamic product backlog that evolves throughout
the project. Large stories that encompass significant functionality that cannot be implemented within
a single iteration are subdivided into smaller stories, which are allocated to multiple iterations for
 implementation. (See Chapter 20, “Agile projects.”) User stories can be recorded on something as simple

200 PART II Requirements development

as index cards, instead of in a traditional document. Some agile teams record their stories in a story
management tool, whereas others don’t retain them at all following implementation.

As the team gets into each iteration, conversations among the product owner, people performing
the business analyst role, developers, testers, and users will flesh out the details of each story
 allocated to the iteration. That is, specification involves the progressive refinement of detail at the
right stage of the project, which is a good practice on any project. Those details generally correspond
to what we have identified as functional requirements in the SRS. However, agile projects often
 represent those details in the form of user acceptance tests that describe how the system will behave
if the story is properly implemented. The tests for a story are conducted during the iteration in which
the story is implemented and in future iterations for regression testing. As with all tests, they should
cover exception conditions as well as the expected behavior. These acceptance tests can be written
on cards as well or recorded in a more persistent form, such as in a testing tool. Tests should be
 automated to assure rapid and complete regression testing. If the team elects to discard the original
user stories, then the only persistent documentation of the requirements is likely to be the acceptance
tests, if they are stored in a tool.

Similarly, nonfunctional requirements can be written on cards not as user stories but as constraints
(Cohn 2004). Alternatively, teams might specify nonfunctional requirements that are associated with
a specific user story in the form of acceptance criteria or tests, such as to demonstrate achievement
of specific quality attribute goals. As an example, security tests might demonstrate that certain users
are permitted to access the functionality described in a particular user story but that the system
blocks access for other users. The agile team is not precluded from using other methods to represent
requirements knowledge, such as analysis models or a data dictionary. They should select whatever
representation techniques are customary and appropriate for their culture and project.

It’s up to each project team to choose the most appropriate forms for specifying its software
 requirements. Remember the overarching goal of requirements development: to accumulate a shared
understanding of requirements that is good enough to allow construction of the next portion of the
product to proceed at an acceptable level of risk. The appropriate level of formality and detail in
which to document requirements depends on factors including the following:

 ■ The extent to which just-in-time informal verbal and visual communication between customers
and developers can supply the necessary details to permit the correct implementation of each
user requirement

 ■ The extent to which informal communication methods can keep the team effectively
 synchronized across time and space

 ■ The extent to which it is valuable or necessary to retain requirements knowledge for future
enhancement, maintenance, application reengineering, verification, statutory and audit
 mandates, product certification, or contractual satisfaction

 ■ The extent to which acceptance tests can serve as effective replacements for descriptions of
the expected system capabilities and behaviors

 ■ The extent to which human memories can replace written representations

 CHAPTER 10 Documenting the requirements 201

No matter what type of product the team is building, what development life cycle they are
 following, or what elicitation techniques the BA is using, effective requirements specification is an
essential key to success. There are many ways to achieve this. Just remember that when you don’t
specify high-quality requirements, the resulting software is like a box of chocolates: you never know
what you’re going to get.

Next steps

 ■ Review your project’s set of requirements against the template in Figure 10-2 to see if you
have requirements from all the sections that pertain to your project. This chapter is less
about populating a specific template and more about ensuring that you accumulate the
necessary information for a successful project; the template is a helpful reminder.

 ■ If your organization doesn’t already have a standard SRS template, convene a small
 working group to adopt one. Begin with the template in Figure 10-2 and adapt it to best
meet the needs of your organization’s projects and products. Agree on a convention for
labeling individual requirements.

 ■ If you are storing your requirements in some form other than in a traditional document,
such as in a requirements management tool, study the SRS template in Figure 10-2 and
see if there are any categories of requirements information that you are not currently
eliciting and recording. Modify your repository to incorporate those categories so the
repository can serve as a reminder for future requirements elicitation activities.

 203

C H A P T E R 1 1

Writing excellent requirements

“Hi, Gautam. This is Ruth calling from the Austin branch. We got that latest drop of the website software
for the online music store. I wanted to ask you about the song preview feature. That’s not working the
way I had in mind.”

Gautam replied, “Let me find the requirements you sent for that. Here they are. The user story said,
‘As a Customer, I want to listen to previews of the available songs so I can decide which ones to buy.’ My
notes say that when we discussed this, you said each song sample should be 30 seconds long and that it
should use our built-in MP3 player so the customer didn’t have to wait for another player to launch. Isn’t
that working correctly?”

“Well, yes, that all works fine,” said Ruth, “but there are a couple of problems. I can click on the
play icon to start the sample, but I don’t have any way to pause it or stop it. I’m forced to listen to the
entire 30-second sample. Also, all the samples start at the beginning of the song. Some songs have long
introductions so you really can’t hear what they’re like from just the beginning. The sample should start
somewhere in the middle of those songs so people could hear what they’re really like. And the sample
starts playing at full volume and then stops abruptly. If the customer’s speakers are up pretty loud this
could be startling. I think it would be better if we fade in and fade out on each sample.”

Gautam was a little frustrated. “I wish you had told me all of this when we spoke earlier. You didn’t
give me much to go on so I just had to make my best guess. I can do all that, but it’s going to take a few
more days.”

The best requirements repository in the world is useless if it doesn’t contain high-quality
 information. This chapter describes desirable characteristics of requirements and of requirements
 documents. It presents numerous guidelines for writing requirements, along with many examples
of flawed requirements and suggestions for improving them. These recommendations apply to the
 requirements that are created for any project following any development life cycle. The requirements
authors on each project need to judge the appropriate level of precision and detail for their
 requirements, but there’s no substitute for clear communication.

Characteristics of excellent requirements

How can you tell good requirements from those with problems? This section describes several
 characteristics that individual requirement statements should exhibit, followed by desirable
 characteristics of the requirements set as a whole (Davis 2005; ISO/IEC/IEEE 2011). The best way

204 PART II Requirements development

to tell whether your requirements possess these desired attributes is to have several stakeholders
review them. Different stakeholders will spot different kinds of problems. Chapter 17, “Validating the
 requirements,” describes the use of checklists to remind reviewers of common requirements errors.

Characteristics of requirement statements
In an ideal world, every individual business, user, functional, and nonfunctional requirement would
exhibit the qualities described in the following sections.

Complete
Each requirement must contain all the information necessary for the reader to understand it. In the
case of functional requirements, this means providing the information the developer needs to be able
to implement it correctly. If you know you’re lacking certain information, use TBD (to be determined)
as a standard flag to highlight these gaps, or log them in an issue-tracking system to follow up
on later. Resolve all TBDs in each portion of the requirements before the developers proceed with
 construction of that portion.

Correct
Each requirement must accurately describe a capability that will meet some stakeholder’s need and
must clearly describe the functionality to be built. You’ll have to go to the source of the requirement
to check its correctness. This might be a user who supplied the initial requirement, a higher-level
 system requirement, a use case, a business rule, or another document. A low-level requirement
that conflicts with its parent is not correct. To assess the correctness of user requirements, user
 representatives or their close surrogates should review them.

Feasible
It must be possible to implement each requirement within the known capabilities and limitations
of the system and its operating environment, as well as within project constraints of time, budget,
and staff. A developer who participates during elicitation can provide a reality check on what can
and cannot be done technically and what can be done only at excessive cost or effort. Incremental
 development approaches and proof-of-concept prototypes are two ways to evaluate requirement
feasibility. If a requirement needs to be cut because it is not be feasible, understand the impact on the
project vision and scope.

Necessary
Each requirement should describe a capability that provides stakeholders with the anticipated
business value, differentiates the product in the marketplace, or is required for conformance to an
external standard, policy, or regulation. Every requirement should originate from a source that has
the authority to provide requirements. Trace functional and nonfunctional requirements back to
specific voice-of-the-user input, such as a use case or user story. You should be able to relate each

 CHAPTER 11 Writing excellent requirements 205

 requirement to a business objective that clearly indicates why it’s necessary. If someone asks why a
particular requirement is included, there should be a good answer.

Prioritized
Prioritize business requirements according to which are most important to achieving the desired
value. Assign an implementation priority to each functional requirement, user requirement, use case
flow, or feature to indicate how essential it is to a particular product release. If all requirements are
equally important, the project manager doesn’t know how best to respond to schedule overruns,
personnel losses, or new requirements that come along. Requirements prioritization should be a
 collaborative activity involving multiple stakeholder perspectives. Chapter 16, “First things first:
 Setting requirement priorities,” discusses prioritization in further detail.

Unambiguous
Natural language is prone to two types of ambiguity. One type I can spot myself, when I can think of
more than one way to interpret a given requirement. The other type of ambiguity is harder to catch.
That’s when different people read the requirement and come up with different interpretations of
it. The requirement makes sense to each of them but means something different to each of them.
 Inspections are a good way to spot ambiguities (Wiegers 2002). A formal peer review such as an
inspection (as opposed to just passing out the requirements to individuals to examine on their own)
provides an opportunity for each participant to compare his understanding of each requirement to
someone else’s. “Comprehensible” is related to “unambiguous”: readers must understand what each
requirement is saying. Chapter 17 describes the software peer review process.

You’ll never remove all the ambiguity from requirements—that’s the nature of human language.
Most of the time, reasonable people can draw the right conclusions from even a slightly fuzzy
 requirement. Getting a little help from your colleagues through reviews will clean up a lot of the
worst issues, though.

Verifiable
Can a tester devise tests or other verification approaches to determine whether each requirement
is properly implemented? If a requirement isn’t verifiable, deciding whether it was correctly
 implemented becomes a matter of opinion, not objective analysis. Requirements that are incomplete,
inconsistent, infeasible, or ambiguous are also unverifiable. Testers are good at examining
 requirements for verifiability. Include them in your requirements peer reviews to catch problems early.

Characteristics of requirements collections
It’s not enough to have excellent individual requirement statements. Sets of requirements that
are grouped into a baseline for a specific release or iteration should exhibit the characteristics
 described in the following sections, whether they are recorded in an SRS document, a requirements
 management tool, a set of user stories and acceptance tests, or any other form.

206 PART II Requirements development

Complete
No requirement or necessary information should be absent. In practice, you’ll never document every
single requirement for any system. There are always some assumed or implied requirements, although
they carry more risk than explicitly stated requirements. Missing requirements are hard to spot
because they aren’t there! The section “Avoiding incompleteness” later in this chapter suggests some
ways to identify missing requirements. Any specification that contains TBDs is incomplete.

Consistent
Consistent requirements don’t conflict with other requirements of the same type or with higher-level
business, user, or system requirements. If you don’t resolve contradictions between requirements
before diving into construction, the developers will have to deal with them. Recording the originator
of each requirement lets you know who to talk to if you discover conflicts. It can be hard to spot
inconsistencies when related information is stored in different locations, such as in a vision and scope
document and in a requirements management tool.

Modifiable
You can always rewrite a requirement, but you should maintain a history of changes made to each
 requirement, especially after they are baselined. You also need to know about connections and
 dependencies between requirements so you can find all the ones that must be changed together.
Modifiability dictates that each requirement be uniquely labeled and expressed separately from
others so you can refer to it unambiguously. See Chapter 10, “Documenting the requirements,” for
various ways to label requirements.

To facilitate modifiability, avoid stating requirements redundantly. Repeating a requirement in
multiple places where it logically belongs makes the document easier to read but harder to maintain
(Wiegers 2006). The multiple instances of the requirement all have to be modified at the same time
to avoid generating inconsistencies. Cross-reference related items in the SRS to help keep them
 synchronized when making changes. Storing individual requirements just once in a requirements
management tool solves the redundancy problem and facilitates reuse of common requirements
across multiple projects. Chapter 18, “Requirements reuse,” offers several strategies for reusing
 requirements.

Traceable
A traceable requirement can be linked both backward to its origin and forward to derived
 requirements, design elements, code that implements it, and tests that verify its implementation.
Note that you don’t actually have to define all of these trace links for a requirement to have the
 properties that make it traceable. Traceable requirements are uniquely labeled with persistent
 identifiers. They are written in a structured, fine-grained way, not in long narrative paragraphs.
Avoid combining multiple requirements together into a single statement, because the different
 requirements might trace to different development components. Chapter 29, “Links in the
 requirements chain,” addresses requirements tracing.

 CHAPTER 11 Writing excellent requirements 207

You’re never going to create a perfect specification in which all requirements demonstrate all of
these ideal attributes. But if you keep these characteristics in mind when you write and review the
requirements, you’ll produce better requirements specifications and better software.

Guidelines for writing requirements

There is no formulaic way to write excellent requirements; the best teachers are experience and
 feedback from the recipients of your requirements. Receiving constructive feedback from colleagues
with sharp eyes is a great help because you can learn where your writing did and didn’t hit the mark.
This is why peer reviews of requirements documents are so critical. To get started with reviews,
buddy up with a fellow business analyst and begin exchanging requirements for review. You’ll learn
from seeing how another BA writes requirements, and you’ll improve the team’s collective work
by discovering errors and improvement opportunities as early as possible. The following sections
provide numerous tips for writing requirements—particularly functional requirements—that readers
can clearly understand. Benjamin Kovitz (1999), Ian Alexander and Richard Stevens (2002), and Karl
 Wiegers (2006) present many other recommendations and examples for writing good requirements.

When we say “writing requirements,” people immediately think of writing textual requirements in
natural language. It’s better to mentally translate the phrase “writing requirements” to “representing
requirements knowledge.” In many cases, alternative representation techniques can present
 information more effectively than can straight text (Wiegers 2006). The BA should choose an
 appropriate mix of communication methods that ensures a clear, shared understanding of both the
stakeholder needs and the solution to be built.

The sample requirements presented here can always be improved upon, and there are always
equivalent ways to state them. Two important goals of writing requirements are that:

 ■ Anyone who reads the requirement comes to the same interpretation as any other reader.

 ■ Each reader’s interpretation matches what the author intended to communicate.

These outcomes are more important than purity of style or conforming dogmatically to some
 arbitrary rule or convention.

System or user perspective
You can write functional requirements from the perspective of either something the system does
or something the user can do. Because effective communication is the overarching goal, it’s fine to
 intermingle these styles, phrasing each requirement in whichever style is clearer. State requirements
in a consistent fashion, such as “The system shall” or “The user shall,” followed by an action verb,
followed by the observable result. Specify the trigger action or condition that causes the system
to perform the specified behavior. A generic template for a requirement written from the system’s
 perspective is (Mavin et al. 2009):

[optional precondition] [optional trigger event] the system shall [expected system response].

208 PART II Requirements development

This template is from the Easy Approach to Requirements Syntax (EARS). EARS also includes additional
template constructs for event-driven, unwanted behavior, state-driven, optional, and complex
requirements. Following is an example of a simple functional requirement that describes a system
 action using this template:

If the requested chemical is found in the chemical stockroom, the system shall display a list of all
containers of the chemical that are currently in the stockroom.

This example includes a precondition, but not a trigger. Some requirement writers would omit
the phrase “the system shall” from this requirement. They argue that, because the requirements are
 describing system behavior, there’s no need to repetitively say “the system shall” do this or that. In
this example, deleting “the system shall” is not confusing. Sometimes, though, it’s more natural to
phrase the requirement in terms of a user’s action, not from the system’s perspective. Including the
“shall” and writing in the active voice makes it clear what entity is taking the action described.

When writing functional requirements from the user’s perspective, the following general structure
works well (Alexander and Stevens 2002):

The [user class or actor name] shall be able to [do something] [to some object] [qualifying
conditions, response time, or quality statement].

Alternative phrasings are “The system shall let (or allow, permit, or enable) the [a particular user class
name] to [do something].” Following is an example of a functional requirement written from the user’s
perspective:

The Chemist shall be able to reorder any chemical he has ordered in the past by retrieving and
editing the order details.

Notice how this requirement uses the name of the user class—Chemist—in place of the generic “user.”
Making the requirement as explicit as possible reduces the possibility of misinterpretation.

Writing style
Writing requirements isn’t like writing either fiction or other types of nonfiction. The writing style
you might have learned in school in which you present the main idea, then supporting facts, then
the conclusion, doesn’t work well. Adjust your writing style to put the punch line—the statement
of need or functionality—first, followed by supporting details (rationale, origin, priority, and other
 requirement attributes). This structure helps readers who are just skimming through a document,
while still being useful for those thorough readers who need all the details. Including tables,
 structured lists, diagrams, and other visual elements helps to break up a monotonous litany of
 functional requirements and provides richer communication to those who learn best in different ways.

Nor are requirements documents the place to practice your creative writing skills. Avoid
 interleaving passive and active voice in an attempt to make the material more interesting to read.
Don’t use multiple terms for the same concept just to achieve variety (customer, account, patron,
user, client). Being easy to read and understand is an essential element of well-written requirements;
being interesting is, frankly, less important. If you are not a skilled writer, you should expect that your

 CHAPTER 11 Writing excellent requirements 209

 readers might not understand what you intend to convey. Keep the tips that follow in mind as you
craft your requirements statements for maximum communication effectiveness.

Clarity and conciseness Write requirements in complete sentences using proper grammar, spelling,
and punctuation. Keep sentences and paragraphs short and direct. Write requirements in simple and
straightforward language appropriate to the user domain, avoiding jargon. Define specialized terms
in a glossary.

Another good guideline is to write concisely. Phrases like “needs to provide the user with the
 capability to” can be condensed to “shall.” For each piece of information in the requirements set,
ask yourself, “What would the reader do with this information?” If you aren’t certain that some
 stakeholder would find that information valuable, perhaps you don’t need it. Clarity is more
 important than conciseness, though.

Precisely stated requirements increase the chance of people receiving what they expect; less
specific requirements offer the developer more latitude for interpretation. Sometimes that lack of
specificity is fine, but in other cases it can lead to too much variability in the outcome. If a developer
who reviews the SRS isn’t clear on the customer’s intent, consider including additional information to
reduce the risk of problems later on.

The keyword “shall” A traditional convention is to use the keyword “shall” to describe some system
capability. People sometimes object to the word “shall.” “That’s not how people talk,” they protest. So
what? “Shall” statements clearly indicate the desired functionality, consistent with your overarching
objective of clear and effective communication. You might prefer to say “must,” “needs to,” or
 something similar, but be consistent. I sometimes read specifications that contain a random and
confusing mix of requirements verbs: shall, must, may, might, will, would, should, could, needs to, has
to, should provide, and others. I never know if there are differences between the meanings of these
or not. Nuances between different verbs also make the document far more difficult for cross-cultural
teams to interpret consistently. You’re better off sticking with a keyword such as “shall.”

Some requirement authors deliberately use different verbs to imply subtle distinctions. They use
certain keywords to connote priority: “shall” means required, “should” means desired, and “may”
means optional (ISO/IEC/IEEE 2011). We regard such conventions as dangerous. It’s clearer to always
say “shall” or “must” and explicitly assign high, medium, or low priority to each requirement. Also,
priorities will change as iterations proceed, so don’t tie them to the phrasing of the requirements.
 Today’s “must” could become tomorrow’s “should.” Other authors use “shall” to indicate a
 requirement and “will” to denote a design expectation. Such conventions run the risk of some
 readers not understanding the distinctions between words people use interchangeably in everyday
 conversation; they are best avoided.

Trap One witty consultant suggested that you mentally replace each instance of “should”
with “probably won’t.” Would the resulting requirement be acceptable? If not, replace
“should” with something more precise.

210 PART II Requirements development

Active voice Write in the active voice to make it clear what entity is taking the action described.
Much business and scientific writing is in the passive voice, but it is never as clear and direct as using
the active voice. The following requirement is written in passive voice:

Upon product upgrade shipment, the serial number will be updated on the contract line.

The phrasing “will be updated” is indicative of passive voice. It denotes the recipient of the action
(serial number) but not the performer of the action. That is, this phrasing offers no clue as to who
or what updates the serial number. Will the system do that automatically, or is the user expected to
update the serial number? Rephrasing this requirement into active voice makes the actor explicit and
also clarifies the triggering event:

When Fulfillment confirms that they shipped a product upgrade, the system shall update the
customer’s contract with the new product serial number.

Individual requirements Avoid writing long narrative paragraphs that contain multiple
 requirements. Readers shouldn’t have to glean the individual requirements embedded in a mass of
free-flowing descriptive language. Clearly distinguish individual requirements from background or
contextual information. Such information is valuable to readers, but they need to unambiguously
 recognize the actual requirement statements. I once reviewed a large requirements specification
written in the form of long paragraphs. I could read a full page and understand it, but I had to work
hard to pick out the discrete requirements. Other readers might well come to different conclusions of
exactly what requirements were lurking in that mass of text.

Words such as “and,” “or,” “additionally,” or “also” in a requirement suggest that several
 requirements might have been combined. This doesn’t mean you can’t use “and” in a requirement;
just make sure the conjunction is joining two parts of a single requirement instead of two separate
requirements. If you would use different tests to verify the two parts, split the sentence into separate
requirements.

Avoid using “and/or” in a requirement; it leaves the interpretation up to the reader, as in this case:

The system must permit search by order number, invoice number, and/or customer purchase
order number.

This requirement would permit the user to enter one, two, or three numbers at once when
 performing a single search. That might not be what’s intended.

The words “unless,” “except,” and “but” also indicate the presence of multiple requirements:

The Buyer’s credit card on file shall be charged for payment, unless the credit card has expired.

Failing to specify what happens when the “unless” clause is true is a common source of missing
requirements. Split this into two requirements to address the behavior for the two conditions of the
credit card being active and expired:

 CHAPTER 11 Writing excellent requirements 211

If the Buyer’s credit card on file is active, the system shall charge the payment to that card.

and

If the Buyer’s credit card on file has expired, the system shall allow the Buyer to either update
the current credit card information or enter a new credit card for payment.

Level of detail
Requirements need to be specified at a level of precision that provides developers and testers with
just enough information to properly implement them.

Appropriate detail An important part of requirements analysis is to decompose a high-level
requirement into sufficient detail to clarify it and flesh it out. There’s no single correct answer to the
commonly asked question, “How detailed should the requirements be?” Provide enough specifics to
minimize the risk of misunderstanding, based on the development team’s knowledge and experience.
The fewer the opportunities for ongoing discussion about requirements issues, the more specifics you
need to record in the requirements set. If a developer can think of several possible ways to satisfy a
requirement and all are acceptable, the specificity and detail are about right. You should include more
detail when (Wiegers 2006):

 ■ The work is being done for an external client.

 ■ Development or testing will be outsourced.

 ■ Project team members are geographically dispersed.

 ■ System testing will be based on requirements.

 ■ Accurate estimates are needed.

 ■ Requirements traceability is needed.

It’s safe to include less detail when:

 ■ The work is being done internally for your company.

 ■ Customers are extensively involved.

 ■ Developers have considerable domain experience.

 ■ Precedents are available, as when a previous application is being replaced.

 ■ A package solution will be used.

Consistent granularity Requirement authors often struggle to find the right level of granularity
for writing functional requirements. It’s not necessary to specify all of your requirements to the
same level of detail. For example, you might go into more depth in an area that presents higher risk
than others. Within a set of related requirements, though, it’s a good idea to try to write functional
 requirements at a consistent level of granularity.

212 PART II Requirements development

A helpful guideline is to write individually testable requirements. The count of testable
 requirements has even been proposed as a metric for software product size (Wilson 1995). If you can
think of a small number of related test cases to verify that a requirement was correctly implemented,
it’s probably at an appropriate granularity. If you envision numerous and diverse tests, perhaps
 several requirements are combined and ought to be separated.

I’ve seen requirement statements in the same SRS that varied widely in their scope. For instance,
the following two functions were split out as separate requirements:

1. The system shall interpret the keystroke combination Ctrl+S as File Save.

2. The system shall interpret the keystroke combination Ctrl+P as File Print.

These requirements are very fine-grained. They will need few tests for verification of correct
 behavior. You can imagine a tediously long list of similar requirements, which would better be expressed
in the form of a table that lists all the keystroke shortcuts and how the system interprets them.

However, that same SRS also contained a functional requirement that seemed rather large in scope:

The product shall respond to editing directives entered by voice.

This single requirement—seemingly no larger or smaller than all the others in the SRS—stipulated
the inclusion of a complex speech-recognition subsystem—virtually an entire product in its own
right! Verifying this one requirement in the working system could require hundreds of tests. The
 requirement as stated here could be appropriate at the high level of abstraction found in a vision
statement or a market requirements document, but the speech-recognition requirement clearly
 demands much more functionality detail.

Representation techniques
Readers’ eyes glaze over when confronting a dense mass of turgid text or a long list of similar-looking
requirements. Consider the most effective way to communicate each requirement to the intended
audience. Some alternatives to the natural language requirements that we’re used to are lists, tables,
visual analysis models, charts, mathematical formulas, photographs, sound clips, and video clips.
These won’t suffice as substitutes for written requirements in many cases, but they serve as excellent
supplemental information to enhance the reader’s understanding.

I once saw a set of requirements that fit the following pattern:

The Text Editor shall be able to parse <format> documents that define <jurisdiction> laws.

There were 3 possible values for <format> and 4 possible values for <jurisdiction>, for a total of 12
similar requirements. The SRS did indeed contain 12 such requirements, but one of the combinations
was missing and another was duplicated. You can prevent such errors by representing these types of
requirements in a table, which is more compact and less boring than a requirements list. The generic
requirement could be stated as:

Editor.DocFormat The Text Editor shall be able to parse documents in several formats that
define laws in the jurisdictions shown in Table 11-1.

 CHAPTER 11 Writing excellent requirements 213

TABLE 11-1 Requirements for parsing documents

Jurisdiction Tagged format Untagged format ASCII format

Federal .1 .2 .3

State .4 .5 .6

Territorial .7 N/A .8

International .9 .10 .11

The cells in the table contain only the suffix to append to the master requirement’s identifier. For
example, the third requirement in the top row expands to:

Editor.DocFormat.3 The Text Editor shall be able to parse ASCII documents that define
federal laws.

If any of the combinations don’t have a corresponding functional requirement for some logical
 reason, put N/A (not applicable) in that table cell. This is much clearer than omitting the irrelevant
combination from the long list and then having a reader wonder why there is no requirement for
parsing documents containing territorial laws in the untagged format. This technique also ensures
completeness in the requirements set—if there’s something in every cell, you know you haven’t
missed any.

Avoiding ambiguity
Requirements quality is in the eye of the reader, not the author. The analyst might believe that a
requirement he has written is crystal clear, free from ambiguities and other problems. However, if a
reader has questions, the requirement needs additional work. Peer reviews are the best way to find
places where the requirements aren’t clearly understood by all the intended audiences. This section
describes several common sources of requirements ambiguity.

Fuzzy words Use terms consistently and as defined in the glossary. Watch out for synonyms and
near-synonyms. I know of one project where four different terms were used to refer to the same item
in a single requirements document. Pick a single term and use it consistently, placing synonyms in the
glossary so people who are accustomed to calling the item by a different name see the connection.

If you use a pronoun to refer to something mentioned earlier, make sure the antecedent is crystal
clear. Adverbs introduce subjectivity and hence ambiguity. Avoid words like reasonably, appropriately,
generally, approximately, usually, systematically, and quickly because the reader won’t be sure how to
interpret them.

Ambiguous language leads to unverifiable requirements, so avoid using vague and subjective
terms. Table 11-2 lists many such terms, along with suggestions for how to remove the ambiguity.
Some of these words might be acceptable in business requirements, but not in user requirements or
specific functional requirements that are attempting to describe the solution to be built.

214 PART II Requirements development

TABLE 11-2 Some ambiguous terms to avoid in requirements

Ambiguous terms Ways to improve them

acceptable, adequate Define what constitutes acceptability and how the system can judge this.

and/or Specify whether you mean “and,” “or,” or “any combination of” so the reader doesn’t have
to guess.

as much as practicable Don’t leave it up to the developers to determine what’s practicable. Make it a TBD and set
a date to find out.

at least, at a minimum,
not more than, not to
exceed

Specify the minimum and maximum acceptable values.

best, greatest, most State what level of achievement is desired and the minimum acceptable level of
 achievement.

between, from X to Y Define whether the end points are included in the range.

depends on Describe the nature of the dependency. Does another system provide input to this system,
must other software be installed before your software can run, or does your system rely on
another to perform some calculations or provide other services?

efficient Define how efficiently the system uses resources, how quickly it performs specific
 operations, or how quickly users can perform certain tasks with the system.

fast, quick, rapid Specify the minimum acceptable time in which the system performs some action.

flexible, versatile Describe the ways in which the system must be able to adapt to changing operating
 conditions, platforms, or business needs.

i.e., e.g. Many people are unclear about which of these means “that is” (i.e., meaning that the full
list of items follows) and which means “for example” (e.g., meaning that just some examples
follow). Use words in your native language, not confusing Latin abbreviations.

improved, better, faster,
superior, higher quality

Quantify how much better or faster constitutes adequate improvement in a specific
 functional area or quality aspect.

including, including
but not limited to, and
so on, etc., such as, for
instance

List all possible values or functions, not just examples, or refer the reader to the location of
the full list. Otherwise, different readers might have different interpretations of what the
whole set of items being referred to contains or where the list stops.

in most cases, generally,
usually, almost always

Clarify when the stated conditions or scenarios do not apply and what happens then.
Describe how either the user or the system can distinguish one case from the other.

match, equals, agree,
the same

Define whether a text comparison is case sensitive and whether it means the phrase
 “contains,” “starts with,” or is “exact.” For real numbers, specify the degree of precision in
the comparison.

maximize, minimize,
optimize

State the maximum and minimum acceptable values of some parameter.

normally, ideally Identify abnormal or non-ideal conditions and describe how the system should behave in
those situations.

optionally Clarify whether this means a developer choice, a system choice, or a user choice.

probably, ought to,
should

Will it or won’t it?

reasonable, when
 necessary, where
 appropriate, if possible,
as applicable

Explain how either the developer or the user can make this judgment.

robust Define how the system is to handle exceptions and respond to unexpected operating
 conditions.

 CHAPTER 11 Writing excellent requirements 215

Ambiguous terms Ways to improve them

seamless, transparent,
graceful

What does “seamless” or “graceful” mean to the user? Translate the user’s expectations into
specific observable product characteristics.

several, some, many,
few, multiple, numerous

State how many, or provide the minimum and maximum bounds of a range.

shouldn’t, won’t Try to state requirements as positives, describing what the system will do.

state-of-the-art Define what this phrase means to the stakeholder.

sufficient Specify how much of something constitutes sufficiency.

support, enable Define exactly what functions the system will perform that constitute “supporting” some
capability.

user-friendly, simple,
easy

Describe system characteristics that will satisfy the customer’s usage needs and usability
expectations.

The A/B construct Many requirements specifications include expressions in the form “A/B,” in
which two related (or synonymous, or opposite) terms are combined with a slash. Such expressions
frequently are ambiguous. Here’s an example:

The system shall provide automated information collection of license key data for a mass release
from the Delivery/Fulfillment Team.

This sentence could be interpreted in several ways:

 ■ The name of the team is Delivery/Fulfillment.

 ■ Delivery and fulfillment are synonyms.

 ■ Some projects call the group a Delivery Team; others call it a Fulfillment Team.

 ■ Either the Delivery Team or the Fulfillment Team can do a mass release, so the slash means “or.”

 ■ The Delivery Team and the Fulfillment Team jointly do a mass release, so the slash means “and.”

Sometimes authors use the A/B construct because they aren’t sure exactly what they have in mind.
 Unfortunately, this means that each reader gets to interpret the requirement to mean whatever he
thinks it ought to mean. It’s better to decide exactly what you intend to say and choose the right words.

Boundary values Many ambiguities occur at the boundaries of numerical ranges in both
 requirements and business rules. Consider the following:

Vacation requests of up to 5 days do not require approval. Vacation requests of 5 to 10 days
require supervisor approval. Vacation requests of 10 days or longer require management approval.

This phrasing makes it unclear as to which category vacation requests of exactly 5 days and exactly
10 days belong. It gets even more confusing if fractions are involved, like 5.5 days of vacation. The
words “through,” “inclusive,” and “exclusive” make it totally clear whether the endpoints of the
 numerical range lie inside or outside the range:

Vacation requests of 5 or fewer days do not require approval. Vacation requests of longer than
5 days through 10 days require supervisor approval. Vacation requests of longer than 10 days
require management approval.

216 PART II Requirements development

Negative requirements People sometimes write requirements that say what the system will not do
rather than what it will do. How do you implement a don’t-do-this requirement? Double and triple
negatives are particularly tricky to decipher. Try to rephrase negative requirements into a positive
sense that clearly describes the restricting behavior. Here’s an example:

Prevent the user from activating the contract if the contract is not in balance.

Consider rephrasing this double negative (“prevent” and “not in balance”) as a positive statement:

The system shall allow the user to activate the contract only if the contract is in balance.

Instead of using negative requirements to indicate that certain functionality is out of scope, include
the restriction in the Limitations and Exclusions section of the vision and scope document, as
 described in Chapter 5, “Establishing the business requirements.” If a specific requirement was once
in scope but then removed, you don’t want to lose sight of it—it might come back someday. If you
are maintaining requirements in a document, use strikethrough formatting to indicate a deleted
 requirement. The best way to handle such deleted requirements is with a requirements status
 attribute in a requirements management tool (see Chapter 27, “Requirements management practices,”
for more about requirements attributes and status tracking).

Avoiding incompleteness
We don’t know of any way to be certain that you’ve found every requirement. Chapter 7,
 “Requirements elicitation,” suggests several ways to identify missing requirements. Focusing elicitation
on user tasks rather than system features can help avoid overlooking functionality. Also, using analysis
models can help you spot missing requirements (see Chapter 12, “A picture is worth 1024 words”).

Symmetry Symmetrical operations are a common source of missing requirements. I once found the
following requirement in an SRS I was reviewing:

The user must be able to save the contract at any point during manual contract setup.

Nowhere in the rest of the specification did I find a requirement to allow the user to retrieve an
incomplete but saved contract to work on it further: perhaps a requirement was missing. Nor was it
clear whether the system should validate the data entries in the incomplete contract before saving it.
An implied requirement? Developers need to know.

Complex logic Compound logical expressions often leave certain combinations of decision values
undefined. Consider this requirement:

If the Premium plan is not selected and proof of insurance is not provided, the customer should
automatically default into the Basic plan.

This requirement refers to two binary decisions, whose combinations lead to four possible outcomes.
However, the specification only addressed this one combination. It didn’t say what should happen if:

 ■ The Premium plan is selected and proof of insurance is not provided.

 CHAPTER 11 Writing excellent requirements 217

 ■ The Premium plan is selected and proof of insurance is provided.

 ■ The Premium plan is not selected and proof of insurance is provided.

The reader is forced to conclude that the system doesn’t take any action for those three other
 conditions. That might be correct, but it’s better to make such conclusions explicit rather than implicit.
Use decision tables or decision trees to represent complex logic and ensure that you have not missed
any variants.

Missing exceptions Each requirement that states how the system should work when everything is
correct should also have accompanying requirements as necessary to describe how the system should
respond when exceptions occur. Consider the following requirement:

If the user is working in an existing file and chooses to save the file, the system shall save it with
the same name.

This requirement alone does not indicate what the system should do if it’s unable to save the file with
the same name. An appropriate second requirement to go with the first might be:

If the system is unable to save a file using a specific name, the system shall give the user the
option to save it with a different name or to cancel the save operation.

Sample requirements, before and after

This chapter opened with several characteristics of high-quality requirements. Requirements that
don’t exhibit these characteristics cause confusion, wasted effort, and rework later, so strive to correct
any problems early. Following are several functional requirements adapted from real projects that
are less than ideal. Examine each statement for those quality characteristics to see whether you can
spot the problems. Verifiability is a good starting point. If you can’t devise tests to tell whether the
 requirement was correctly implemented, it’s probably ambiguous or lacks necessary information.

For each example, we present some observations about the problems with these requirements
and suggested improvements. Additional reviews would no doubt improve them further, but at some
point you need to write software. More examples of rewriting poor requirements are available from
Ivy Hooks and Kristin Farry (2001), Al Florence (2002), Ian Alexander and Richard Stevens (2002),
and Karl Wiegers (2006). Note that pulling requirements out of context like this shows them at their
worst. These might well make more sense in their original environment. We also assume that business
 analysts (and all other team members) come to work each day to do the best job they can, based on
what they know at the moment, so we’re not picking on the original authors here.

Trap Watch out for analysis paralysis. All of the sample “after” requirements in this chapter
can be improved further, but you can’t spend forever trying to perfect the requirements.
Remember, your goal is to write requirements that are good enough to let your team
 proceed with design and construction at an acceptable level of risk.

218 PART II Requirements development

Example 1 The Background Task Manager shall provide status messages at regular intervals not less
than every 60 seconds.

What are the status messages? Under what conditions and in what fashion are they provided to
the user? If displayed on the screen, how long do they remain visible? Is it okay if they just flash up
for half a second? The timing interval is not clear, and the word “every” just muddles the issue. One
way to evaluate a requirement is to see whether a ludicrous but legitimate interpretation is all right
with the user. If not, the requirement needs more work. In this example, is the interval between
status messages supposed to be at least 60 seconds, so providing a new message once per year is
okay? Alternatively, if the intent is to have at most 60 seconds elapse between messages, would one
 millisecond be too short an interval? These extreme interpretations might be consistent with the
original requirement, but they certainly aren’t what the user had in mind. Because of these problems,
this requirement is not verifiable.

Here’s one way to rewrite the preceding requirement to address those shortcomings, after we get
some more information from the customer:

1. The Background Task Manager (BTM) shall display status messages in a designated area of
the user interface.

1.1. The BTM shall update the messages every 60 plus or minus 5 seconds after background task
processing begins.

1.2. The messages shall remain visible continuously during background processing.

1.3. The BTM shall display the percent of the background task that is completed.

1.4. The BTM shall display a “Done” message when the background task is completed.

1.5. The BTM shall display a message if the background task has stalled.

Rewriting a flawed requirement often makes it longer because information was missing. Splitting this
into multiple child requirements makes sense because each will demand separate tests. This also makes
each one individually traceable. There would likely be additional status messages that the BTM might
display. If those are documented someplace else, such as in an interface specification, incorporate that
information here by reference instead of replicating it. Listing the messages in a table of conditions and
corresponding messages would be more concise than writing numerous functional requirements.

The revised requirements don’t specify how the status messages will be displayed, just “in a
designated area of the user interface.” Such wording defers the placement of the messages to being
a design issue, which is fine in many cases. If you specify the display location in the requirements,
it becomes a design constraint placed on the developer. Unnecessarily constrained design options
 frustrate the programmers and can result in a suboptimal product design.

Suppose, though, that we’re adding this functionality to an existing application whose user
 interface already contains a status bar, where users are accustomed to seeing important messages.
For consistency with the rest of the application it would make perfect sense to stipulate that the
BTM’s status messages shall appear in the status bar. That is, you might deliberately impose the
 design constraint for a very good reason.

 CHAPTER 11 Writing excellent requirements 219

Example 2 Corporate project charge numbers should be validated online against the master corporate
charge number list, if possible.

The phrase “if possible” is ambiguous. Does it mean “if it’s technically feasible” (a question for the
 developer) or “if the master charge number list can be accessed at run time”? If you aren’t sure
whether a requested capability can be delivered, use TBD to indicate that the issue is unresolved.
After investigation, either the TBD goes away or the requirement goes away. This requirement doesn’t
specify what to do when the validation either passes or fails. Also, avoid imprecise words such as
“should.” Here’s a revised version of this requirement:

At the time the requester enters a charge number, the system shall display an error message
if the charge number is not in the master corporate charge number list.

A related requirement would address the exception condition of the master corporate charge number
list not being available at the time the validation was attempted.

Example 3 The device tester shall allow the user to easily connect additional components, including a
pulse generator, a voltmeter, a capacitance meter, and custom probe cards.

This requirement is for a product containing embedded software that’s used to test several kinds of
measurement devices. The word “easily“ implies a usability requirement, but it is neither measurable
nor verifiable. “Including” doesn’t make it clear whether this is the complete list of external devices
that must be connected to the tester. Perhaps there are many others that we don’t know about.
 Consider the following alternative requirements, which contain some intentional design constraints:

1. The device tester shall incorporate a USB port to allow the user to connect any measurement
device that has a USB connection.

2. The USB port shall be installed on the front panel to permit a trained operator to connect a
measurement device in 10 seconds or less.

A business analyst shouldn’t rewrite requirements in a way that imposes design constraints on his own
initiative. Instead, detect the flawed requirements and discuss them with the appropriate stakeholders
so they can be clarified.

Example 4 The system must check for inconsistencies in account data between the Active Account
Log and the Account Manager archive. The logic that is used to generate these comparisons should be
based on the logic in the existing consistency checker tool. In other words, the new code does not need
to be developed from scratch. The developers should utilize the current consistency checker code as the
 foundation. However, additional logic must be added to identify which database is the authoritative
source. The new functionality will include writing data to holding tables to indicate how/where to resolve
inconsistencies. Additionally, the code should also check for exception scenarios against the security
tools database. Automated email alerts should be sent to the Security Compliance Team whenever
 discrepancies are found.

This is a good one for you to practice on. We’ll point out some of the problems with this paragraph,
and you might want to try rewriting it in an improved form, making some assumptions as necessary
to fill in the gaps. Following are some issues you might want to correct.

220 PART II Requirements development

 ■ There are numerous requirements in here that should be split out individually.

 ■ If the comparison logic is “based on” logic in the existing consistency checker tool, exactly
what portion of the code can be reused and how does it need to be changed? What functions
are different between the new system and the existing tool? What “additional logic” must be
added? How exactly can the system determine “which database is the authoritative source”?

 ■ The new functionality “includes” writing data to holding tables; is that all, or is other
 functionality “included” that isn’t explicitly stated?

 ■ Clarify what “how/where” means when resolving inconsistencies.

 ■ “Should” is used in several places.

 ■ What’s the relationship between an “exception scenario” and a “discrepancy”? If they’re
 synonyms, pick one term and stick with it. A glossary might clarify whether these are the same
or how they are related.

 ■ What information should the system send to the Security Compliance Team when it detects a
discrepancy?

As we said earlier, you’re never going to get perfect requirements. But an experienced BA can
nearly always help make requirements better.

Next steps
 ■ Hold a discussion with your customers, developers, and testers to evaluate the current

level of requirements documentation on your project to determine if more or less detail is
needed in specific areas and how best to represent those requirements.

 ■ Examine a page of functional requirements from your project’s requirements set to see
whether each statement exhibits the characteristics of excellent requirements. Look for any
of the types of problems described in this chapter. Rewrite any requirements that don’t
measure up.

 ■ Convene three to six project stakeholders to inspect the SRS for your project (Wiegers
2002). Make sure each requirement demonstrates the desirable characteristics discussed
in this chapter. Look for conflicts between different requirements in the specification,
for missing requirements, and for missing sections of the SRS. Ensure that the defects
you find are corrected in the SRS and in any downstream work products based on those
 requirements.

 221

C H A P T E R 1 2

A picture is worth 1024 words

The Chemical Tracking System (CTS) project team was holding its first detailed requirements review.
The participants were Dave (project manager), Lori (business analyst), Helen (lead developer), Ramesh
(test lead), Tim (product champion for the chemists), and Roxanne (product champion for the chemical
stockroom staff). Tim began by saying, “I read the whole document. Most of the requirements seemed
okay to me, but I had a hard time digesting the long lists of requirements in a few sections. I’m not sure
whether we identified all the steps in the chemical request process.”

“It was hard for me to think of all the tests that I’ll need to cover the status changes for a request,”
Ramesh added. “I found a bunch of requirements sprinkled throughout the document about the status
changes, but I couldn’t tell whether any were missing. A couple of requirements seemed to conflict.”

Roxanne had a similar problem. “I got confused when I read about the way I would actually request
a chemical,” she said. “I had trouble visualizing the sequence of steps I would go through.”

After the reviewers raised several other concerns, Lori concluded, “It looks like this document doesn’t
tell us everything we need to know about the system. I’ll create some diagrams to help us visualize the
requirements and see whether that clarifies these problem areas. Thanks for the feedback.”

As requirements authority Alan Davis pointed out, no single view of the requirements provides a
complete understanding (Davis 1995). You need a combination of textual and visual requirements
representations at different levels of abstraction to paint a full picture of the intended system.
Requirements views can include functional requirements lists, tables, visual analysis models, user
interface prototypes, acceptance tests, decision trees, decision tables, photographs, videos, and
mathematical expressions (Wiegers 2006). Ideally, different people will create various requirements
representations. The business analyst might write the functional requirements and draw some models,
whereas the user interface designer builds a prototype and the test lead writes test cases. Comparing
the requirements representations created through diverse thought processes and diverse notations
reveals inconsistencies, ambiguities, assumptions, and omissions that are difficult to spot from any
single view.

Diagrams communicate certain types of information more efficiently than text can. Pictures help
bridge language and vocabulary barriers among team members. The BA initially might need to
explain the purpose of the models and the notations used to other stakeholders. There are many
different diagrams and modeling techniques to choose from to create visual representations of the
requirements. This chapter introduces several requirements modeling techniques, with illustrations
and pointers to other sources for further details.

222 PART II Requirements development

Modeling the requirements

Business analysts might hope to find one technique that pulls everything together into a holistic
depiction of a system’s requirements. Unfortunately, there is no such all-encompassing diagram. In
fact, if you could model the entire system in a single diagram, that diagram would be just as unusable
as a long list of requirements on its own. An early goal of structured systems analysis was to replace
the classical functional specification with diagrams and notations that are more formal than narrative
text. However, experience has shown that analysis models should augment—rather than replace—a
requirements specification written in natural language. Developers and testers still benefit from the
detail and precision that written requirements offer.

Visual requirements models can help you identify missing, extraneous, and inconsistent
 requirements. Given the limitations of human short-term memory, analyzing a list of one thousand
requirements for inconsistencies, duplication, and extraneous requirements is nearly impossible. By
the time you reach the fifteenth requirement, you have likely forgotten the first few that you read.
You’re unlikely to find all of the errors simply by reviewing the textual requirements.

Visual requirements models described in this book include:

 ■ Data flow diagrams (DFDs)

 ■ Process flow diagrams such as swimlane diagrams

 ■ State-transition diagrams (STDs) and state tables

 ■ Dialog maps

 ■ Decision tables and decision trees

 ■ Event-response tables

 ■ Feature trees (discussed in Chapter 5, “Establishing the business requirements”)

 ■ Use case diagrams (discussed in Chapter 8, “Understanding user requirements”)

 ■ Activity diagrams (also discussed in Chapter 8)

 ■ Entity-relationship diagrams (ERDs) (discussed in Chapter 13, “Specifying data requirements”)

The notations presented here provide a common, industry-standard language for project
 participants to use. Inventing your own modeling notations presents more risk of misinterpretation
than if you adopt standard notations.

These models are useful for elaborating and exploring the requirements, as well as for designing
software solutions. Whether you are using them for analysis or for design depends on the timing and
the intent of the modeling. Used for requirements analysis, these diagrams let you model the problem

 CHAPTER 12 A picture is worth 1024 words 223

domain or create conceptual representations of the new system. They depict the logical aspects of
the problem domain’s data components, transactions and transformations, real-world objects, and
changes in system state. You can base the models on the textual requirements to represent them
from different perspectives, or you can derive functional requirements from high-level models that
are based on user input. During design, models represent how you intend to implement the system:
the actual database to create, the object classes to instantiate, and the code modules to develop.
 Because analysis and design diagrams use the same notations, clearly identify each one you draw as
 being an analysis model (the concepts) or a design model (what you intend to build).

The analysis modeling techniques described in this chapter are supported by a variety of
 commercial modeling tools, requirements management tools, and drawing tools such as Microsoft
Visio. Specialized modeling tools provide several benefits over general-purpose drawing tools. First,
they make it easy to improve the diagrams through iteration. You’ll almost never get a model right
the first time through, so iteration is a key to modeling success. Tools can also enforce the rules for
each modeling method they support. They can identify syntax errors and inconsistencies that people
who review the diagrams might not see. Requirements management tools that support modeling
 allow you to trace requirements to the models. Some tools link multiple diagrams together and to
their related functional and data requirements. Using a tool with standard symbols can help you keep
the models consistent with each other.

We hear arguments against using requirements models that range from “Our system is too
 complex to model” to “We have a tight project schedule; there is no time to model the requirements.”
A model is simpler than the system you are modeling. If you cannot handle the complexity of the
model, how will you be able to handle the complexity of the system? Creating most models doesn’t
require significantly more time than you would spend writing the requirements statements and
analyzing them for issues. Any extra time spent using requirements analysis models should be more
than made up for by catching requirements errors prior to building the system. Models, or portions
of models, can sometimes be reused from one project to another, or at least serve as a straw-man
 starting point for requirements elicitation on a subsequent project.

From voice of the customer to analysis models

By listening carefully to how customers present their requirements, the business analyst can pick out
keywords that translate into specific model elements. Table 12-1 suggests possible mappings from
customers’ word choices into model components, which are described later in this chapter. As you
evolve customer input into written requirements and models, you should be able to link each model
component to a specific user requirement.

224 PART II Requirements development

TABLE 12-1 Relating the customer’s voice to analysis model components

Type of word Examples Analysis model components

Noun People, organizations, software systems, data
elements, or objects that exist

 ■ External entities, data stores, or data flow
(DFD)

 ■ Actors (use case diagram)
 ■ Entities or their attributes (ERD)
 ■ Lanes (swimlane diagram)
 ■ Objects with states (STD)

Verb Actions, things a user or system can do, or
events that can take place

 ■ Processes (DFD)
 ■ Process steps (swimlane diagram)
 ■ Use cases (use case diagram)
 ■ Relationships (ERD)
 ■ Transitions (STD)
 ■ Activities (activity diagram)
 ■ Events (event-response table)

Conditional Conditional logic statements, such as if/then ■ Decisions (decision tree, decision table, or
activity diagram)

 ■ Branching (swimlane diagram or activity
diagram)

Building on the Chemical Tracking System example, consider the following paragraph of user
needs supplied by the product champion who represented the Chemist user class. Significant unique
nouns are highlighted in bold, verbs are in italics, and conditional statements are in bold italics; look
for these keywords in the analysis models shown later in this chapter. For the sake of illustration, some
of the models show information that goes beyond that contained in the following paragraph, whereas
other models depict just part of the information presented here:

A chemist or a member of the chemical stockroom staff can place a request
for one or more chemicals if the user is an authorized requester. The request
can be fulfilled either by delivering a container of the chemical that is already in
the chemical stockroom’s inventory or by placing an order for a new container of
the chemical with an outside vendor. If the chemical is hazardous, the chemical
can be delivered only if the user is trained. The person placing the request must
be able to search vendor catalogs online for specific chemicals while preparing
his request. The system needs to track the status of every chemical request from
the time it is prepared until the request is either fulfilled or canceled. It also needs
to track the history of every chemical container from the time it is received at the
company until it is fully consumed or disposed of.

Trap Don’t assume that customers already know how to read analysis models, but don’t
conclude that they’re unable to understand them, either. Include a key and explain the
purpose and notations of each model to your product champions. Walk through a sample
model to help them learn how to review each type of diagram.

 CHAPTER 12 A picture is worth 1024 words 225

Selecting the right representations

Rarely does a team need to create a complete set of analysis models for an entire system. Focus
your modeling on the most complex and riskiest portions of the system and on those portions
most subject to ambiguity or uncertainty. Safety-critical, security-critical, and mission-critical
 system elements are good candidates for modeling because the impact of defects in those areas is
so severe. Also choose models to use together to help ensure all of the models are complete. For
example, examining the data objects in a DFD can uncover missing entities in an ERD. Considering
all the processes in a DFD might identify useful swimlane diagrams to create. There are suggestions
 throughout the rest of the chapter on which models complement each other well in this fashion.

Table 12-2, adapted from Karl Wiegers’ work (2006), suggests which representation techniques
to use based on what type of information you are trying to show, analyze, or discover. Joy Beatty
and Anthony Chen (2012) provide additional suggestions about what requirements models to create
based on project phases, characteristics of the project, and the target audience(s) for the models. The
rest of this chapter describes some of the most commonly used models from this table that are not
 covered elsewhere in the book.

TABLE 12-2 Choosing the most appropriate representation techniques

Information depicted Representation techniques

System external interfaces ■ The context diagram and use case diagram identify objects outside the
system that connect to it. The context diagram and data flow diagrams
illustrate the system inputs and outputs at a high level of abstraction.
The ecosystem map identifies possible systems that interact, but includes
some that do not interface directly as well. Swimlane diagrams show what
 happens in the interactions between systems.

 ■ External interface details can be recorded in input and output file formats
or report layouts. Products that include both software and hardware
 components often have interface specifications with data attribute
 definitions, perhaps in the form of an application programming interface or
specific input and output signals for a hardware device.

Business process flow ■ A top-level data flow diagram represents how a business process handles
data at a high level of abstraction. Swimlane diagrams show the roles that
participate in executing the various steps in a business process flow.

 ■ Refined levels of data flow diagrams or swimlane diagrams can represent
business process flows in considerable detail. Similarly, flowcharts and
activity diagrams can be used at either high or low levels of abstraction,
although most commonly they are used to define the details of a process.

Data definitions and data object
relationships

 ■ The entity-relationship diagram shows the logical relationships between
data objects (entities). Class diagrams show the logical connections between
object classes and the data associated with them.

 ■ The data dictionary contains detailed definitions of data structures and
individual data items. Complex data objects are progressively broken down
into their constituent data elements.

226 PART II Requirements development

Information depicted Representation techniques

System and object states ■ State-transition diagrams and state tables represent a high-abstraction view
of the possible states of a system or object and the changes between states
that can take place under certain circumstances. These models are helpful
when multiple use cases can manipulate (and change the state of) certain
objects.

 ■ Some analysts create an event-response table as a scoping tool, identifying
external events that help define the product’s scope boundary. You can also
specify individual functional requirements with an event-response table by
detailing how the system should behave in response to each combination of
external event and system state.

 ■ Functional requirements provide the details that describe exactly what user
and system behaviors lead to status changes.

Complex logic ■ A decision tree shows the possible outcomes from a set of related decisions
or conditions. A decision table identifies the unique functional requirements
 associated with the various combinations of true and false outcomes for a
series of decisions or conditions.

User interfaces ■ The dialog map provides a high-level view of a proposed or actual user
interface, showing the various display elements and possible navigation
pathways between them.

 ■ Storyboards and low-fidelity prototypes flesh out the dialog map by showing
what each screen will contain without depicting precise details. Display-
action-response models describe the display and behavior requirements of
each screen.

 ■ Detailed screen layouts and high-fidelity prototypes show exactly how the
display elements will look. Data field definitions and user interface control
descriptions provide additional detail.

User task descriptions ■ User stories, scenarios, and use case specifications describe user tasks in
 various levels of detail.

 ■ Swimlane diagrams illustrate the business process or interplay between
multiple actors and the system. Flowcharts and activity diagrams visually
depict the flow of the use case dialog and branches into alternative flows
and exceptions.

 ■ Functional requirements provide detailed descriptions of how the system
and user will interact to achieve valuable outcomes. Test cases provide an
 alternative low-abstraction view, describing exactly what system behavior to
expect under specific conditions of inputs, system state, and actions.

Nonfunctional requirements (quality
attributes, constraints)

 ■ Quality attributes and constraints are usually written in the form of natural
language text, but that often results in a lack of precision and completeness.
Chapter 14, “Beyond functionality” describes a definitive technique for
 precisely specifying nonfunctional requirements called Planguage (Gilb
2005).

Data flow diagram

The data flow diagram is the basic tool of structured analysis (DeMarco 1979; Robertson and
 Robertson 1994). A DFD identifies the transformational processes of a system, the collections (stores)
of data or physical materials that the system manipulates, and the flows of data or material between
processes, stores, and the outside world. Data flow modeling takes a functional decomposition
 approach to systems analysis, breaking complex problems into progressive levels of detail. This
works well for transaction-processing systems and other function-intensive applications. Through
the addition of control flow elements, the DFD technique has been extended to permit modeling of
 real-time systems (Hatley, Hruschka, and Pirbhai 2000).

 CHAPTER 12 A picture is worth 1024 words 227

DFDs provide a big-picture view of how data moves through a system, which other models don’t
show well. Various people and systems execute processes that use, manipulate, and produce data,
so any single use case or swimlane diagram can’t show you the full life cycle of a piece of data.
Also, multiple pieces of data might be pulled together and transformed by a process (for example,
 shopping cart contents plus shipping information plus billing information are transformed into an
order object). Again, this is hard to show in other models. However, DFDs do not suffice as a sole
modeling technique. The details about how the data is transformed are better shown by steps in a
process using use cases or swimlane diagrams.

Beatty and Chen (2012) suggest tips for creating DFDs and using DFDs for requirements analysis.
This tool is often used when interviewing customers, because it’s easy to scribble a DFD on a
 whiteboard while discussing how the user’s business operates. DFDs can be used as a technique
to identify missing data requirements. The data that flows between processes, data stores, and
 external entities should also be modeled in ERDs and described in the data dictionary. Also, a DFD
gives context to the functional requirements regarding how the user performs specific tasks, such as
 requesting a chemical.

Data flow diagrams can represent systems over a wide range of abstraction. High-level DFDs
provide a holistic, bird’s-eye view of the data and processing components in a multistep activity,
which complements the precise, detailed view embodied in the functional requirements. The context
diagram in Figure 5-6 in Chapter 5 represents the highest level of abstraction of the DFD. The context
diagram represents the entire system as a single black-box process, depicted as a circle (a bubble). It
also shows the external entities, or terminators, that connect to the system, and the data or material
flows between the system and the external entities. Flows on a context diagram often represent
 complex data structures, which are defined in the data dictionary.

You can elaborate the context diagram into a level 0 DFD (the highest level of a data flow model),
which partitions the system into its major processes. Figure 12-1 shows a partial level 0 DFD for the
Chemical Tracking System. This model uses the Yourdon-DeMarco DFD notation. There are alternative
notations that use slightly different symbols.

The single circle that represented the entire Chemical Tracking System on the context diagram
has been subdivided into six major processes (the process bubbles). As with the context diagram, the
external entities are shown in rectangles. All data flows (arrows) from the context diagram also appear
on the level 0 DFD. In addition, the level 0 diagram contains several data stores, depicted as a pair of
parallel horizontal lines, which are internal to the system and therefore do not appear on the context
diagram. A flow from a bubble to a store indicates that data is being placed into the store, a flow out
of the store shows a read operation, and a bidirectional arrow between a store and a bubble indicates
an update operation.

Each process that appears as a separate bubble on the level 0 diagram can be further expanded
into a separate DFD to reveal more detail about its functioning. The BA continues this progressive
 refinement until the lowest-level diagrams contain only primitive process operations that can be
clearly represented in narrative text, pseudocode, a swimlane diagram, or an activity diagram. The
functional requirements will define precisely what happens within each primitive process. Each
level of the DFD must be balanced and consistent with the level above it so that all the input and

228 PART II Requirements development

 output flows on the child diagram match up with flows on its parent. Complex data structures in the
 high-level diagrams might be split into their constituent elements, as defined in the data dictionary,
on the lower-level DFDs.

FIGURE 12-1 Partial level 0 data flow diagram for the Chemical Tracking System.

Figure 12-1 looks complex at first glance. However, if you examine the immediate environment
of any one process, you will see the data items that it consumes and produces and their sources and
destinations. To see exactly how a process uses the data items, you’ll need to either draw a more
detailed child DFD or refer to the functional requirements for that part of the system.

Following are several conventions for drawing data flow diagrams. Not everyone adheres to the
same conventions (for example, some BAs show external entities only on the context diagram), but
we find them helpful. Using the models to enhance communication among the project participants is
more important than dogmatic conformance to these principles.

 ■ Processes communicate through data stores, not by direct flows from one process to another.
Similarly, data cannot flow directly from one store to another or directly between external
entities and data stores; it must pass through a process bubble.

 ■ Don’t attempt to imply the processing sequence using the DFD.

 CHAPTER 12 A picture is worth 1024 words 229

 ■ Name each process as a concise action: verb plus object (such as “generate reports”). Use
names that are meaningful to the customers and pertinent to the business or problem
 domain.

 ■ Number the processes uniquely and hierarchically. On the level 0 diagram, number each
 process with an integer. If you create a child DFD for process 3, number the processes in that
child diagram 3.1, 3.2, and so on.

 ■ Don’t show more than 8 to 10 processes on a single diagram or it will be difficult to draw,
change, and understand. If you have more processes, introduce another layer of abstraction by
grouping related processes into a higher-level process.

 ■ Bubbles with flows that are only coming in or only going out are suspect. The processing that
a DFD bubble represents normally requires both input and output flows.

When customer representatives review a DFD, they should make sure that all the known and
 relevant data-manipulating processes are represented and that processes have no missing or
 unnecessary inputs or outputs. DFD reviews often reveal previously unrecognized user classes,
 business processes, and connections to other systems.

Modeling problems, not software
I once served as the IT representative on a team that was doing some business process
 reengineering. Our goal was to reduce the time that it took to make a new chemical available
for use in a product by a factor of 10. The reengineering team included the following
 representatives of the various functions involved in chemical commercialization:

 ■ The synthetic chemist who first makes the new chemical (he’s a real person, but a synthetic
chemist)

 ■ The scale-up chemist who develops a process for making large batches of the chemical

 ■ The analytical chemist who devises techniques for analyzing the chemical’s purity

 ■ The patent attorney who applies for patent protection

 ■ The health and safety representative who obtains government approval to use the
 chemical in consumer products

The team worked together to invent a new process that we believed would greatly
 accelerate the chemical commercialization activity and modeled it in a swimlane diagram. Then,
I interviewed the person on the reengineering team who was responsible for each process step.
I asked each owner two questions: “What information do you need to perform this step?” and
“What information does this step produce that we should store?” When correlating the answers
for all process steps, I found steps that needed data that no one had available. Other steps
 produced data that no one needed. We fixed all those problems.

230 PART II Requirements development

Next, I drew a data flow diagram to illustrate the new chemical commercialization process
and an entity-relationship diagram (Chapter 13) to model the data relationships. A data
 dictionary (Chapter 13) defined all our data items. These analysis models served as useful
 communication tools to help the team members arrive at a common understanding of the
new process. The models would also be a valuable starting point to scope and specify the
 requirements for software applications that supported portions of the process.

Swimlane diagram

Swimlane diagrams provide a way to represent the steps involved in a business process or the
 operations of a proposed software system. They are a variation of flowcharts, subdivided into visual
subcomponents called lanes. The lanes can represent different systems or actors that execute the
steps in the process. Swimlane diagrams are most commonly used to show business processes,
 workflows, or system and user interactions. They are similar to UML activity diagrams. Swimlane
 diagrams are sometimes called cross-functional diagrams.

Swimlane diagrams can show what happens inside the process bubbles from DFDs. They help tie
together the functional requirements that enable users to perform specific tasks. They can also be
used to perform detailed analysis to identify the requirements that support each process step (Beatty
and Chen 2012).

The swimlane diagram is one of the easiest models for stakeholders to understand because the
notation is simple and commonly used. Drafting business processes in swimlane diagrams can be
a good starting point for elicitation conversations, as is described in Chapter 24, “Business process
 automation projects.” Swimlane diagrams can contain additional shapes, but the most commonly
used elements are:

 ■ Process steps, shown as rectangles.

 ■ Transitions between process steps, shown as arrows connecting pairs of rectangles.

 ■ Decisions, shown as diamonds with multiple branches leaving each diamond. The decision
choices are shown as text labels on each arrow leaving a diamond.

 ■ Swimlanes to subdivide the process, shown as horizontal or vertical lines on the page. The
lanes are most commonly roles, departments, or systems. They show who or what is executing
the steps in a given lane.

Figure 12-2 shows a partial swimlane diagram for the CTS. The swimlanes in this example are roles
or departments, showing which group executes each step in the business process to order a chemical
from a vendor. To identify functional requirements, you can start at the first box, “Create a chemical
request,” and think about what functionality the system must have to support that step, as well as
the data requirements for a “chemical request.” A later step to “Receive and approve invoice” might

 CHAPTER 12 A picture is worth 1024 words 231

trigger the team to identify requirements for what it means to process an invoice. How is the invoice
received? What is its format? Is the invoice processing manual, or does the system automate some or
all of it? Does the data from the invoice get pushed to other systems?

FIGURE 12-2 Partial swimlane diagram for a process in the Chemical Tracking System.

A complete business process might not fit entirely within the scope of a software system. Notice
that the Receiving department appears in the swimlane as part of the process, but it is not found in
the context diagram or the DFD because the Receiving department will never interact with the CTS
directly. Reviewing the ecosystem map shown in Figure 5-7 (shown earlier, in Chapter 5) triggered the
team to realize that Receiving had a place in this business process, though. The team also reviewed
the data inputs to and outputs from this process bubble in the DFD (process 3 in Figure 12-1) to
 ensure that both models consumed and produced the same data, correcting any errors they found.
This illustrates the power of modeling, creating multiple representations using different thought
 processes to gain a richer understanding of the system you’re building.

232 PART II Requirements development

State-transition diagram and state table

Software systems involve a combination of functional behavior, data manipulation, and state changes.
Real-time systems and process control applications can exist in one of a limited number of states at
any given time. A state change can take place only when well-defined criteria are satisfied, such as
receiving a specific input stimulus under certain conditions. An example is a highway intersection
that incorporates vehicle sensors, protected turn lanes, and pedestrian crosswalk buttons and signals.
Many information systems deal with business objects—sales orders, invoices, inventory items, and the
like—with life cycles that involve a series of possible states, or statuses.

Describing a set of complex state changes in natural language creates a high probability of
 overlooking a permitted state change or including a disallowed change. Depending on how an SRS is
organized, requirements that pertain to the state-driven behavior might be sprinkled throughout it.
This makes it difficult to reach an overall understanding of the system’s behavior.

State-transition diagrams and state tables are two state models that provide a concise, complete,
and unambiguous representation of the states of an object or system. The state-transition diagram
(STD) shows the possible transitions between states visually. A related technique is the state machine
diagram included in the Unified Modeling Language (UML), which has a richer set of notations and
which models the states an object goes through during its lifetime (Ambler 2005). The STD contains
three types of elements:

 ■ Possible system states, shown as rectangles. Some notations use circles to represent the state
(Beatty and Chen 2012). Either circles or rectangles work fine; just be consistent in what you
choose to use.

 ■ Allowed state changes or transitions, shown as arrows connecting pairs of rectangles.

 ■ Events or conditions that cause each transition to take place, shown as text labels on each
transition arrow. The label might identify both the event and the corresponding system
 response.

The STD for an object that passes through a defined life cycle will have one or more termination
states, which represent the final status values that an object can have. Termination states have
 transition arrows coming in, but none going out. Customers can learn to read an STD with just a little
coaching about the notation—it’s just boxes and arrows.

Recall from Chapter 8 that a primary function of the Chemical Tracking System is to permit actors
called Requesters to place requests for chemicals, which can be fulfilled either from the chemical
stockroom’s inventory or by placing orders to outside vendors. Each request will pass through a
series of states between the time it’s created and the time it’s either fulfilled or canceled (the two
 termination states). Thus, an STD models the life cycle of a chemical request, as shown in Figure 12-3.

 CHAPTER 12 A picture is worth 1024 words 233

FIGURE 12-3 A partial state-transition diagram for a chemical request in the Chemical Tracking System.

This STD shows that an individual request can take on one of the following seven possible states:

 ■ In Preparation The Requester is creating a new request, having initiated that function from
some other part of the system.

 ■ Postponed The Requester saved a partial request for future completion without either
 submitting the request to the system or canceling the request operation.

 ■ Accepted The Requester submitted a completed chemical request and the system accepted
it for processing.

 ■ Placed The request must be satisfied by an outside vendor and a buyer has placed an order
with the vendor.

234 PART II Requirements development

 ■ Fulfilled The request has been satisfied, either by the delivery of a chemical container from
the chemical stockroom to the Requester or by receipt of a chemical from a vendor.

 ■ Back-ordered The vendor didn’t have the chemical available and notified the buyer that it
was back-ordered for future delivery.

 ■ Canceled The Requester canceled an accepted request before it was fulfilled, or the buyer
canceled a vendor order before it was fulfilled or while it was back-ordered.

When the Chemical Tracking System user representatives reviewed the initial chemical request
STD, they identified one state that wasn’t needed, saw that another essential state was missing,
and pointed out two incorrect transitions. No one had seen those errors when they reviewed the
 corresponding functional requirements. This underscores the value of representing requirements
information at more than one level of abstraction. It’s often easier to spot a problem when you step
back from the detailed level and see the big picture that an analysis model provides. However, the
STD doesn’t provide enough detail for a developer to know what software to build. Therefore, the SRS
for the Chemical Tracking System included the functional requirements associated with processing a
chemical request and its possible state changes.

A state table shows all of the possible transitions between states in the form of a matrix. A business
analyst can use state tables to ensure that all transitions are identified by analyzing every cell in the
matrix. All states are written down the first column and repeated across the first row of the table.
The cells indicate whether the transition from a state on the left to a state at the top is valid, and
 identifies the transition event to move between states. Figure 12-4 shows a state table that matches
the state-transition diagram in Figure 12-3. These two diagrams show exactly the same information,
but the table format helps ensure that no transitions are missed, and the diagram format helps
 stakeholders visualize the possible sequences of transitions. You might not need to create both
 models. However, if you have created one already, the other is easy to create, if you do want to
 analyze the state changes from two perspectives. The two rows in Figure 12-4 in which the values
are all “no” are both termination states; when the chemical request is in either the Fulfilled or the
 Canceled state, it cannot transition out of it.

The state-transition diagram and state table provide a high-level viewpoint that spans multiple
use cases or user stories, each of which might perform a transition from one state to another. The
state models don’t show the details of the processing that the system performs; they show only
the possible state changes that result from that processing. They help developers understand the
intended behavior of the system. The models facilitate early testing because testers can derive tests
from the STD that cover all allowed transition paths. Both models are useful for ensuring that all
the required states and transitions have been correctly and completely described in the functional
requirements.

 CHAPTER 12 A picture is worth 1024 words 235

FIGURE 12-4 State table for a chemical request in the Chemical Tracking System.

Dialog map

The dialog map represents a user interface design at a high level of abstraction. It shows the dialog
elements in the system and the navigation links among them, but it doesn’t show the detailed screen
designs. A user interface can be regarded as a series of state changes. Only one dialog element (such
as a menu, workspace, dialog box, line prompt, or touch screen display) is available at any given time
for user input. The user can navigate to certain other dialog elements based on the action he takes
at the active input location. The number of possible navigation pathways can be large in a complex
system, but the number is finite and the options are usually known. A dialog map is really just a user
interface modeled in the form of a state-transition diagram (Wasserman 1985; Wiegers 1996). Larry
Constantine and Lucy Lockwood (1999) describe a similar technique called a navigation map, which
includes a richer set of notations for representing different types of interaction elements and context
transitions. A user interface flow is similar to a dialog map but shows the navigation paths between
user interface screens in a swimlane diagram format (Beatty and Chen 2012).

A dialog map allows you to explore hypothetical user interface concepts based on your
 understanding of the requirements. Users and developers can study a dialog map to reach a common
vision of how the user might interact with the system to perform a task. Dialog maps are also useful
for modeling the visual architecture of a website. Navigation links that you build into the website
 appear as transitions on the dialog map. Of course, the user has additional navigation options
through the browser’s Back and Forward buttons, as well as the URL input field, but the dialog map
does not show those. Dialog maps are related to system storyboards, which also include a short
 description of each screen’s purpose (Leffingwell and Widrig 2000).

236 PART II Requirements development

Dialog maps capture the essence of the user–system interactions and task flow without bogging
the team down in detailed screen layouts. Users can trace through a dialog map to find missing,
incorrect, or unnecessary navigations, and hence missing, incorrect, or unnecessary requirements. The
abstract, conceptual dialog map formulated during requirements analysis serves as a guide during
detailed user interface design.

Just as in ordinary state-transition diagrams, the dialog map shows each dialog element as a state
(rectangle) and each allowed navigation option as a transition (arrow). The condition that triggers user
interface navigation is shown as a text label on the transition arrow. There are several types of trigger
conditions:

 ■ A user action, such as pressing a function key, clicking on a hyperlink, or making a gesture on
a touch screen.

 ■ A data value, such as an invalid user input value that triggers an error message display

 ■ A system condition, such as detecting that a printer is out of paper

 ■ Some combination of these, such as typing a menu option number and pressing the Enter key

Dialog maps look a bit like flowcharts, but they serve a different purpose. A flowchart explicitly
shows the processing steps and decision points, but not the user interface displays. In contrast, the
dialog map does not show the processing that takes place along the transition lines that connect
one dialog element to another. The branching decisions (usually user choices) are hidden behind
the display screens that are shown as rectangles on the dialog map, and the conditions that lead to
displaying one screen or another appear in the labels on the transitions.

To simplify the dialog map, omit global functions such as pressing the F1 key to bring up a
help display from each dialog element. The SRS section on user interfaces should specify that this
 functionality will be available, but showing lots of help-screen boxes on the dialog map clutters the
model while adding little value. Similarly, when modeling a website, you needn’t include standard
navigation links that will appear on each page in the site. You can also omit the transitions that
reverse the flow of a webpage navigation sequence because the web browser’s Back button handles
that navigation.

A dialog map is an excellent way to represent the interactions between an actor and the system
that a use case describes. The dialog map can depict alternative flows as branches off the normal flow.
I found that sketching dialog map fragments on a whiteboard was helpful during use case elicitation
workshops in which a team explored the sequence of actor actions and system responses that would
lead to task completion. For use cases and process flows that are already complete, compare them
to dialog maps to ensure that all the functions needed to execute the steps can be accessed in the UI
navigation.

Chapter 8 presented a use case for the Chemical Tracking System called “Request a Chemical.” The
normal flow for this use case involved requesting a chemical container from the chemical stockroom’s
inventory. An alternative flow was to request the chemical from a vendor. The user placing the request
wanted the option to view the history of the available stockroom containers of that chemical before
selecting one. Figure 12-5 shows a dialog map for this fairly complex use case. The entry point for

 CHAPTER 12 A picture is worth 1024 words 237

this dialog map is the transition line that begins with a solid black circle, “ask to place a request.” The
user would enter this portion of the application’s user interface from some other part of the UI along
that line. Exit points for the dialog map to return to some other portion of the UI are the transition
lines ending with a solid black circle inside another circle, “cancel entire request” and “OK; exit request
function.”

FIGURE 12-5 A partial dialog map for the “Request a Chemical” use case from the Chemical Tracking System.

238 PART II Requirements development

This diagram might look complicated at first, but if you trace through it one line and one box at a
time, it’s not difficult to understand. The user initiates this use case by asking to place a request for a
chemical from some menu in the Chemical Tracking System. In the dialog map, this action brings the
user to the box called “Current Request List,“ along the arrow in the upper-left part of the dialog map.
That box represents the main workspace for this use case, a list of the chemicals in the user’s current
request. The arrows leaving that box on the dialog map show all the navigation options—and hence
functionality—available to the user in that context:

 ■ Cancel the entire request.

 ■ Submit the request if it contains at least one chemical.

 ■ Add a new chemical to the request list.

 ■ Delete a chemical from the list.

The last operation, deleting a chemical, doesn’t involve another dialog element; it simply refreshes the
current request list display after the user makes the change.

As you trace through this dialog map, you’ll see elements that reflect the rest of the “Request a
Chemical” use case:

 ■ One flow path for requesting a chemical from a vendor

 ■ Another path for fulfillment from the chemical stockroom

 ■ An optional path to view the history of a container in the chemical stockroom

 ■ An error message display to handle entry of an invalid chemical identifier or other error
 conditions that could arise

Some of the transitions on the dialog map allow the user to back out of operations. Users get
 annoyed if they are forced to complete a task even though they change their minds partway through
it. The dialog map lets you maximize usability by designing in those back-out and cancel options at
strategic points.

A user who reviews this dialog map might spot a missing requirement. For example, a cautious
user might want to confirm the operation that leads to canceling an entire request to avoid
 inadvertently losing data. It costs less to add this new function at the analysis stage than to build it
into a completed product. Because the dialog map represents just the conceptual view of the possible
elements involved in the interaction between the user and the system, don’t try to pin down all the
user interface design details at the requirements stage. Instead, use these models to help the project
stakeholders reach a common understanding of the system’s intended functionality.

 CHAPTER 12 A picture is worth 1024 words 239

Decision tables and decision trees

A software system is often governed by complex logic, with various combinations of conditions
 leading to different system behaviors. For example, if the driver presses the accelerate button on
a car’s cruise control system and the car is currently cruising, the system increases the car’s speed,
but if the car isn’t cruising, the input is ignored. Developers need functional requirements that
describe what the system should do under all possible combinations of conditions. However, it’s
easy to overlook a condition, which results in a missing requirement. These gaps are hard to spot by
 reviewing a textual specification.

Decision tables and decision trees are two alternative techniques for representing what the
system should do when complex logic and decisions come into play (Beatty and Chen 2012). A
decision table lists the various values for all the factors that influence the behavior and indicates the
 expected system action in response to each combination of factors. The factors can be shown either
as statements with possible conditions of true and false, as questions with possible answers of yes and
no, or as questions with more than two possible values.

Figure 12-6 shows a decision table for the logic that governs whether the Chemical Tracking
 System should accept or reject each request for a new chemical. Four factors influence this decision:

 ■ Whether the user who is creating the request is authorized to request chemicals

 ■ Whether the chemical is available either in the chemical stockroom or from a vendor

 ■ Whether the chemical is on the list of hazardous chemicals that require special training in safe
handling

 ■ Whether the user who is creating the request has been trained in handling this type of
 hazardous chemical

FIGURE 12-6 Sample decision table for the Chemical Tracking System.

Each of these four factors has two possible conditions, true or false. In principle, this gives rise
to 24, or 16, possible true/false combinations, for a potential of 16 distinct functional requirements.
In practice, though, many of the combinations lead to the same system response. If the user isn’t
 authorized to request chemicals, then the system won’t accept the request, so the other conditions
are irrelevant (shown as dashes in the cells in the decision table). The table shows that only five
 distinct functional requirements arise from the various combinations.

240 PART II Requirements development

Figure 12-7 shows a decision tree that represents this same logic. The five boxes indicate the five
possible outcomes of either accepting or rejecting the chemical request. Both decision tables and
decision trees are useful ways to document requirements (or business rules) to avoid overlooking any
combinations of conditions. Even a complex decision table or tree is easier to read than a mass of
repetitious textual requirements.

FIGURE 12-7 Sample decision tree for the Chemical Tracking System.

Event-response tables

Use cases and user stories aren’t always helpful or sufficient for discovering the functionality that
developers must implement (Wiegers 2006). This is particularly true for real-time systems. Consider a
complex highway intersection with numerous traffic lights and pedestrian walk signals. There aren’t
many use cases for a system like this. A driver might want to proceed through the light or to turn
left or right. A pedestrian wants to cross the road. Perhaps an emergency vehicle wants to be able
to turn the traffic signals green in its direction so it can speed its way to people who need help. Law
 enforcement might have cameras at the intersection to photograph the license plates of red-light
violators. This information alone isn’t enough for developers to build the correct functionality.

Another way to approach user requirements is to identify the external events to which the system
must respond. An event is some change or activity that takes place in the user’s environment that
stimulates a response from the software system (Wiley 2000). An event-response table (also called an
event table or an event list) itemizes all such events and the behavior the system is expected to exhibit
in reaction to each event. There are three classes of system events, as shown in Figure 12-8:

 ■ Business event A business event is an action by a human user that stimulates a dialog with
the software, as when the user initiates a use case. The event-response sequences correspond
to the steps in a use case or swimlane diagram.

 CHAPTER 12 A picture is worth 1024 words 241

 ■ Signal event A signal event is registered when the system receives a control signal, data
reading, or interrupt from an external hardware device or another software system, such as
when a switch closes, a voltage changes, another application requests a service, or a user
swipes his finger on a tablet’s screen.

 ■ Temporal event A temporal event is time-triggered, as when the computer’s clock reaches
a specified time (say, to launch an automatic data export operation at midnight) or when a
preset duration has passed since a previous event (as in a system that logs the temperature
read by a sensor every 10 seconds).

FIGURE 12-8 Systems respond to business, signal, and temporal events.

Event analysis works especially well for specifying real-time control systems. To identify events,
consider all the states associated with the object you are analyzing, and identify any events that
might transition the object into those states. Review context diagrams for any external entities that
might initiate an action (trigger an event) or require an automatic response (need a temporal event
 triggered). Table 12-3 contains a sample event-response table that partially describes the behavior of
an automobile’s windshield wipers. Other than event 6, which is a temporal event, these are all signal
events. Note that the expected response depends not only on the event but also on the state of the
system at the time the event takes place. For instance, events 4 and 5 in Table 12-3 result in slightly
different behaviors depending on whether the wipers were on at the time the user set the wiper
control to the intermittent setting. A response could simply alter some internal system information or
it could result in an externally visible result. Other information you might want to add to an event-
response table includes:

 ■ The event frequency (how many times the event takes place in a given time period, or a limit
to how many times it can occur).

 ■ Data elements that are needed to process the event.

 ■ The state of the system after the event responses are executed (Gottesdiener 2005).

242 PART II Requirements development

TABLE 12-3 Partial event-response table for an automobile windshield-wiper system

ID Event System state System response

1 Set wiper control to low speed Wiper off, on high speed, or on
intermittent

Set wiper motor to low speed

2 Set wiper control to high speed Wiper off, on low speed, or on
intermittent

Set wiper motor to high speed

3 Set wiper control to off Wiper on high speed, low speed,
or intermittent

1. Complete current wipe cycle
2. Turn wiper motor off

4 Set wiper control to intermittent Wiper off 1. Perform one wipe cycle
2. Read wipe time interval setting
3. Initialize wipe timer

5 Set wiper control to intermittent Wiper on low speed or on high
speed

1. Complete current wipe cycle
2. Read wipe time interval setting
3. Initialize wipe timer

6 Wipe time interval has passed since
completing last cycle

Wiper on intermittent Perform one wipe cycle at low speed
setting

7 Change intermittent wiper interval Wiper on intermittent 1. Read wipe time interval setting
2. Initialize wipe timer

8 Change intermittent wiper interval Wiper off, on high speed, or on
low speed

No response

9 Immediate wipe signal received Wiper off Perform one low-speed wipe cycle

Listing the events that cross the system boundary is a useful scoping technique (Wiegers 2006). An
event-response table that defines every possible combination of event, state, and response, including
exception conditions, can serve as part of the functional requirements for that portion of the system.
You might model the event-response table in a decision table to ensure that all possible combinations
of events and system states are analyzed. However, the BA must supply additional functional and
nonfunctional requirements. How many cycles per minute does the wiper perform on the slow and
fast wipe settings? Is the intermittent setting continuously variable, or does it have discrete settings?
What are the minimum and maximum delay times between intermittent wipes? If you omit this sort of
information, the developer has to track it down or make the decisions himself. Remember, the goal is
to specify the requirements precisely enough that a developer knows what to build and a tester can
determine if it was built correctly.

Notice that the events listed in Table 12-3 describe the essence of the event, not the specifics
of the implementation. Table 12-3 shows nothing about how the windshield wiper controls look or
how the user manipulates them. The designer could satisfy these requirements with anything from
 traditional stalk-mounted wiper controls to recognition of spoken commands: “wipers on,” “wipers
faster,” “wipe once.” Writing requirements at the essential level like this avoids imposing unnecessary
design constraints. However, record any known design constraints to guide the designer’s thinking.

 CHAPTER 12 A picture is worth 1024 words 243

A few words about UML diagrams

Many projects use object-oriented analysis, design, and development methods. Objects typically
 correspond to real-world items in the business or problem domain. They represent individual
 instances derived from a generic template called a class. Class descriptions encompass both attributes
(data) and the operations that can be performed on the attributes. A class diagram is a graphical way
to depict the classes identified during object-oriented analysis and the relationships among them
(see Chapter 13).

Products developed using object-oriented methods don’t demand unique requirements
 development approaches. This is because requirements development focuses on what the users need
to do with the system and the functionality it must contain, not with how it will be constructed. Users
don’t care about objects or classes. However, if you know that you’re going to build the system using
object-oriented techniques, it can be helpful to begin identifying classes and their attributes and
behaviors during requirements analysis. This facilitates the transition from analysis to design, because
the designer maps the problem-domain objects to the system’s objects and further details each class’s
attributes and operations.

The standard object-oriented modeling language is the Unified Modeling Language
(Booch, Rumbaugh, and Jacobson 1999). The UML is primarily used for creating design models. At the
level of abstraction that’s appropriate for requirements analysis, several UML models can be useful
(Fowler 2003; Podeswa 2010):

 ■ Class diagrams, to show the object classes that pertain to the application domain; their
 attributes, behavior, and properties; and relations among classes. Class diagrams can also be
used for data modeling, as illustrated in Chapter 13, but this limited application doesn’t fully
exploit the semantic capabilities of a class diagram.

 ■ Use case diagrams, to show the relationships between actors external to the system and the
use cases with which they interact (see Chapter 8).

 ■ Activity diagrams, to show how the various flows in a use case interlace, or which roles
 perform certain actions (as in a swimlane diagram), or to model the flow of business processes.
See Chapter 8 for a simple example.

 ■ State (or state machine) diagrams, to represent the different states a system or data object can
take on and the allowed transitions between the states.

Modeling on agile projects

All projects should exploit requirements models to analyze their requirements from a variety of
 perspectives, no matter what the project’s development approach is. The choice of models used
across different development approaches will likely be the same. The difference in how traditional
and agile projects perform modeling is related to when the models are created and the level of detail
in them.

244 PART II Requirements development

For example, you might draft a level 0 DFD early in an agile project. Then, during an iteration,
you could draw more detailed DFDs to cover the scope of that iteration only. Also, you might create
models in a less persistent or less perfected format on an agile project than on a traditional project.
You might sketch an analysis model on a whiteboard and photograph it, but not store it with formal
requirements documentation or in a modeling tool. As user stories are implemented, models can be
updated (perhaps using color to indicate completeness), which shows what is being implemented in
an iteration and reveals additional user stories that are needed to complete the picture.

The key point in using analysis models on agile projects—or really, on any project—is to focus
on creating only the models you need, only when you need them, and only to the level of detail
you need to make sure project stakeholders adequately understand the requirements. User stories
won’t always be sufficient to capture the level of detail and precision necessary for an agile project
 (Leffingwell 2011). Do not rule out the use of any models just because you are working on an agile
project.

A final reminder

Each of the modeling techniques described in this chapter has its strengths and its limitations. No one
particular view will be sufficient to represent all aspects of the system. Also, they overlap in the views
they provide, so you won’t need to create every kind of diagram for your project. For instance, if you
create an ERD and a data dictionary, you probably won’t need to create a class diagram. Keep in mind
that you draw analysis models to provide a level of understanding and communication that goes
beyond what textual requirements or any other single view of the requirements can provide.

Next steps
 ■ Practice using the modeling techniques described in this chapter by documenting the

design of an existing system. For example, draw a dialog map for an automated teller
machine or for a website that you use.

 ■ On your current or next project, select a modeling technique that complements the
 textual requirements. Sketch the model on paper or a whiteboard once or twice to make
sure you’re on the right track, and then use a modeling tool that supports the notation
you’re using. Try to create at least one model you haven’t used before.

 ■ Try creating a visual model collaboratively with other stakeholders. Use whiteboards or
sticky notes to encourage their participation.

 ■ List the external events that could stimulate your system to behave in specific ways. Create
an event-response table that shows the state the system is in when each event is received
and how the system is to respond.

 245

C H A P T E R 1 3

Specifying data requirements

Long ago I led a software project on which the three developers sometimes inadvertently used different
variable names, lengths, and validation criteria for the same data item. In fact, I used different lengths
for the variable that held the user’s name in two programs I wrote myself. Bad things can happen when
you interconvert data of different lengths. You can overwrite other data, pick up stray pad characters at
the end, have unterminated character strings, and even overwrite program code, eventually causing a
crash. Bad things.

Our project suffered from the lack of a data dictionary—a shared repository that defines the
 meaning, composition, data type, length, format, and allowed values for data elements used in the
 application. As soon as the team began defining and managing our data in a more disciplined way, all
of those problems disappeared.

Computer systems manipulate data in ways that provide value to customers. Although they were
not shown explicitly in the three-level requirements model in Figure 1-1 in Chapter 1, “The essential
software requirement,” data requirements pervade the three levels. Anywhere there are functions,
there is data. Whether the data represents pixels in a video game, packets in a cell phone call, your
company’s quarterly sales figures, your bank account activity, or anything else, software functionality
is specified to create, modify, display, delete, process, and use data. The business analyst should begin
collecting data definitions as they pop up during requirements elicitation.

A good place to start is with the input and output flows on the system’s context diagram. These
flows represent major data elements at a high level of abstraction, which the BA can refine into details
as elicitation progresses. Nouns that users mention during requirements elicitation often indicate
 important data entities: chemical request, requester, chemical, status, usage report. This chapter
 describes ways to explore and represent the data that’s important to your application’s users, along
with ways to specify any reports or dashboards your application needs to generate.

Modeling data relationships

Just as the data flow diagram described in Chapter 12, “A picture is worth 1024 words,” illustrates the
processes that take place in a system, a data model depicts the system’s data relationships. A data
model provides the high-level view of the system’s data; the data dictionary provides the detailed view.

A commonly used data model is the entity-relationship diagram or ERD (Robertson and Robertson
1994). If your ERD represents logical groups of information from the problem domain and their

246 PART II Requirements development

 interconnections, you’re using the ERD as a requirements analysis tool. An analysis ERD helps you
understand and communicate the data components of the business or the system, without implying
that the product will necessarily even include a database. When you create an ERD during design,
you’re defining the logical or physical (implementation) structure of the system’s database. That
implementation view extends or completes the understanding of the system begun during analysis
and optimizes its realization in, say, a relational database environment.

Entities could represent physical items (including people) or aggregations of data that are
 important to the business you’re analyzing or to the system you intend to build. Entities are named
as singular nouns and are shown in rectangles in an ERD. Figure 13-1 illustrates a portion of the
 entity-relationship diagram for the Chemical Tracking System, using the Peter Chen notation, one of
several common ERD modeling notations. Notice that the entities named Chemical Request, Vendor
Catalog, and Chemical Stockroom Inventory appeared as data stores in the data flow diagram in
Figure 12-1 in Chapter 12. Other entities represent actors who interact with the system (Requester),
physical items that are part of the business operations (Chemical Container), and blocks of data that
weren’t shown in the level 0 DFD but that would appear on a lower-level DFD (Container History,
Chemical). During physical database design of a relational database, entities normally become tables.

FIGURE 13-1 Partial entity-relationship diagram for the Chemical Tracking System.

 CHAPTER 13 Specifying data requirements 247

Each entity is described by one or more attributes; individual instances of an entity will have
 different attribute values. For example, the attributes for each chemical include a unique chemical
identifier, its chemical name, and a graphical representation of its chemical structure. The data
 dictionary contains the precise definitions of those attributes, which helps ensure that entities in the
ERD and their corresponding data stores in the DFD are defined identically.

The diamonds in the ERD represent relationships, which identify the logical linkages between pairs
of entities. Relationships are named in a way that describes the nature of the connection. For example,
the relationship between the Chemical Request and the Requester is a placing relationship. You can
read the relationship as either “a Chemical Request is placed by a Requester” (left-to-right, passive
voice) or as “a Requester places a Chemical Request” (right-to-left, active voice). Some conventions
would have you label the relationship diamond “is placed by,” which makes sense only if you read
the diagram from left to right. If you happened to redraw the diagram such that relative positions of
Requester and Chemical Request were reversed, then the “is placed by” relationship name would be
incorrect when read left to right: “a Requester is placed by a Chemical Request” is wrong. It’s better
to name the relationship “placing” and then just restate “placing” in whichever way is grammatically
logical—”places” or “is placed by”—when you read the statement.

When you ask customers to review an ERD, ask them to check whether the relationships shown are
all correct and appropriate. Also ask them to identify any missing entities or any possible relationships
between entities that the model doesn’t show.

The cardinality, or multiplicity, of each relationship is shown with a number or letter on the
lines that connect entities and relationships. Different ERD notations use different conventions to
represent cardinality; the example in Figure 13-1 illustrates one common approach. Because each
Requester can place multiple requests, there’s a one-to-many relationship between Requester
and Chemical Request. This cardinality is shown with a 1 on the line connecting Requester and the
placing relationship and an M (for many) on the line connecting Chemical Request and the placing
 relationship. Other possible cardinalities are one-to-one (every Chemical Container is tracked by a
single Container History) and many-to-many (every Vendor Catalog lists many Chemicals, and some
Chemicals are listed in multiple Vendor Catalogs). If you know that a more precise cardinality exists
than simply many (one person has exactly two biological parents), you can show the specific number
or range of numbers instead of the generic M.

Alternative ERD notations use different symbols on the lines connecting entities and relationships
to indicate cardinality. In the James Martin notation illustrated in Figure 13-2, the entities still appear
as rectangles, but the relationship between them is labeled on the line that connects the entities. The
vertical line next to Chemical Stockroom Inventory indicates a cardinality of 1, and the crow’s foot
symbol next to Chemical Container indicates a cardinality of many. The circle next to the crow’s foot
means that the Chemical Stockroom Inventory stores zero or more Chemical Containers.

FIGURE 13-2 One alternative notation for an entity-relationship diagram.

248 PART II Requirements development

Other data modeling conventions are available besides the various ERD notations. Teams that are
applying object-oriented development methods will draw UML class diagrams, which show the data
attributes for individual classes (which correspond to entities in the ERD), the logical links between
classes, and the cardinalities of those links. Figure 13-3 illustrates a fragment of a class diagram for
the Chemical Tracking System. It shows the one-to-many relationship between a Requester and a
 Chemical Request, each of which is a “class” shown in a rectangle. The “1..* notation means “one
or more;” several other cardinality (or multiplicity) notations also can be used in class diagrams
(Ambler 2005). Note that the class diagram also lists the attributes associated with each class in the
middle section of the rectangle. Figure 13-3 shows just a simplified version of the class diagram
 notation. When class diagrams are used for object-oriented analysis or design, the bottommost
 section of a class rectangle (empty in this example) normally shows the operations, or behaviors,
that an object of the class can perform. For data modeling, though, that third section of the class
 rectangle is left empty.

FIGURE 13-3 Portion of a UML class diagram for the Chemical Tracking System.

It’s not important which notation you select for drawing a data model. What is important is that
everyone involved with the project (and ideally, everyone in the organization) who creates such
 models follows the same notation conventions, and that everyone who has to use or review the
 models knows how to interpret them.

Of course, the system must also contain the functionality that does something useful with the
data. The relationships between entities often reveal such functionality. Figure 13-1 showed that there
is a “tracking” relationship between the entities Chemical Container and Container History. Therefore,
you’ll need some functionality—perhaps captured in the form of a use case, a user story, or a process
flow—to give the user access to the history for a given chemical container. As you analyze your
project requirements with the help of the data models, you might even discover unneeded data that
came up in the discussion but that isn’t used anywhere.

The data dictionary

A data dictionary is a collection of detailed information about the data entities used in an application.
Collecting the information about composition, data types, allowed values, and the like into a shared
resource identifies the data validation criteria, helps developers write programs correctly, and
 minimizes integration problems. The data dictionary complements the project glossary, which defines
application domain or business terms, abbreviations, and acronyms. We recommend keeping the data
dictionary and the glossary separate.

 CHAPTER 13 Specifying data requirements 249

During requirements analysis, the information in the data dictionary represents data elements and
structures of the application domain (Beatty and Chen 2012). This information feeds into design in the
form of database schemas, tables, and attributes, which ultimately lead to variable names in programs.
The time you invest in creating a data dictionary will be more than repaid by avoiding the mistakes that
can result when project participants have different understandings of the data. If you keep the data
dictionary current, it will remain a valuable tool throughout the system’s operational life and beyond. If
you don’t, it might falsely suggest out-of-date information, and team members will no longer trust it.
 Maintaining a data dictionary is a serious investment in quality. Data definitions often are reusable across
 applications, particularly within a product line. Using consistent data definitions across the enterprise
reduces integration and interface errors. When possible, refer to existing standard data definitions from
a repository of enterprise knowledge, using a smaller, project-specific set to close the gaps.

As opposed to sprinkling data definitions throughout the project documentation, a separate
data dictionary makes it easy to find the information you need. It also helps avoid redundancies and
 inconsistencies. I once reviewed some use case specifications that identified the data elements that
made up certain data structures. Unfortunately, these compositions weren’t the same in all the places
where they appeared. Such inconsistency forces a developer or tester to track down which—if any—of
the definitions is correct. Maintaining the integrity of the replicated data structures as they evolve is
also difficult. Compiling or consolidating such information so that there is only one instance of each
definition that is readily accessible by all stakeholders solves these problems.

Figure 13-4 illustrates a portion of the data dictionary for the Chemical Tracking System. The
notations used are described in the following paragraphs. Organize the entries in the data dictionary
alphabetically to make it easy for readers to find what they need.

Data Element Description Composition or Data Type Length Values

Chemical Request request for a new chemical
from either the Chemical
Stockroom or a vendor

Request ID
+ Requester
 + Request Date
 + Charge Number
 + 1:10{Requested Chemical}

Delivery Location the place to which requested
chemicals are to be delivered

Building
+ Lab Number
+ Lab Partition

Number of
Containers

number of containers of a
given chemical and size being
requested

Positive integer 3

Quantity amount of chemical in the
requested container

numeric 6

Quantity Units units associated with
the quantity of chemical
 requested

alphabetic characters 10 grams, kilograms,
 milligrams, each

Request ID unique identifier for a request integer 8 system-generated
 sequential integer,
 beginning with 1

250 PART II Requirements development

Data Element Description Composition or Data Type Length Values

Requested
Chemical

description of the chemical
being requested

Chemical ID
 + Number of Containers
 + Grade
 + Quantity
 + Quantity Units
 + (Vendor)

Requester information about the indi-
vidual who placed a chemical
request

Requester Name
+ Employee Number
+ Department
+ Delivery Location

Requester Name name of the employee who
submitted the request

alphabetic characters 40 can contain blanks,
hyphens, periods,
apostrophes

FIGURE 13-4 Partial data dictionary for the Chemical Tracking System.

Entries in the data dictionary can represent the following types of data elements.

Primitive A primitive data element is one for which no further decomposition is possible or
 necessary. Primitives defined in Figure 13-4 are Number of Containers, Quantity, Quantity Units,
Request ID, and Requester Name. You can use other columns in the data dictionary to describe each
primitive’s data type, length, numerical range, list of allowed values (as with Quantity Units), and other
pertinent attributes.

Structure A data structure (or a record) is composed of multiple data elements. Data structures
shown in Figure 13-4 are Chemical Request, Delivery Location, Requested Chemical, and Requester.
The “Composition or Data Type” column in the data dictionary is a place to list the elements that
make up the structure, separating the elements with plus (+) signs. Structures also can incorporate
other structures: the Requester structure includes the Delivery Location structure. Data elements that
 appear in a structure must also have definitions in the data dictionary.

If an element in a data structure is optional (a value doesn’t have to be supplied by the user or the
system), enclose it in parentheses. In the Requested Chemical structure, the Vendor data element is
optional because the person submitting the request might not know or care which vendor supplies
the chemical.

Hyperlinks are useful in such a data dictionary layout (although storing the information in a tool
that permits defining such links is even better). As an illustration, the data item called Quantity in the
Requested Chemical data structure in Figure 13-4 is shown as a hyperlink. The reader could click on
that link and jump to the definition of Quantity elsewhere in the data dictionary. Navigation links are
very helpful in an extensive data dictionary that could span many pages, or even multiple documents
if a project’s data dictionary incorporates some definitions from an enterprise-wide data dictionary.
It’s a good idea to include hyperlinks for all items found in the “Composition or Data Type” column
that are defined in the data dictionary.

 CHAPTER 13 Specifying data requirements 251

Repeating group If multiple instances of a particular data element can appear in a structure, enclose
that item in curly braces. Show the allowed number of possible repeats in the form minimum:maximum
in front of the opening curly brace. As an example, Requested Chemical in the Chemical Request
 structure is a repeating group that appears as 1:10{Requested Chemical}. This shows that a chemical
request must contain at least one chemical but may not contain more than 10 chemicals. If the
maximum number of instances in a repeating field is unlimited, use “n” to indicate this. For example,
“3:n{something}” means that the data structure being defined must contain at least three instances of
the “something” and there is no upper limit on the number of instances of that “something.”

Precisely defining data elements is harder than it might appear. Consider a data type as simple
as alphabetic characters, as is indicated for the Requester Name entry in Figure 13-4. Is a name
 case-sensitive, such that “Karl” is different from “karl”? Should the system convert text to all
 uppercase or all lowercase, retain the case in a looked-up or user-entered value, or reject an input
that doesn’t match the expected case? Can any characters other than the 26 letters in the English
alphabet be used, such as blanks, hyphens, periods, or apostrophes, all of which might appear in
names? Is only the English alphabet permitted, or can alphabets with diacritical marks—tilde (~),
umlaut (¨), accent (´), grave (`), cedilla (¸)—be used? Such precise definitions are essential for the
 developer to know exactly how to validate entered data. The formats to be used for displaying data
elements introduce yet another level of variability. There are many ways to show timestamps and
dates, for example, with different conventions used in different countries. Stephen Withall (2007)
describes many considerations to keep in mind when specifying various data types.

Data analysis

When performing data analysis, you can map various information representations against one
 another to find gaps, errors, and inconsistencies. The entities in your entity-relationship diagram
are likely defined in the data dictionary. The data flows and stores in your DFD are probably found
 somewhere in your ERD, as well as in the data dictionary. The display fields found in a report
 specification also should appear in the data dictionary. During data analysis, you can compare these
complementary views to identify errors and further refine your data requirements.

A CRUD matrix is a rigorous data analysis technique for detecting missing requirements. CRUD
stands for Create, Read, Update, and Delete. A CRUD matrix correlates system actions with data
 entities to show where and how each significant data entity is created, read, updated, and deleted.
(Some people add an L to the matrix to indicate that the entity appears as a List selection, M to
indicate moving data from one location to another, and perhaps a second C to indicate copying data.
We’ll stick with CRUD here for simplicity.) Depending on the requirements approaches you are using,
you can examine various types of correlations, including the following:

 ■ Data entities and system events (Ferdinandi 2002; Robertson and Robertson 2013)

 ■ Data entities and user tasks or use cases (Lauesen 2002)

 ■ Object classes and use cases (Armour and Miller 2001)

252 PART II Requirements development

Figure 13-5 illustrates an entity/use case CRUD matrix for a portion of the Chemical Tracking
 System. Each cell indicates how the use case in the leftmost column uses each data entity shown
in the other columns. The use case can create, read, update, or delete the entity. After creating a
CRUD matrix, see whether any of these four letters do not appear in any of the cells in a column. For
 instance, if an entity is updated but never created, where does it come from?

FIGURE 13-5 Sample CRUD matrix for the Chemical Tracking System.

Notice that none of the cells under the column labeled Requester (the person who places an order
for a chemical) contains a D. That is, none of the use cases in Figure 13-5 can delete a Requester from
the list of people who have ordered chemicals. There are three possible interpretations:

1. Deleting a Requester is not an expected function of the Chemical Tracking System.

2. We are missing a use case that deletes a Requester.

3. The “Edit Requesters” use case (or some other use case) is incomplete. It’s supposed to permit
the user to delete a Requester, but that functionality is missing from the use case at present.

We don’t know which interpretation is correct, but the CRUD analysis is a powerful way to detect
missing requirements.

Specifying reports

Many applications generate reports from one or more databases, files, or other information sources.
Reports can consist of traditional tabular presentations of rows and columns of data, charts and
graphs of all types, or any combination. Exploring the content and format of the reports needed is
an important aspect of requirements development. Report specification straddles requirements
(what information goes into the report and how it is organized) and design (what the report should
look like). This section suggests specific aspects of reports to ask about and information to record.
A template for specifying reports also is included.

 CHAPTER 13 Specifying data requirements 253

Eliciting reporting requirements
If you’re a BA working with customers on defining reporting requirements for an information system,
consider asking questions like the following:

 ■ What reports do you currently use? (Some reports from an existing system, or manually
 generated reports from the business, will need to be replicated in the new system.)

 ■ Which existing reports need to be modified? (A new or revised information system project
provides an opportunity to update reports that don’t fully meet current needs.)

 ■ Which reports are currently generated but are not used? (Perhaps you don’t need to build
those into the new system.)

 ■ Can you describe any departmental, organizational, or government standards to which reports
must conform, such as to provide a consistent look and feel or to comply with a regulation?
(Obtain copies of those standards and examples of current reports that meet them.)

Withall (2007) describes a pattern and template for specifying report requirements. Joy Beatty
and Anthony Chen (2012) also offer extensive guidance for specifying reports. Following are some
 questions to explore for each customer-requested report. The first set of questions deals with the
context for the report and its usage:

 ■ What is the name of the report?

 ■ What is the purpose or business intent of the report? How do the recipients of the report use
the information? What decisions will be made from the report, and by whom?

 ■ Is the report generated manually? If so, how frequently and by which user classes?

 ■ Is the report generated automatically? If so, how frequently and what are the triggering
 conditions or events?

 ■ What are the typical and maximum sizes of the report?

 ■ Is there a need for a dashboard that would display several reports and/or graphs? If so, must
the user be able to drill down or roll up any of the dashboard elements?

 ■ What is the disposition of the report after it is generated? Is it displayed on the screen, sent
to a recipient, exported to a spreadsheet, or printed automatically? Is it stored or archived
 somewhere for future retrieval?

 ■ Are there security, privacy, or management restrictions that limit the access of the report to
specific individuals or user classes, or which restrict the data that can be included in the report
depending on who is generating it? Identify any relevant business rules concerning security.

The following questions will elicit information about the report itself:

 ■ What are the sources of the data and the selection criteria for pulling data from the
 repository?

254 PART II Requirements development

 ■ What parameters are selectable by the user?

 ■ What calculations or other data transformations are required?

 ■ What are the criteria for sorting, page breaks, and totals?

 ■ How should the system respond if no data is returned in response to a query when attempting
to generate this report?

 ■ Should the underlying data of the report be made available to the user for ad hoc reporting?

 ■ Can this report be used as a template for a set of similar reports?

Report specification considerations
The following suggestions might be useful as the BA explores reporting requirements.

Consider other variations When a user requests a specific report, the BA could suggest variations
on that theme to see if altering or augmenting the report would add business value. One variation
is simply sequencing the data differently, such as providing order-by capability on data elements
 beyond those the user initially requested. Consider providing the user with tools to specify the
 column sequence. Another type of variation is to summarize or drill down. A summarized report
aggregates detailed results into a more concise, higher-level view. “Drill down” means to produce a
report that displays the supporting details that fed into the summary data.

Find the data Ensure that the data necessary to populate the report is available to the system.
 Users think in terms of generating the outputs they want, which implies certain inputs and
 sources that will make the necessary data available. This analysis might reveal previously unknown
 requirements to access or generate the needed data. Identify any business rules that will be applied
to compute the output data.

Anticipate growth Users might request particular reports based on their initial conceptions of how
much data or how many parameters might be involved. As systems grow over time, an initial report
layout that worked well with small quantities of data might prove intractable. For instance, a columnar
layout for a certain number of company divisions would fit nicely on one page. But doubling the
number of company divisions might lead to awkward page breaks or the need to scroll a displayed
report horizontally. You might need to change the layout from portrait to landscape mode or to
transpose the information shown from columnar layout to rows.

Look for similarities Multiple users—or even the same user—might request similar, but not
 identical, reports. Look for opportunities to merge these variations into a single report that provides
flexibility to meet diverse needs without requiring redundant development and maintenance effort.
Sometimes the variations can be handled with parameters to provide the necessary user flexibility.

 CHAPTER 13 Specifying data requirements 255

Distinguish static and dynamic reports Static reports print out or display data as of a point in
time. Dynamic reports provide an interactive, real-time view of data. As underlying data changes,
the system updates the report display automatically. My accounting software has this feature. If I’m
 looking at an expense report and then enter a new check I recently wrote, the displayed expense
report updates immediately. Indicate which type of report you are requesting and tailor the
 requirements accordingly.

Prototype reports It’s often valuable to create a mock-up of the report that illustrates a possible
approach to stimulate user feedback, or to use a similar existing report to illustrate the desired layout.
Generating such a prototype while discussing requirements can lead the elicitation participants to
impose design constraints, which might or might not be desirable. Other times, the developer will
create a sample report layout during design and solicit customer feedback. Use plausible data in the
mock-up to make the prototype experience realistic for the users who evaluate it.

A report specification template
Figure 13-6 suggests a template for specifying reports. Some of these report elements will
be determined during requirements elicitation; others will be established during design. The
 requirements might specify the report contents, whereas the design process establishes the precise
layout and formatting. Existing reporting standards might address some of the items in the template.

Not all of these elements and questions will pertain to every report. Also, there is considerable
 variation in where elements might be placed. The report title could appear just on the top of the first
page or as a header on every page. Use the information in Figure 13-6 as a guide to help the BA,
 customers, developers, and testers understand the requirements and design constraints for each report.

Report EIement Element Description

Report ID Number, code, or label used to identify or classify the report

Report Title ■ Name of the report
 ■ Positioning of the title on the page
 ■ Include query parameters used to generate the report (such as date range)?

Report Purpose Brief description of the project, background, context, or business need that led to this report

Decisions Made from
Report

The business decisions that are made using information in the report

Priority The relative priority of implementing this reporting capability

Report Users User classes who will generate the report or use it to make decisions

Data Sources The applications, files, databases, or data warehouses from which data will be extracted

Frequency and
Disposition

 ■ Is the report static or dynamic?
 ■ How frequently is the report generated: weekly, monthly, on demand?
 ■ How much data is accessed, or how many transactions are included, when the report is

 generated?
 ■ What conditions or events trigger generation of the report?
 ■ Will the report be generated automatically? Is manual intervention required?
 ■ Who will receive the report? How is it made available to them (displayed in an

 application, sent in email, printed, viewed on a mobile device)?

256 PART II Requirements development

Report EIement Element Description

Latency ■ How quickly must the report be delivered to users when requested?
 ■ How current must the data be when the report is run?

Visual Layout ■ Landscape or portrait
 ■ Paper size (or type of printer) to be used for hard-copy reports
 ■ If the report includes graphs, define the type(s) of each graph, its appearance, and

 parameters: titles, axis scaling and labels, data sources, and so on

Header and Footer The following items are among those that could be positioned somewhere in the report
header or footer. For each element included, specify the location on the page and
its appearance, including font face, point size, text highlighting, color, case, and text
 justification. When a title or other content exceeds its allocated space, should it be truncated,
 word-wrapped to the next line, or what?

 ■ Report title
 ■ Page numbering and format (such as “Page x” or “Page x of y”)
 ■ Report notes (such as “The report excludes employees who worked for the company for

less than one month.”)
 ■ Report run timestamp
 ■ Name of the person who generated the report
 ■ Data source(s), particularly in a data warehousing application that consolidates data

from multiple sources
 ■ Report begin and end dates
 ■ Organization identification (company name, department, logo, other graphics)
 ■ Confidentiality statement or copyright notice

Report Body ■ Record selection criteria (logic for what data to select and what to exclude)
 ■ Fields to include
 ■ User-specified text or parameters to customize field labels
 ■ Column and row heading names and formats: text, font, size, color, highlighting, case,

 justification
 ■ Column and row layout of data fields, or graph positioning and parameters for charts or

graphs
 ■ Display format for each field: font, size, color, highlighting, case, justification, alignment,

numeric rounding, digits and formatting, special characters ($, %, commas, decimals,
leading or trailing pad characters)

 ■ How numeric and text field overflows should be handled
 ■ Calculations or other transformations that are performed to generate the data displayed
 ■ Sort criteria for each field
 ■ Filter criteria or parameters used to restrict the report query prior to running the report
 ■ Grouping and subtotals, including formatting of totals or subtotal breakout rows
 ■ Paging criteria

End-of-Report
Indicator

Appearance and position of any indicator that appears at the end of the report

Interactivity ■ If the report is dynamic or is generated interactively, what options should the user have
to modify the contents or appearance of the initially generated report (expand and
 collapse views, link to other reports, drill down to data sources)?

 ■ What is the expected persistence of report settings between usage sessions?

Security Access
Restrictions

Any limitations regarding which individuals, groups, or organizations are permitted to
 generate or view the report or which data they are permitted to select for inclusion

FIGURE 13-6 A report specification template.

 CHAPTER 13 Specifying data requirements 257

Dashboard reporting

A dashboard is a screen display or printed report that uses multiple textual and/or graphical
 representations of data to provide a consolidated, multidimensional view of what is going on in
an organization or a process. Companies often use dashboards to pull together information about
sales, expenses, key performance indicators (KPIs), and the like. Stock trading applications display
a bewildering (to the novice) array of charts and data that the skilled eye can scan and process at
a glance. Certain displays in a dashboard might be dynamically updated in real time as input data
changes. Figure 13-7 shows a hypothetical reporting dashboard for a charitable foundation.

FIGURE 13-7 Hypothetical reporting dashboard for a charitable foundation.

Specifying the requirements for a dashboard involves the following sequence of elicitation and
analysis activities. Many of these steps are also useful when specifying individual reports, as described
earlier in the chapter.

 ■ Determine what information the dashboard users need for making specific decisions or
choices. Understanding how the presented data will be used helps you choose the most
 appropriate display techniques.

 ■ Identify the sources of all the data to be presented so you can ensure that the application has
access to those feeds and you know whether they are static or dynamic.

258 PART II Requirements development

 ■ Choose the most appropriate type of display for each set of related data. Should it appear as
a simple table of data, a modifiable spreadsheet containing formulas, blocks of text, bar chart,
pie chart, line chart, video display, or one of many other ways to present information?

 ■ Determine the optimal layout and relative sizing of the various displays in the dashboard,
based on how the user will absorb and apply the information.

 ■ Specify the details of each display in the dashboard. That is, treat each of them as a separate
mini-report. The questions listed in the “Eliciting reporting requirements” section earlier in this
chapter and the template in Figure 13-6 will be helpful for this discussion. Following are some
additional topics you might want to explore:

• If the displayed data is dynamic, how frequently must the data be refreshed or augmented,
and in what way? For instance, does the current data scroll to the left as new information is
added to the right end of a fixed-width window?

• What parameters should the user be able to change to customize a display, such as a date
range?

• Does the user want any conditional formatting to have sections of a display change
based upon the data? This is helpful when you are creating progress or status reports: use
green if the data meets the criteria for “good,” yellow to indicate “caution,” and red for
“Whoa, this is messed up!” Remember, when using colors in a display, also use patterns to
 accommodate viewers who have difficulty distinguishing colors and those who print and
distribute the display in monochrome.

• Which displays will need horizontal or vertical scrollbars?

• Should the user be able to enlarge any display in the dashboard to see more detail? Should
she be able to minimize or close displays to free up screen space? In what ways do the
user’s customizations need to persist across usage sessions?

• Will the user want to alter the form of any of the displays, perhaps to toggle between a
tabular view and a graphical view?

• Will the user want to drill down in any of the displays to see a more detailed report or the
underlying data?

Prototyping a dashboard is an excellent way to work with stakeholders to ensure that the layout
and presentation styles used will meet their needs. You can sketch out possible display components
on sticky notes and have the stakeholders move them around until they find a layout they like.
 Iteration is a key both to refining the requirements and to exploring design alternatives.

As usual with requirements specification, the amount of detail to provide when specifying reports
or dashboards depends on who makes decisions about their appearance and when those decisions
are made. The more of these details you’re willing to delegate to the designer, the less information
you need to supply in requirements. And, as always, close collaboration among the BA, user
 representatives, and developers will help ensure that everyone is happy with the outcome.

 CHAPTER 13 Specifying data requirements 259

Next steps

 ■ Take a moderately complex data object from your application and define it and its
 components using the data dictionary notation presented in this chapter.

 ■ Create an entity-relationship diagram for a portion of your application’s data objects. If
you don’t have a data modeling tool available, a tool such as Microsoft Visio will get you
started.

 ■ For practice, specify one of your application’s existing reports according to the
 specification template shown in Figure 13-6. Adjust the template as necessary to suit the
nature of the reports that you create for your applications.

 261

C H A P T E R 1 4

Beyond functionality

“Hi, Sam, this is Clarice. I’m presenting a class in the new training room today, but the heating system
is terribly loud. I’m practically shouting over the fan and I’m getting hoarse. You’re the maintenance
supervisor. Why is this system so loud? Is it broken?”

“It’s working normally,” Sam replied. “The heating system in that room meets the requirements the
engineers gave me. It circulates the right amount of air per minute, it controls the temperature to within
half a degree from 60 to 85 degrees, and it has all the requested profile programming capabilities.
 Nobody said anything about noise, so I bought the cheapest system that satisfied the requirements.”

Clarice said, “The temperature control is fine. But this is a training room! The students can hardly
hear me. We’re going to have to install a PA system or get a quieter heating system. What do you
 suggest?”

Sam wasn’t much help. “Clarice, the system meets all the requirements I was given,” he repeated. “If
I’d known that noise levels were so important, I could have bought a different unit, but now it would be
really expensive to replace it. Maybe you can use some throat lozenges so you don’t lose your voice.”

There’s more to software success than just delivering the right functionality. Users also have
 expectations, often unstated, about how well the product will work. Such expectations include how
easy it is to use, how quickly it executes, how rarely it fails, how it handles unexpected conditions—and
perhaps, how loud it is. Such characteristics, collectively known as quality attributes, quality factors,
quality requirements, quality of service requirements, or the “–ilities,” constitute a major portion of the
system’s nonfunctional requirements. In fact, to many people, quality attributes are synonymous with
nonfunctional requirements, but that’s an oversimplification. Two other classes of nonfunctional
requirements are constraints (discussed at the end of this chapter) and external interface requirements
(discussed in Chapter 10, “Documenting the requirements”). See the sidebar “If they’re nonfunctional,
then what are they?” in Chapter 1, “The essential software requirement,” for more about the term
“nonfunctional requirements.”

People sometimes get hung up on debating whether a particular need is a functional or a
 nonfunctional requirement. The categorization matters less than making sure you identify the
 requirement. This chapter will help you detect and specify nonfunctional requirements you might not
have found otherwise.

Quality attributes can distinguish a product that merely does what it’s supposed to from one that
delights its users. Excellent products reflect an optimum balance of competing quality characteristics.

262 PART II Requirements development

If you don’t explore the customers’ quality expectations during elicitation, you’re just lucky if the
product satisfies them. Disappointed users and frustrated developers are the more typical outcome.

Quality attributes serve as the origin of many functional requirements. They also drive significant
architectural and design decisions. It’s far more costly to re-architect a completed system to achieve
essential quality goals than to design for them at the outset. Consider the many security updates that
vendors of operating systems and commonly used applications issue periodically. Some additional
work on security at development time might avoid a lot of cost and user inconvenience.

You can’t make me
Quality attributes can make or break the success of your product. One large company spent
millions of dollars to replace a green-screen call center application with a fancy Windows-
based version. After all that investment, the call center representatives refused to adopt the
new system because it was too hard to navigate. These power users lost all of the keyboard
shortcuts that helped them use the old system efficiently. Now they had to use a mouse to get
around in the app, which was slower for them. The corporate leaders first tried the hard-line
approach: “We’ll just mandate that they have to use the new app,” they said. But the call center
staff still resisted. What are you going to do? These people are taking customer orders, so the
company isn’t going to literally turn off the old system if they won’t use the new one and risk
losing all those orders. Users hate to have their productivity impaired by a “new and improved”
system. The development team had to redesign the user interface and add the old keyboard
shortcuts before the users would accept the new software, delaying the release by months.

Software quality attributes

Several dozen product characteristics can be called quality attributes, although most project teams
need to carefully consider only a handful of them. If developers know which of these characteristics
are most crucial to success, they can select appropriate design and construction approaches to
achieve the quality goals. Quality attributes have been classified according to a wide variety of
schemes (DeGrace and Stahl 1993; IEEE 1998; ISO/IEC 2007; Miller 2009; ISO/IEC 2011). Some authors
have constructed extensive hierarchies that group related attributes into several major categories.

One way to classify quality attributes distinguishes those characteristics that are discernible
through execution of the software (external quality) from those that are not (internal quality) (Bass,
Clements, and Kazman 1998). External quality factors are primarily important to users, whereas
 internal qualities are more significant to development and maintenance staff. Internal quality
 attributes indirectly contribute to customer satisfaction by making the product easier to enhance,
 correct, test, and migrate to new platforms.

 CHAPTER 14 Beyond functionality 263

Table 14-1 briefly describes several internal and external aspects of quality that every project
should consider. Certain attributes are of particular importance on certain types of projects:

 ■ Embedded systems: performance, efficiency, reliability, robustness, safety, security, usability
(see Chapter 26, “Embedded and other real-time systems projects”)

 ■ Internet and corporate applications: availability, integrity, interoperability, performance,
 scalability, security, usability

 ■ Desktop and mobile systems: performance, security, usability

In addition, different parts of a system might need to emphasize different quality attributes.
 Performance could be critical for certain components, with usability being paramount for others.
Your environment might have other unique quality attributes that aren’t covered here. For example,
 gaming companies might want to capture emotional requirements for their software (Callele,
Neufeld, and Schneider 2008).

Section 6 of the SRS template described in Chapter 10 is devoted to quality attributes. If some
quality requirements are specific to certain features, components, functional requirements, or user
stories, associate those with the appropriate item in the requirements repository.

TABLE 14-1 Some software quality attributes

External quality Brief description

Availability
Installability
Integrity
Interoperability
Performance
Reliability
Robustness
Safety
Security
Usability

The extent to which the system’s services are available when and where they are needed
How easy it is to correctly install, uninstall, and reinstall the application
The extent to which the system protects against data inaccuracy and loss
How easily the system can interconnect and exchange data with other systems or components
How quickly and predictably the system responds to user inputs or other events
How long the system runs before experiencing a failure
How well the system responds to unexpected operating conditions
How well the system protects against injury or damage
How well the system protects against unauthorized access to the application and its data
How easy it is for people to learn, remember, and use the system

Internal quality Brief description

Efficiency
Modifiability
Portability
Reusability
Scalability
Verifiability

How efficiently the system uses computer resources
How easy it is to maintain, change, enhance, and restructure the system
How easily the system can be made to work in other operating environments
To what extent components can be used in other systems
How easily the system can grow to handle more users, transactions, servers, or other extensions
How readily developers and testers can confirm that the software was implemented correctly

Exploring quality attributes

In an ideal universe, every system would exhibit the maximum possible value for all its attributes.
The system would be available at all times, would never fail, would supply instantaneous results that
are always correct, would block all attempts at unauthorized access, and would never confuse a
user. In reality, there are trade-offs and conflicts between certain attributes that make it impossible
to simultaneously maximize all of them. Because perfection is unattainable, you have to determine

264 PART II Requirements development

which attributes from Table 14-1 are most important to your project’s success. Then you can craft
specific quality objectives in terms of these essential attributes so designers can make appropriate
choices.

Different projects will demand different sets of quality attributes for success. Jim Brosseau (2010)
recommends the following practical approach for identifying and specifying the most important
attributes for your project. He provides a spreadsheet to assist with the analysis at www.clarrus.com/
resources/articles/software-quality-attributes.

Step 1: Start with a broad taxonomy

Begin with a rich set of quality attributes to consider, such as those listed in Table 14-1. This broad
starting point reduces the likelihood of overlooking an important quality dimension.

Step 2: Reduce the list

Engage a cross-section of stakeholders to assess which of the attributes are likely to be important
to the project. (See Figure 2-2 in Chapter 2, “Requirements from the customer’s perspective,” for an
extensive list of possible project stakeholders.) An airport check-in kiosk needs to emphasize usability
(because most users will encounter it infrequently) and security (because it has to handle payments).
Attributes that don’t apply to your project need not be considered further. Record the rationale for
deciding that a particular quality attribute is either in or out of consideration.

Recognize, though, that if you don’t specify quality goals, no one should be surprised if the
 product doesn’t exhibit the expected characteristics. This is why it’s important to get input from
multiple stakeholders. In practice, some of the attributes will clearly be in scope, some will clearly be
out of scope, and only a few will require discussion about whether they are worth considering for the
project.

Step 3: Prioritize the attributes

Prioritizing the pertinent attributes sets the focus for future elicitation discussions. Pairwise rank-
ing comparisons can work efficiently with a small list of items like this. Figure 14-1 illustrates how
to use Brosseau’s spreadsheet to assess the quality attributes for an airport check-in kiosk. For each
cell at the intersection of two attributes, ask yourself, “If I could have only one of these attributes,
which would I take?” Entering a less-than sign (<) in the cell indicates that the attribute in the row
is more important; a caret symbol (̂) points to the attribute at the top of the column as being
more important. For instance, comparing availability and integrity, I conclude that integrity is more
 important. The passenger can always check in with the desk agent if the kiosk isn’t operational (albeit,
perhaps with a long line of fellow travelers). But if the kiosk doesn’t reliably show the correct data,
the passenger will be very unhappy. So I put a caret in the cell at the intersection of availability and
integrity, pointing up to integrity as being the more important of the two.

http://www.clarrus.com/resources/articles/software-quality-attributes
http://www.clarrus.com/resources/articles/software-quality-attributes

 CHAPTER 14 Beyond functionality 265

FIGURE 14-1 Sample quality attribute prioritization for an airport check-in kiosk.

The spreadsheet calculates a relative score for each attribute, shown in the second column. In
this illustration, security is most important (with a score of 7), closely followed by integrity (6) and
 usability (5). Though the other factors are indeed important to success—it’s not good if the kiosk isn’t
 available for travelers to use or if it crashes halfway through the check-in process—the fact is that not
all quality attributes can have top priority.

The prioritization step helps in two ways. First, it lets you focus elicitation efforts on those
 attributes that are most strongly aligned with project success. Second, it helps you know how
to respond when you encounter conflicting quality requirements. In the airport check-in kiosk
 example, elicitation would reveal a desire to achieve specific performance goals, as well as some
specific security goals. These two attributes can clash, because adding security layers can slow down
 transactions. However, because the prioritization exercise revealed that security is more important
(with a score of 7) than performance (with a score of 4), you should bias the resolution of any such
conflicts in favor of security.

Trap Don’t neglect stakeholders such as maintenance programmers and technical support
staff when exploring quality attributes. Their quality priorities could be very different from
those of other users. Quality priorities also can vary from one user class to another. If you
encounter conflicts, then the approach is doing exactly what it was intended to do: expose
these conflicts so you can work through them early in the development life cycle, where
conflicts can be resolved with minimal cost and grief.

Step 4: Elicit specific expectations for each attribute

The comments users make during requirements elicitation supply some clues about the quality
 characteristics they have in mind for the product. The trick is to pin down just what the users are
thinking when they say the software must be user-friendly, fast, reliable, or robust. Questions that
explore the users’ expectations can lead to specific quality requirements that help developers create a
delightful product.

266 PART II Requirements development

Users won’t know how to answer questions such as “What are your interoperability requirements?”
or “How reliable does the software have to be?” The business analyst will need to ask questions that
guide the users’ thought processes through an exploration of interoperability, reliability, and other
attributes. Roxanne Miller (2009) provides extensive lists of suggested questions to use when eliciting
quality requirements; this chapter also presents many examples. When planning an elicitation session,
a BA should start with a list of questions like Miller’s and distill it down to those questions that are
most pertinent to the project. As an illustration, following are a few questions a BA might ask to
 understand user expectations about the performance of a system that manages applications for
 patents that inventors have submitted:

1. What would be a reasonable or acceptable response time for retrieval of a typical patent
 application in response to a query?

2. What would users consider an unacceptable response time for a typical query?

3. How many simultaneous users do you expect on average?

4. What’s the maximum number of simultaneous users that you would anticipate?

5. What times of the day, week, month, or year have much heavier usage than usual?

Sending a list of questions like these to elicitation participants in advance gives them an
 opportunity to think about or research their answers so they don’t have to answer a barrage of
 questions off the tops of their heads. A good final question to ask during any such elicitation
 discussion is, “Is there anything I haven’t asked you that we should discuss?”

Consider asking users what would constitute unacceptable performance, security, or reliability.
That is, specify system properties that would violate the user’s quality expectations, such as allowing
an unauthorized user to delete files (Voas 1999). Defining unacceptable characteristics lets you
devise tests that try to force the system to demonstrate those characteristics. If you can’t force them,
you’ve probably achieved your quality goals. This approach is particularly valuable for safety-critical
 applications, in which a system that violates reliability or safety tolerances poses a risk to life or limb.

Another possible elicitation strategy is to begin with the quality goals that stakeholders have for
the system under development (Alexander and Beus-Dukic 2009). A stakeholder’s quality goal can be
decomposed to reveal both functional and nonfunctional subgoals—and hence requirements—which
become both more specific and easier to measure through the decomposition.

Step 5: Specify well-structured quality requirements

Simplistic quality requirements such as “The system shall be user-friendly” or “The system shall be
available 24x7” aren’t useful. The former is far too subjective and vague; the latter is rarely realistic
or necessary. Neither is measurable. Such requirements provide little guidance to developers. So
the final step is to craft specific and verifiable requirements from the information that was elicited
regarding each quality attribute. When writing quality requirements, keep in mind the useful SMART
mnemonic—make them Specific, Measurable, Attainable, Relevant, and Time-sensitive.

Quality requirements need to be measurable to establish a precise agreement on expectations
among the BA, the customers, and the development team. If it’s not measurable, there is little point

 CHAPTER 14 Beyond functionality 267

in specifying it, because you’ll never be able to determine if you’ve achieved a desired goal. If a
tester can’t test a requirement, it’s not good enough. Indicate the scale or units of measure for each
 attribute and the target, minimum, and maximum values. The notation called Planguage described
later in this chapter helps with this sort of precise specification. It might take a few discussions with
users to pin down clear, measurable criteria for assessing satisfaction of a quality requirement.

Suzanne and James Robertson (2013) recommend including fit criteria—”a quantification of the
requirement that demonstrates the standard the product must reach”—as part of the specification
of every requirement, both functional and nonfunctional. This is excellent advice. Fit criteria describe
a measurable way to assess whether each requirement has been implemented correctly. They help
designers select a solution they believe will meet the goal, and they help testers evaluate the results.

Instead of inventing your own way to document unfamiliar requirements, look for an existing
requirement pattern to follow. A pattern provides guidance about how to write a particular type
of requirement, along with a template you can populate with the specific details for your situation.
 Stephen Withall (2007) provides numerous patterns for specifying quality requirements, including
performance, availability, flexibility, scalability, security, user access, and installability. Following
 patterns like these will help even novice BAs write sound quality requirements.

Defining quality requirements

This section describes each of the quality attributes in Table 14-1 and presents some sample quality
requirements from various projects. Soren Lauesen (2002) and Roxanne Miller (2009) provide many
additional examples of well-specified quality attribute requirements. As with all requirements, it’s
a good idea to record the origin of each quality requirement and the rationale behind the stated
 quality goals if these are not obvious. The rationale is important in case questions arise about the
need for a specific goal or whether the cost is justifiable. That type of source information has been
omitted from the examples presented in this chapter.

External quality attributes
External quality attributes describe characteristics that are observed when the software is executing.
They profoundly influence the user experience and the user’s perception of system quality.
The external quality attributes described in this chapter are availability, installability, integrity,
 interoperability, performance, reliability, robustness, safety, security, and usability.

Availability
Availability is a measure of the planned up time during which the system’s services are available for
use and fully operational. Formally, availability equals the ratio of up time to the sum of up time and
down time. Still more formally, availability equals the mean time between failures (MTBF) for the
system divided by the sum of the MTBF and the mean time to repair (MTTR) the system after a failure
is encountered. Scheduled maintenance periods also affect availability. Availability is closely related to
reliability and is strongly affected by the maintainability subcategory of modifiability.

268 PART II Requirements development

Certain tasks are more time-critical than others. Users become frustrated—even irate—when
they need to get essential work done and the functionality they need isn’t available. Ask users what
percentage of up time is really needed or how many hours in a given time period the system must be
available. Ask whether there are any time periods for which availability is imperative to meet business
or safety objectives. Availability requirements are particularly complex and important for websites,
cloud-based applications, and applications that have users distributed throughout many time zones.
An availability requirement might be stated like the following:

AVL-1. The system shall be at least 95 percent available on weekdays between
6:00 A.M. and midnight Eastern Time, and at least 99 percent available on weekdays
between 3:00 P.M. and 5:00 P.M. Eastern Time.

As with many of the examples presented in this chapter, this requirement is somewhat simplified.
It doesn’t define the level of performance that constitutes being available. Is the system considered
available if only one person can use it on the network in a degraded mode? Probably not.

Availability requirements are sometimes stipulated contractually as a service level agreement.
 Service providers might have to pay a penalty if they do not satisfy such agreements. Such
 requirements must precisely define exactly what constitutes a system being available (or not) and
could include statements such as the following:

AVL-2. Down time that is excluded from the calculation of availability consists of
maintenance scheduled during the hours from 6:00 P.M. Sunday Pacific Time,
through 3:00 A.M. Monday Pacific Time.

The cost of quality
Beware of specifying 100 percent as the expected value of a quality attribute such as reliability
or availability. It will be impossible to achieve and expensive to strive for. Life-critical applications
such as air traffic control systems do have very stringent—and legitimate—availability demands.
One such system had a “five 9s” requirement, meaning that the system must be available 99.999
percent of the time. That is, the system could be down no more than 5 minutes and 15 seconds
per year. This one requirement contributed to perhaps 25 percent of the system costs. It virtually
doubled the hardware costs because of the redundancy required, and it introduced very
 complex architectural elements to handle a hot backup and failover strategy for the system.

When eliciting availability requirements, ask questions to explore the following issues (Miller 2009):

 ■ What portions of the system are most critical for being available?

 ■ What are the business consequences of the system being unavailable to its users?

 ■ If scheduled maintenance must be performed periodically, when should it be scheduled? What
is the impact on system availability? What are the minimum and maximum durations of the
maintenance periods? How are user access attempts to be managed during the maintenance
periods?

 CHAPTER 14 Beyond functionality 269

 ■ If maintenance or housekeeping activities must be performed while the system is up, what
impact will they have on availability and how can that impact be minimized?

 ■ What user notifications are necessary if the system becomes unavailable?

 ■ What portions of the system have more stringent availability requirements than others?

 ■ What availability dependencies exist between functionality groups (such as not accepting
credit card payment for purchases if the credit-card authorization function is not available)?

Installability
Software is not useful until it is installed on the appropriate device or platform. Some examples of
software installation are: downloading apps to a phone or tablet; moving software from a PC onto a
web server; updating an operating system; installing a huge commercial system, such as an enterprise
resource planning tool; downloading a firmware update into a cable TV set-top box; and installing
an end-user application onto a PC. Installability describes how easy is it to perform these operations
 correctly. Increasing a system’s installability reduces the time, cost, user disruption, error frequency,
and skill level needed for an installation operation. Installability addresses the following activities:

 ■ Initial installation

 ■ Recovery from an incomplete, incorrect, or user-aborted installation

 ■ Reinstallation of the same version

 ■ Installation of a new version

 ■ Reverting to a previous version

 ■ Installation of additional components or updates

 ■ Uninstallation

A measure of a system’s installability is the mean time to install the system. This depends on a lot
of factors, though: how experienced the installer is, how fast the destination computer is, the medium
from which the software is being installed (Internet download, local network, CD/DVD), manual
steps needed during the installation, and so forth. The Testing Standards Working Party provides a
detailed list of guidelines and considerations for installability requirements and installability testing
at www.testingstandards.co.uk/installability_guidelines.htm. Following are some sample installability
 requirements:

INS-1. An untrained user shall be able to successfully perform an initial installation
of the application in an average of 10 minutes.

INS-2. When installing an upgraded version of the application, all customizations in
the user’s profile shall be retained and converted to the new version’s data format if
needed.

http://www.testingstandards.co.uk/installability_guidelines.htm

270 PART II Requirements development

INS-3. The installation program shall verify the correctness of the download before
beginning the installation process.

INS-4. Installing this software on a server requires administrator privileges.

INS-5. Following successful installation, the installation program shall delete all
temporary, backup, obsolete, and unneeded files associated with the application.

Following are examples of some questions to explore when eliciting installability requirements:

 ■ What installation operations must be performed without disturbing the user’s session?

 ■ What installation operations will require a restart of the application? Of the computer or
device?

 ■ What should the application do upon successful, or unsuccessful, installation?

 ■ What operations should be performed to confirm the validity of an installation?

 ■ Does the user need the capability to install, uninstall, reinstall, or repair just selected portions
of the application? If so, which portions?

 ■ What other applications need to be shut down before performing the installation?

 ■ What authorization or access privileges does the installer need?

 ■ How should the system handle an incomplete installation, such as one interrupted by a power
failure or aborted by the user?

Integrity
Integrity deals with preventing information loss and preserving the correctness of data entered
into the system. Integrity requirements have no tolerance for error: the data is either in good shape
and protected, or it is not. Data needs to be protected against threats such as accidental loss or
 corruption, ostensibly identical data sets that do not match, physical damage to storage media,
 accidental file erasure, or data overwriting by users. Intentional attacks that attempt to deliberately
corrupt or steal data are also a risk. Security sometimes is considered a subset of integrity, because
some security requirements are intended to prevent access to data by unauthorized users. Integrity
requirements should ensure that the data received from other systems matches what is sent and
vice versa. Software executables themselves are subject to attack, so their integrity also must be
 protected.

Data integrity also addresses the accuracy and proper formatting of the data (Miller 2009). This
includes concerns such as formatting of fields for dates, restricting fields to the correct data type or
length, ensuring that data elements have valid values, checking for an appropriate entry in one field
when another field has a certain value, and so on. Following are some sample integrity requirements:

INT-1. After performing a file backup, the system shall verify the backup copy
against the original and report any discrepancies.

 CHAPTER 14 Beyond functionality 271

INT-2. The system shall protect against the unauthorized addition, deletion, or
modification of data.

INT-3. The Chemical Tracking System shall confirm that an encoded chemical
structure imported from third-party structure-drawing tools represents a valid
chemical structure.

INT-4. The system shall confirm daily that the application executables have not been
modified by the addition of unauthorized code.

Some factors to consider when discussing integrity requirements include the following
(Withall 2007):

 ■ Ensuring that changes in the data are made either entirely or not at all. This might mean
 backing out of a data change if a failure is encountered partway through the operation.

 ■ Ensuring the persistence of changes that are made in the data.

 ■ Coordinating changes made in multiple data stores, particularly when changes have to be
made simultaneously (say, on multiple servers) and at a specific time (say, at 12:00 A.M. GMT
on January 1 in several locations).

 ■ Ensuring the physical security of computers and external storage devices.

 ■ Performing data backups. (At what frequency? Automatically and/or on demand? Of what files
or databases? To what media? With or without compression and verification?)

 ■ Restoring data from a backup.

 ■ Archiving of data: what data, when to archive, for how long, with what deletion requirements.

 ■ Protecting data stored or backed up in the cloud from people who aren’t supposed to access it.

Interoperability
Interoperability indicates how readily the system can exchange data and services with other software
systems and how easily it can integrate with external hardware devices. To assess interoperability,
you need to know which other applications the users will employ in conjunction with your product
and what data they expect to exchange. Users of the Chemical Tracking System were accustomed
to drawing chemical structures with several commercial tools, so they presented the following
 interoperability requirement:

IOP-1. The Chemical Tracking System shall be able to import any valid chemical
structure from the ChemDraw (version 13.0 or earlier) and MarvinSketch (version
5.0 or earlier) tools.

You might prefer to state this as an external interface requirement and define the information formats
that the Chemical Tracking System can import. You could also define several functional requirements
that deal with the import operation. Identifying and documenting such requirements is more
 important than exactly how you classify them.

272 PART II Requirements development

Trap Don’t store the same requirement in several places, even if it logically fits. That’s
an invitation to generate an inconsistency if you change, for example, an interoperability
requirement but forget to change the same information that you also recorded as a
 functional or external interface requirement.

Interoperability requirements might dictate that standard data interchange formats be used to
facilitate exchanging information with other software systems. Such a requirement for the Chemical
Tracking System was:

IOP-2. The Chemical Tracking System shall be able to import any chemical structure
encoded using the SMILES (simplified molecular-input line-entry system) notation.

Thinking about the system from the perspective of quality attributes sometimes reveals previously
unstated requirements. The users hadn’t expressed this chemical structure interoperability need when
we were discussing either external interfaces or system functionality. As soon as the BA asked about
other systems to which the Chemical Tracking System had to connect, though, the product champion
immediately mentioned the two chemical structure drawing packages.

Following are some questions you can use when exploring interoperability requirements:

 ■ To what other systems must this one interface? What services or data must they exchange?

 ■ What standard data formats are necessary for data that needs to be exchanged with other
systems?

 ■ What specific hardware components must interconnect with the system?

 ■ What messages or codes must the system receive and process from other systems or devices?

 ■ What standard communication protocols are necessary to enable interoperability?

 ■ What externally mandated interoperability requirements must the system satisfy?

Performance
Performance is one of the quality attributes that users often will bring up spontaneously. Performance
represents the responsiveness of the system to various user inquiries and actions, but it encompasses
much more than that, as shown in Table 14-2. Withall (2007) provides patterns for specifying several
of these classes of performance requirements.

Poor performance is an irritant to the user who’s waiting for a query to display results. But
 performance problems can also represent serious risks to safety, such as when a real-time process
control system is overloaded. Stringent performance requirements strongly affect software design
strategies and hardware choices, so define performance goals that are appropriate for the operating

 CHAPTER 14 Beyond functionality 273

environment. All users want their applications to run instantly, but the real performance requirements
will be different for a spell-check feature than for a missile’s radar guidance system. Satisfying
 performance requirements can be tricky because they depend so much upon external factors such as
the speed of the computer being used, network connections, and other hardware components.

TABLE 14-2 Some aspects of performance

Performance dimension Example

Response time Number of seconds to display a webpage

Throughput Credit card transactions processed per second

Data capacity Maximum number of records stored in a database

Dynamic capacity Maximum number of concurrent users of a social media website

Predictability in real-time systems Hard timing requirements for an airplane’s flight-control system

Latency Time delays in music recording and production software

Behavior in degraded modes or
overloaded conditions

A natural disaster leads to a massive number of emergency telephone
system calls

When documenting performance requirements, also document their rationale to guide the
 developers in making appropriate design choices. For instance, stringent database response time
 demands might lead the designers to mirror the database in multiple geographical locations. Specify
the number of transactions per second to be performed, response times, and task scheduling
 relationships for real-time systems. You could also specify memory and disk space requirements,
 concurrent user loads, or the maximum number of rows stored in database tables. Users and BAs
might not know all this information, so plan to collaborate with various stakeholders to research
the more technical aspects of quality requirements. Following are some sample performance
 requirements:

PER-1. Authorization of an ATM withdrawal request shall take no more than
2.0 seconds.

PER-2. The anti-lock braking system speed sensors shall report wheel speeds every
2 milliseconds with a variation not to exceed 0.1 millisecond.

PER-3. Webpages shall fully download in an average of 3 seconds or less over a
30 megabits/second Internet connection.

PER-4. At least 98 percent of the time, the trading system shall update the
transaction status display within 1 second after the completion of each trade.

Performance is an external quality attribute because it can be observed only during program
execution. It is closely related to the internal quality attribute of efficiency, which has a big impact on
the user-observed performance.

274 PART II Requirements development

Reliability
The probability of the software executing without failure for a specific period of time is known
as reliability (Musa 1999). Reliability problems can occur because of improper inputs, errors in
the software code itself, components that are not available when needed, and hardware failures.
 Robustness and availability are closely related to reliability. Ways to specify and measure software
 reliability include the percentage of operations that are completed correctly, the average length
of time the system runs before failing (mean time between failures, or MTBF), and the maximum
 acceptable probability of a failure during a given time period. Establish quantitative reliability
 requirements based on how severe the impact would be if a failure occurred and whether the cost of
maximizing reliability is justifiable. Systems that require high reliability should also be designed for
high verifiability to make it easier to find defects that could compromise reliability.

My team once wrote some software to control laboratory equipment that performed day-long
 experiments using scarce, expensive chemicals. The users required the software component
that actually ran the experiments to be highly reliable. Other system functions, such as logging
 temperature data periodically, were less critical. A reliability requirement for this system was

REL-1. No more than 5 experimental runs out of 1,000 can be lost because of
software failures.

Some system failures are more severe than others. A failure might force the user to re-launch an
application and recover data that was saved. This is annoying but not catastrophic. Failures that result
in lost or corrupted data, such as when an attempted database transaction fails to commit properly,
are more severe. Preventing errors is better than detecting them and attempting to recover from
them.

Like many other quality attributes, reliability is a lagging indicator: you can’t tell if you’ve achieved
it until the system has been in operation for awhile. Consider the following example:

REL-2. The mean time between failures of the card reader component shall be at
least 90 days.

There’s no way to tell if the system has satisfied this requirement until at least 90 days have passed.
However, you can tell if the system has failed to demonstrate sufficient reliability if the card reader
component fails more than once within a 90-day period.

Following are some questions to ask user representatives when you’re eliciting reliability
 requirements:

 ■ How would you judge whether this system was reliable enough?

 ■ What would be the consequences of experiencing a failure when performing certain
 operations with the system?

 ■ What would you consider to be a critical failure, as opposed to a nuisance?

 ■ Under what conditions could a failure have severe repercussions on your business operations?

 CHAPTER 14 Beyond functionality 275

 ■ No one likes to see a system crash, but are there certain parts of the system that absolutely
have to be super-reliable?

 ■ If the system goes down, how long could it stay offline before it significantly affects your
 business operations?

Understanding reliability requirements lets architects, designers, and developers take actions that
they think will achieve the necessary reliability. From a requirements perspective, one way to make a
system both reliable and robust is to specify exception conditions and how they are to be handled.
Badly handled exceptions can convey an impression of poor reliability and usability to users. A
website that blanks out the information a user had entered in a form when it encounters a single bad
input value is exasperating. No user would ever specify that behavior as being acceptable. Developers
can make systems more reliable by practicing defensive programming techniques, such as testing all
input data values for validity and confirming that disk write operations were completed successfully.

Robustness
A customer once told a company that builds measurement devices that its next product should be
“built like a tank.” The developing company therefore adopted—slightly tongue-in-cheek—the new
quality attribute of “tankness.” Tankness is a colloquial way of saying robustness. Robustness is the
degree to which a system continues to function properly when confronted with invalid inputs, defects
in connected software or hardware components, external attack, or unexpected operating conditions.
Robust software recovers gracefully from problem situations and is forgiving of user mistakes. It
recovers from internal failures without adversely affecting the end-user experience. Software errors
are handled in a way the user perceives as reasonable, not annoying. Other attribute terms associated
with robustness are fault tolerance (are user input errors caught and corrected?), survivability (can
the camera experience a drop from a certain height without damage?), and recoverability (can the PC
resume proper operation if it loses power in the middle of an operating system update?).

When eliciting robustness requirements, ask users about error conditions the system might
 encounter and how the system should react. Think about ways to detect possible faults that could
lead to a system failure, report them to the user, and recover from them if the failure occurs.
Make sure you understand when one operation (such as preparing data for transmission) must be
 completed correctly before another can begin (sending the data to another computer system). One
example of a robustness requirement is

ROB-1. If the text editor fails before the user saves the file, it shall recover the
contents of the file being edited as of, at most, one minute prior to the failure the
next time the same user launches the application.

A requirement like this might lead a developer to implement checkpointing or periodic autosave to
minimize data loss, along with functionality to look for the saved data upon startup and restore the
file contents. You wouldn’t want to stipulate the precise mechanism in a robustness requirement,
though. Leave those technical decisions to developers.

276 PART II Requirements development

Mea culpa
While writing this chapter, I had a software robustness experience. I was printing a draft chapter
and put my computer into sleep mode before the printing was complete, thinking that the data
had all been spooled to the printer. It hadn’t. How would the print spooler recover from my
error when I woke the computer up? Would the spooler terminate and not print the rest of the
file, resume printing where it left off, reprint the entire job, or what? It reprinted the entire job,
although I would have preferred that it would just continue printing. I wasted some paper, but
at least the spooler recovered from my user error and kept going.

I once led a project to develop a reusable software component called the Graphics Engine, which
interpreted data files that defined graphical plots and rendered the plots on a designated output
 device. Several applications that needed to generate plots invoked the Graphics Engine. Because
the developers had no control over the data that these applications fed into the Graphics Engine,
 robustness was an essential quality. One of our robustness requirements was

ROB-2. All plot description parameters shall have default values specified, which the
Graphics Engine shall use if a parameter’s input data is missing or invalid.

With this requirement, the program wouldn’t crash if, for example, an application requested an
unsupported line style. The Graphics Engine would supply the default solid line style and continue
executing. This would still constitute a product failure because the end user didn’t get the desired
output. But designing for robustness reduced the severity of the failure from a program crash to
 generating an incorrect line style, an example of fault tolerance.

Safety
Safety requirements deal with the need to prevent a system from doing any injury to people
or damage to property (Leveson 1995; Hardy 2011). Safety requirements might be dictated by
 government regulations or other business rules, and legal or certification issues could be associated
with satisfying such requirements. Safety requirements frequently are written in the form of
 conditions or actions the system must not allow to occur.

People are rarely injured by exploding spreadsheets. However, hardware devices controlled by
software can certainly pose a risk to life and limb. Even some software-only applications can have
 unobvious safety requirements. An application to let people order meals from a cafeteria might
 include a safety requirement like the following:

SAF-1. The user shall be able to see a list of all ingredients in any menu items, with
ingredients highlighted that are known to cause allergic reactions in more than
0.5 percent of the North American population.

 CHAPTER 14 Beyond functionality 277

Web browser capabilities like parental controls that disable access to certain features or URLs could
be considered as solutions to either safety or security requirements. It’s more common to see safety
requirements written for systems that include hardware, such as the following examples:

SAF-2. If the reactor vessel’s temperature is rising faster than 5°C per minute, the
Chemical Reactor Control System shall turn off the heat source and signal a warning
to the operator.

SAF-3. The therapeutic radiation machine shall allow irradiation only if the proper
filter is in place.

SAF-4. The system shall terminate any operation within 1 second if the measured
tank pressure exceeds 90 percent of the specified maximum pressure.

When eliciting safety requirements you might need to interview subject matter experts who are
very familiar with the operating environment or people who have thought a lot about project risks.
Consider asking questions like the following:

 ■ Under what conditions could a human be harmed by the use of this product? How can the
system detect those conditions? How should it respond?

 ■ What is the maximum allowed frequency of failures that have the potential to cause injury?

 ■ What failure modes have the potential of causing harm or property damage?

 ■ What operator actions have the potential of inadvertently causing harm or property damage?

 ■ Are there specific modes of operation that pose risks to humans or property?

Security
Security deals with blocking unauthorized access to system functions or data, ensuring that the
 software is protected from malware attacks, and so on. Security is a major issue with Internet
 software. Users of e-commerce systems want their credit card information to be secure. Web
 surfers don’t want personal information or a record of the sites they visit to be used inappropriately.
 Companies want to protect their websites against denial-of-service or hacking attacks. As with
 integrity requirements, security requirements have no tolerance for error. Following are some
 considerations to examine when eliciting security requirements:

 ■ User authorization or privilege levels (ordinary user, guest user, administrator) and user access
controls (the roles and permissions matrix that was illustrated in Figure 9-2 can be a useful tool)

 ■ User identification and authentication (password construction rules, password change
 frequency, security questions, forgotten logon name or password procedures, biometric
 identification, account locking after unsuccessful access attempts, unrecognized computer)

 ■ Data privacy (who can create, see, change, copy, print, and delete what information)

 ■ Deliberate data destruction, corruption, or theft

 ■ Protection against viruses, worms, Trojan horses, spyware, rootkits, and other malware

278 PART II Requirements development

 ■ Firewall and other network security issues

 ■ Encryption of secure data

 ■ Building audit trails of operations performed and access attempts

Following are some examples of security requirements. It’s easy to see how you could design tests
to verify that these requirements are correctly implemented.

SEC-1. The system shall lock a user’s account after four consecutive unsuccessful
logon attempts within a period of five minutes.

SEC-2. The system shall log all attempts to access secure data by users having
insufficient privilege levels.

SEC-3. A user shall have to change the temporary password assigned by the security
officer to a previously unused password immediately following the first successful
logon with the temporary password.

SEC-4. A door unlock that results from a successful security badge read shall keep
the door unlocked for 8.0 seconds, with a tolerance of 0.5 second.

SEC-5. The resident antimalware software shall quarantine any incoming Internet
traffic that exhibits characteristics of known or suspected virus signatures.

SEC-6. The magnetometer shall detect at least 99.9 percent of prohibited objects,
with a false positive rate not to exceed 1 percent.

Security requirements often originate from business rules, such as corporate security policies, as the
following example illustrates:

SEC-7. Only users who have Auditor access privileges shall be able to view customer
transaction histories.

Try to avoid writing security requirements with embedded design constraints. Specifying
 passwords for access control is an example. The real requirement is to restrict access to the system to
authorized users; passwords are merely one way (albeit the most common way) to accomplish that
objective. Depending on which user authentication method is chosen, this security requirement will
lead to specific functional requirements that implement the authentication method.

Following are some questions to explore when eliciting security requirements:

 ■ What sensitive data must be protected from unauthorized access?

 ■ Who is authorized to view sensitive data? Who, specifically, is not authorized?

 ■ Under what business conditions or operational time frames are authorized users allowed to
access functionality?

 ■ What checks must be performed to confirm that the user is operating the application in a
secure environment?

 CHAPTER 14 Beyond functionality 279

 ■ How frequently should virus software scan for viruses?

 ■ Is there a specific user authentication method that must be used?

Usability
Usability addresses the myriad factors that constitute what people describe colloquially as
 user-friendliness, ease of use, and human engineering. Analysts and developers shouldn’t talk about
“friendly” software but rather about software that’s designed for effective and unobtrusive usage.
Usability measures the effort required to prepare input for a system, operate it, and interpret its
outputs.

Software usability is a huge topic with a considerable body of literature (for example: Constantine
and Lockwood 1999; Nielsen 2000; Lazar 2001; Krug 2006; Johnson 2010). Usability encompasses
several subdomains beyond the obvious ease of use, including ease of learning; memorability; error
avoidance, handling, and recovery; efficiency of interactions; accessibility; and ergonomics. Conflicts
can arise between these categories. For instance, ease of learning can be at odds with ease of use.
The actions a designer might take to make it easy for a new or infrequent user to employ the system
can be irritating impediments to a power user who knows exactly what he wants to do and craves
efficiency. Different features within the same application might also have different usability goals.
It might be important to be able to enter data very efficiently, but also to be able to easily figure
out how to generate a customized report. Table 14-3 illustrates some of these usability design
 approaches; you can see the possible conflict if you optimize for one aspect of usability over another
inappropriately for specific user classes.

Important The key goal for usability—as well as for other quality attributes—is to balance
the usability optimally for the whole spectrum of users, not just for a single community.
This might mean that certain users aren’t as happy with the result as they’d like to be. User
customization options can broaden the application’s appeal.

TABLE 14-3 Possible design approaches for ease of learning and ease of use

Ease of learning Ease of use

Verbose prompts Keyboard shortcuts

Wizards Rich, customizable menus and toolbars

Visible menu options Multiple ways to access the same function

Meaningful, plain-language messages Autocompletion of entries

Help screens and tooltips Autocorrection of errors

Similarity to other familiar systems Macro recording and scripting capabilities

Limited number of options and widgets displayed Ability to carry over information from a previous transaction

Automatically fill in form fields

Command-line interface

280 PART II Requirements development

As with the other quality attributes, it is possible to measure many aspects of “user-friendliness.”
 Usability indicators include:

 ■ The average time needed for a specific type of user to complete a particular task correctly.

 ■ How many transactions the user can complete correctly in a given time period.

 ■ What percentage of a set of tasks the user can complete correctly without needing help.

 ■ How many errors the user makes when completing a task.

 ■ How many tries it takes the user to accomplish a particular task, like finding a specific function
buried somewhere in the menus.

 ■ The delay or wait time when performing a task.

 ■ The number of interactions (mouse clicks, keystrokes, touch-screen gestures) required to get
to a piece of information or to accomplish a task.

Just tell me what’s wrong
Usability shortcomings can be exasperating. I recently tried to report a problem using a
 website’s feedback form. I received an error message that “no special characters were allowed”
but the website did not tell me which characters in my text were causing the problem.
 Obviously, the software knew what the bad characters were because it detected them. Showing
me a generic error message instead of offering precise feedback didn’t help me solve the
problem. I eventually figured out that the software was objecting to the presence of quotation
marks in my message. It never occurred to me that quotation marks would be considered a
special character; “special character” is vague and ambiguous. To help developers determine
how best to satisfy a user’s usability expectations, the BA should write specific usability
 requirements, and developers should provide precise error feedback whenever possible.

To explore their usability expectations, the business analysts on the Chemical Tracking System
asked their product champions questions such as “How many steps would you be willing to go
through to request a chemical?” and “How long should it take you to complete a chemical request?”
These are simple starting points toward defining the many characteristics that will make the software
easy to use. Discussions about usability can lead to measurable goals such as the following:

USE-1. A trained user shall be able to submit a request for a chemical from a vendor
catalog in an average of three minutes, and in a maximum of five minutes, 95
percent of the time.

 CHAPTER 14 Beyond functionality 281

Inquire whether the new system must conform to any user interface standards or conventions, or
whether its user interface needs to be consistent with those of other frequently used systems. You
might state such a usability requirement in the following way:

USE-2. All functions on the File menu shall have shortcut keys defined that use the
Control key pressed simultaneously with one other key. Menu commands that also
appear in Microsoft Word shall use the same default shortcut keys that Word uses.

Such consistency of usage can help avoid those frustrating errors that occur when your fingers
 perform an action by habit that has some different meaning in an application you don’t use
 frequently. Ease-of-learning goals also can be quantified and measured, as the following example
indicates:

USE-3. 95 percent of chemists who have never used the Chemical Tracking System
before shall be able to place a request for a chemical correctly with no more than
15 minutes of orientation.

Carefully specifying requirements for the diverse dimensions of usability can help designers make
the choices that distinguish delighted users from those who use an application with frowns on their
faces or, worse, those who refuse to use it at all.

Internal quality attributes
Internal quality attributes are not directly observable during execution of the software. They are
 properties that a developer or maintainer perceives while looking at the design or code to modify
it, reuse it, or move it to another platform. Internal attributes can indirectly affect the customer’s
 perception of the product’s quality if it later proves difficult to add new functionality or if internal
 inefficiencies result in performance degradation. The following sections describe quality attributes that
are particularly important to software architects, developers, maintainers, and other technical staff.

Efficiency
Efficiency is closely related to the external quality attribute of performance. Efficiency is a measure of
how well the system utilizes processor capacity, disk space, memory, or communication bandwidth. If
a system consumes too much of the available resources, users will encounter degraded performance.

Efficiency—and hence performance—is a driving factor in systems architecture, influencing how
a designer elects to distribute computations and functions across system components. Efficiency
requirements can compromise the achievement of other quality attributes. Consider minimum
 hardware configurations when defining efficiency, capacity, and performance goals. To allow
 engineering margins for unanticipated conditions and future growth (thereby influencing scalability),
you might specify something like the following:

EFF-1. At least 30 percent of the processor capacity and memory available to the
application shall be unused at the planned peak load conditions.

282 PART II Requirements development

EFF-2. The system shall provide the operator with a warning message when the
usage load exceeds 80 percent of the maximum planned capacity.

Users won’t state efficiency requirements in such technical terms; instead, they will think in
terms of response times or other observations. The BA must ask the questions that will surface user
 expectations regarding issues such as acceptable performance degradation, demand spikes, and
anticipated growth. Examples of such questions are:

 ■ What is the maximum number of concurrent users now and anticipated in the future?

 ■ By how much could response times or other performance indicators decrease before users or
the business suffer adverse consequences?

 ■ How many operations must the system be able to perform simultaneously under both normal
and extreme operating conditions?

Modifiability
Modifiability addresses how easily the software designs and code can be understood, changed,
and extended. Modifiability encompasses several other quality attribute terms that relate to
 different forms of software maintenance, as shown in Table 14-4. It is closely related to verifiability.
If developers anticipate making many enhancements, they can choose design approaches that
 maximize the software’s modifiability. High modifiability is critical for systems that will undergo
 frequent revision, such as those being developed by using an incremental or iterative life cycle.

TABLE 14-4 Some aspects of modifiability

Maintenance type Modifiability dimensions Description

Corrective Maintainability,
 understandability

Correcting defects

Perfective Flexibility, extensibility, and
augmentability

Enhancing and modifying functionality to meet new business
needs and requirements

Adaptive Maintainability Modifying the system to function in an altered operating
environment without adding new capabilities

Field support Supportability Correcting faults, servicing devices, or repairing devices in
their operating environment

Ways to measure modifiability include the average time required to add a capability or fix a
 problem, and the percentage of fixes that are made correctly. The Chemical Tracking System included
the following modifiability requirement:

MOD-1. A maintenance programmer experienced with the system shall be able to
modify existing reports to conform to revised chemical-reporting regulations from
the federal government with 10 hours or less of development effort.

 CHAPTER 14 Beyond functionality 283

On the Graphics Engine project, we knew we would be doing frequent software surgery to satisfy
evolving user needs. Being experienced developers ourselves, we adopted design guidelines such as
the following to guide developers in writing the code to enhance the program’s understandability
and hence maintainability:

MOD-2. Function calls shall not be nested more than two levels deep.

Such design guidelines should be stated carefully to discourage developers from taking silly actions
that conform to the letter, but not the intent, of the goal. The BA should work with maintenance
programmers to understand what properties of the code would make it easy for them to modify it or
correct defects.

Hardware devices containing embedded software often have requirements for supportability
in the field. Some of these lead to software design choices, whereas others influence the hardware
 design. The following is an example of the latter:

SUP-1. A certified repair technician shall be able to replace the scanner module in no
more than 10 minutes.

Supportability requirements might also help make the user’s life easier, as this example illustrates:

SUP-2. The printer shall display an error message if replacement ink cartridges were
not inserted in the proper slots.

Portability
The effort needed to migrate software from one operating environment to another is a measure of
portability. Some practitioners include the ability to internationalize and localize a product under the
heading of portability. The design approaches that make software portable are similar to those that
make it reusable. Portability has become increasingly important as applications must run in multiple
environments, such as Windows, Mac, and Linux; iOS and Android; and PCs, tablets, and phones. Data
portability requirements are also important.

Portability goals should identify those portions of the product that must be movable to other
 environments and describe those target environments. One product for analyzing chemicals ran
in two very different environments. One version ran in a laboratory where a PhD chemist used the
 software to control several analytical instruments. The second version ran in a handheld device to be
used in the field, such as at an oil pipeline, by someone who had much less technical education. The
core capabilities of the two versions were largely the same. Such a product needs to be designed from
the outset to work in both kinds of environments with the minimum amount of development work.
If developers know about the customers’ expectations of portability, they can select development
approaches that will enhance the product’s portability appropriately. Following are some sample
portability requirements:

284 PART II Requirements development

POR-1. Modifying the iOS version of the application to run on Android devices shall
require changing no more than 10 percent of the source code.

POR-2. The user shall be able to port browser bookmarks to and from Firefox,
Internet Explorer, Opera, Chrome, and Safari.

POR-3. The platform migration tool shall transfer customized user profiles to the
new installation with no user action needed.

When you are exploring portability, questions like the following might be helpful:

 ■ What different platforms will this software need to run on, both now and in the future?

 ■ What portions of the product need to be designed for greater portability than other portions?

 ■ What data files, program components, or other elements of the system need to be portable?

 ■ By making the software more portable, what other quality attributes might be compromised?

Reusability
Reusability indicates the relative effort required to convert a software component for use in other
applications. Reusable software must be modular, well documented, independent of a specific
 application and operating environment, and somewhat generic in capability. Numerous project
 artifacts offer the potential for reuse, including requirements, architectures, designs, code, tests,
 business rules, data models, user class descriptions, stakeholder profiles, and glossary terms
(see Chapter 18, “Requirements reuse”). Making software reusable is facilitated by thorough
 specification of requirements and designs, rigorous adherence to coding standards, a maintained
regression suite of test cases, and a maintained standard library of reusable components.

Reusability goals are difficult to quantify. Specify which elements of the new system need to be
constructed in a manner that facilitates their reuse, or stipulate the reusable components that should
be created as a spin-off from the project. Following are some examples:

REU-1. The chemical structure input functions shall be reusable at the object code
level in other applications.

REU-2. At least 30 percent of the application architecture shall be reused from the
approved reference architectures.

REU-3. The pricing algorithms shall be reusable by future store-management
applications.

Consider discussing the following questions when you are trying to learn about reusability
 requirements for your project:

 ■ What existing requirements, models, design components, data, or tests could be reused in this
application?

 ■ What functionality available in related applications might meet certain requirements for this
application?

 CHAPTER 14 Beyond functionality 285

 ■ What portions of this application offer good potential for being reused elsewhere?

 ■ What special actions should be taken to facilitate making portions of this application reusable?

Scalability
Scalability requirements address the ability of the application to grow to accommodate more users,
data, servers, geographic locations, transactions, network traffic, searches, and other services without
compromising performance or correctness. Scalability has both hardware and software implications.
Scaling up a system could mean acquiring faster computers, adding memory or disk space, adding
servers, mirroring databases, or increasing network capacity. Software approaches might include
 distributing computations onto multiple processors, compressing data, optimizing algorithms,
and other performance-tuning techniques. Scalability is related to modifiability and to robustness,
 because one category of robustness has to do with how the system behaves when capacity limits are
approached or exceeded. Following are some examples of scalability requirements:

SCA-1. The capacity of the emergency telephone system must be able to be
increased from 500 calls per day to 2,500 calls per day within 12 hours.

SCA-2. The website shall be able to handle a page-view growth rate of
30 percent per quarter for at least two years without user-perceptible performance
degradation.

SCA-3. The distribution system shall be able to accommodate up to 20 new
warehouse centers.

The business analyst might not have a good sense of future expansion plans for a specific
 application. She might need to work with the project sponsor or subject matter experts to get a sense
of how much the user base, data volume, or other parameters could grow over time. The following
questions could be helpful during those discussions:

 ■ What are your estimates for the number of total and concurrent users the system must be able
to handle over the next several months, quarters, or years?

 ■ Can you describe how and why data capacity demands of the system might grow in the
 future?

 ■ What are the minimum acceptable performance criteria that must be satisfied regardless of
the number of users?

 ■ What growth plans are available regarding how many servers, data centers, or individual
installations the system might be expected to run on?

286 PART II Requirements development

No, wait, please don’t go!
“Cyber Monday” is a marketing term for the Monday following Thanksgiving every November.
It has become a traditional day for consumers to shop at online sales for the holiday season.
When this custom took root in the mid-2000s, many e-commerce websites weren’t prepared
to handle the spikes in traffic and transactions from customers shopping for bargains. Servers
crashed, passwords weren’t recognized, and purchases took too long to be completed. Many
shoppers abandoned the online stores they were trying to access and found someplace else
to shop, perhaps never to return. Cybercriminals made out, well, like bandits, as traffic was
diverted to their look-alike websites that stole shoppers’ personal information.

These problems reveal an intertwined mass of unsatisfied software quality requirements.
Because of inadequate scalability, systems experienced reliability problems as websites were
overwhelmed with visitors, which led to reduced availability. Better software has a direct impact
on a company’s financial bottom line.

Verifiability
More narrowly referred to as testability, verifiability refers to how well software components or the
integrated product can be evaluated to demonstrate whether the system functions as expected.
Designing for verifiability is critical if the product has complex algorithms and logic, or if it contains
subtle functionality interrelationships. Verifiability is also important if the product will be modified
 often, because it will undergo frequent regression testing to determine whether the changes
 damaged any existing functionality. Systems with high verifiability can be tested both effectively and
efficiently. Designing software for verifiability means making it easy to place the software into the
desired pretest state, to provide the necessary test data, and to observe the result of the test. Here
are some examples of verifiability requirements:

VER-1. The development environment configuration shall be identical to the test
configuration environment to avoid irreproducible testing failures.

VER-2. A tester shall be able to configure which execution results are logged during
testing.

VER-3. The developer shall be able to set the computational module to show the
interim results of any specified algorithm group for debugging purposes.

Because my team and I knew that we’d have to test the Graphics Engine many times while it was
repeatedly enhanced, we included the following design guideline to enhance verifiability:

VER-4. The maximum cyclomatic complexity of a module shall not exceed 20.

Cyclomatic complexity is a measure of the number of logic branches in a source code module.
 Adding more branches and loops to a module makes it harder to understand, to test, and to maintain.
The project wasn’t going to be a failure if some module had a cyclomatic complexity of 24, but
 documenting such guidelines helped the developers achieve a desired quality objective.

 CHAPTER 14 Beyond functionality 287

Defining verifiability requirements can be difficult. Explore questions like the following:

 ■ How can we confirm that specific calculations are giving the expected results?

 ■ Are there any portions of the system that do not yield deterministic outputs, such that it could
be difficult to determine if they were working correctly?

 ■ Is it possible to come up with test data sets that have a high probability of revealing any errors
in the requirements or in their implementation?

 ■ What reference reports or other outputs can we use to verify that the system is producing its
outputs correctly?

Specifying quality requirements with Planguage

You can’t evaluate a product to judge whether it satisfies vague quality requirements. Unverifiable
quality requirements are no better than unverifiable functional requirements. Simplistic quality and
performance goals can be unrealistic. Specifying a subsecond response time for a database query
might be fine for a simple lookup in a local database but unrealistic for a six-way join of relational
tables residing on geographically separated servers.

To address the problem of ambiguous and incomplete nonfunctional requirements, Tom Gilb
(1997; 2005) developed Planguage, a language with a rich set of keywords that permits precise
 statements of quality attributes and other project goals (Simmons 2001). Following is an example
of how to express a performance requirement using just a few of the many Planguage keywords.
 Expressed in traditional form, this requirement might read: “At least 95 percent of the time, the
 system shall take no more than 8 seconds to display any of the predefined accounting reports.”

 ■ TAG Performance.Report.ResponseTime

 ■ AMBITION Fast response time to generate accounting reports on the base user platform.

 ■ SCALE Seconds of elapsed time between pressing the Enter key or clicking OK to request a
report and the beginning of the display of the report.

 ■ METER Stopwatch testing performed on 30 test reports that represent a defined usage
 operational profile for a field office accountant.

 ■ GOAL No more than 8 seconds for 95 percent of reports. ÅField Office Manager

 ■ STRETCH No more than 2 seconds for predefined reports, 5 seconds for all reports.

 ■ WISH No more than 1.5 seconds for all reports.

 ■ base user platform DEFINED Quad-core processor, 8GB RAM, Windows 8, QueryGen 3.3
running, single user, at least 50 percent of system RAM and 70 percent of system CPU capacity
free, network connection speed of at least 30 Mbps.

288 PART II Requirements development

Each requirement receives a unique tag, or label, using the hierarchical naming convention that
was described in Chapter 10. The ambition states the purpose or objective of the system that leads
to this requirement. Scale defines the units of measurement and meter describes how to make the
measurements. All stakeholders need to have the same understanding of what “performance” means.
Suppose that a user interprets the measurement to be from the time that he presses the Enter key
 until the complete report appears, rather than until the beginning of the report display, as stated in
the example. The developer might claim that the requirement is satisfied, whereas the user insists that
it is not. Unambiguous quality requirements and measurements prevent these sorts of debates.

One advantage of Planguage is that you can specify several target values for the quantity being
measured. The goal criterion is the minimum acceptable achievement level. The requirement isn’t
satisfied unless every goal condition is completely satisfied, so make sure the goals are justifiable in
terms of real business needs. An alternative way to state the goal requirement is to define the fail
 (another Planguage keyword) condition: “More than 8 seconds on more than 5 percent of all reports.”
The stretch value describes a more desirable performance objective, and the wish value represents
the ideal outcome. Consider showing the origin of performance goals. The “Å” notation following
the goal criterion shows that it came from the Field Office Manager. Any specialized terms in the
 Planguage statement are defined to make them clear to the reader. This example provides a definition
of something called the Base User Platform on which the test is to be conducted.

Planguage includes many additional keywords to provide flexibility and precision in specifying
 unambiguous quality attribute requirements, and even business objectives. Specifying multiple levels
of achievement yields a far richer statement of a quality requirement than a simple black-and-white,
yes-or-no construct can. The drawback to using Planguage is that the resulting requirements are much
bulkier than simple quality requirement statements. However, the richness of information provided
outweighs this inconvenience. Even if you don’t write the quality requirements using the full Planguage
formalism, using the keywords to think through exactly what people mean by “fast” will yield much
more precise and shared expectations.

Quality attribute trade-offs

Certain attribute combinations have inescapable trade-offs. Users and developers must decide which
attributes are more important than others, and they must respect those priorities when they make
 decisions. The technique described earlier in “Step 3: Prioritize the attributes” can help with this analysis.
Figure 14-2 illustrates some typical interrelationships among the quality attributes from Table 14-1,
although you might encounter exceptions to these (Charette 1990; Glass 1992; IEEE 1998). A plus sign
in a cell indicates that increasing the attribute in the corresponding row usually has a positive effect
on the attribute in the column. For example, design approaches that increase a software component’s
portability also make the software easier to connect to other software components, easier to reuse,
and easier to test.

 CHAPTER 14 Beyond functionality 289

FIGURE 14-2 Positive and negative relationships among selected quality attributes.

A minus sign in a cell means that increasing the attribute in that row generally adversely affects
the attribute in the column. An empty cell indicates that the attribute in the row has little effect
on the attribute in the column. Performance and efficiency have a negative impact on several
other attributes. If you write the tightest, fastest code you can, using coding tricks and relying on
 execution side effects, it’s likely to be hard to maintain and enhance. It also could be harder to port
to other platforms if you’ve tuned the code for a specific operating environment. Similarly, systems
that optimize ease of use or that are designed to be reusable and interoperable with other software
or hardware components often incur a performance penalty. Using the general-purpose Graphics
Engine component described earlier in the chapter to generate plots resulted in poorer performance
compared with the old applications that incorporated custom graphics code. You have to balance the
possible performance (or other) reductions against the anticipated benefits of your proposed solution
to ensure that you’re making sensible trade-offs.

The matrix in Figure 14-2 isn’t symmetrical because the effect that increasing attribute A has on
attribute B isn’t necessarily the same as the effect that increasing B will have on A. Figure 14-2 shows
that designing the system to increase performance doesn’t necessarily have any effect on security.
However, increasing security likely will hurt performance because the system must go through more
layers of user authentications, encryption, and malware scanning.

290 PART II Requirements development

To reach the optimum balance of product characteristics, you must identify, specify, and prioritize
the pertinent quality attributes during requirements elicitation. As you define the important quality
attributes for your project, use Figure 14-2 to avoid making commitments to conflicting goals.
 Following are some examples:

 ■ Don’t expect to maximize usability if the software must run on multiple platforms with
 minimal modification (portability). Different platforms and operating systems impose different
constraints and offer different usability characteristics.

 ■ It’s hard to completely test the integrity requirements of highly secure systems. Reused
 generic components could compromise security mechanisms.

 ■ Highly robust code could exhibit reduced performance because of the data validations and
error checking that it performs.

As usual, overconstraining system expectations or defining conflicting requirements makes it
 impossible for the developers to fully satisfy the requirements.

Implementing quality attribute requirements

Designers and programmers will have to determine the best way to satisfy each quality requirement.
Although these are nonfunctional requirements, they can lead to derived functional requirements,
design guidelines, or other types of technical information that will produce the desired product
 characteristics. Table 14-5 indicates the likely categories of technical information that different
types of quality attributes will generate. For example, a medical device with stringent availability
and reliability requirements might include a backup battery power supply (architecture), along with
 functional requirements to indicate when the product is operating on battery power, when the
battery is getting low, and so forth. This translation from external or internal quality requirements
into corresponding technical information is part of the requirements analysis and high-level design
processes.

TABLE 14-5 Translating quality attributes into technical specifications

Quality attributes Likely technical information category

Installability, integrity, interoperability, reliability, robustness, safety,
security, usability, verifiability

Functional requirement

Availability, efficiency, modifiability, performance, reliability, scalability System architecture

Interoperability, security, usability Design constraint

Efficiency, modifiability, portability, reliability, reusability, scalability,
verifiability, usability

Design guideline

Portability Implementation constraint

Business analysts who lack development experience might not appreciate the technical
 implications of quality requirements. Therefore, the BA should engage the right stakeholders who
have knowledge of these implications and learn from those collaborations. Consider scalability, which

 CHAPTER 14 Beyond functionality 291

can be profoundly affected by architecture and design choices. Scalability requirements might lead
the developer to retain performance buffers (disk space, CPU consumption, network bandwidth) to
accommodate potential growth without degrading system performance unacceptably. Scalability
expectations can affect the hardware and operating environment decisions that developers make.
This is why it’s important to elicit and document scalability requirements early on so developers can
ensure that the product can grow as expected and still exhibit acceptable performance. This is also
one reason why it’s important to involve developers early in requirements elicitation and reviews.

Constraints

A constraint places restrictions on the design or implementation choices available to the developer.
Constraints can be imposed by external stakeholders, by other systems that interact with the one
you’re building or maintaining, or by other life cycle activities for your system, such as transition
and maintenance. Other constraints result from existing agreements, management decisions, and
 technical decisions (ISO/IEC/IEEE 2011). Sources of constraints include:

 ■ Specific technologies, tools, languages, and databases that must be used or avoided.

 ■ Restrictions because of the product’s operating environment or platform, such as the types
and versions of web browsers or operating systems that will be used.

 ■ Required development conventions or standards. (For instance, if the customer’s organization
will be maintaining the software, the organization might specify design notations and coding
standards that a subcontractor must follow.)

 ■ Backward compatibility with earlier products and potential forward compatibility, such as
knowing which version of the software was used to create a specific data file.

 ■ Limitations or compliance requirements imposed by regulations or other business rules.

 ■ Hardware limitations such as timing requirements, memory or processor restrictions, size,
weight, materials, or cost.

 ■ Physical restrictions because of the operating environment or because of characteristics or
limitations of the users.

 ■ Existing interface conventions to be followed when enhancing an existing product.

 ■ Interfaces to other existing systems, such as data formats and communication protocols.

 ■ Restrictions because of the size of the display, as when running on a tablet or phone.

 ■ Standard data interchange formats used, such as XML, or RosettaNet for e-business.

These sorts of constraints often are imposed from external sources and must be respected.
 Constraints can be imposed inadvertently, though. It’s common for users to present “requirements”
that are actually solution ideas that describe one particular way the user envisions meeting a
need. The BA must detect when a requirement includes a solution idea like this and distinguish

292 PART II Requirements development

the underlying need from the constraint that the solution imposes. Perhaps the solution the user
has in mind is in fact the ideal way to solve the problem, in which case the constraint is perfectly
 legitimate. More often, the real need is hidden, and the BA must work with the user to articulate the
thoughts that led to the presented solution. Asking “why” a few times generally will lead to that real
 requirement.

Some people say that quality attributes are constraints. We prefer to think of certain quality
 requirements as being the origin of some design or implementation constraints. As Table 14-5
 indicated, interoperability and usability requirements are potential sources of design constraints.
 Portability often imposes implementation constraints to make sure the application can easily be
moved from one platform or operating environment to another. For instance, some compilers define
an integer as being 32 bits long, and others define it as 64 bits. To satisfy a portability requirement,
a developer might symbolically define a data type called WORD as a 32-bit unsigned integer and
use the WORD data type instead of the compiler’s default integer data type. This ensures that all
 compilers will treat data items of type WORD in the same way, which helps to make the system work
predictably in different operating environments.

Following are some examples of constraints. You can see how these restrict the options available to
the architect, designer, and developer.

CON-1. The user clicks at the top of the project list to change the sort sequence.
[specific user interface control imposed as a design constraint on a functional
requirement]

CON-2. Only open source software available under the GNU General Public License
may be used to implement the product. [implementation constraint]

CON-3. The application must use Microsoft .NET framework 4.5. [architecture
constraint]

CON-4. ATMs contain only $20 bills. [physical constraint]

CON-5. Online payments may be made only through PayPal. [design constraint]

CON-6. All textual data used by the application shall be stored in the form of XML
files. [data constraint]

Note that some of these constraints exist to comply with some perhaps-unstated quality
 expectation. Ask why each constraint is imposed to try to reach that underlying quality requirement.
Why must open-source software be used, as stated in CON-2? Perhaps because of a desire for
increased modifiability, so that’s the requirement that leads to the constraint. Why must a specific
 version of .NET be used, per CON-3? Perhaps because of an implicit portability or reliability
 requirement. Remember, a constraint is a perceived solution; asking “why” can lead you to the
 requirement for which it is thought to be a solution.

 CHAPTER 14 Beyond functionality 293

Handling quality attributes on agile projects

It can be difficult and expensive to retrofit desired quality characteristics into a product late in
 development or after delivery. That’s why even agile projects that develop requirements and deliver
functionality in small increments need to specify significant quality attributes and constraints early
in the project. This allows developers to make appropriate architectural and design decisions as a
foundation for the desired quality characteristics. Nonfunctional requirements need to have priority
alongside user stories; you can’t defer their implementation until a later iteration.

It’s possible to specify quality attributes in the form of stories:

As a help desk technician, I want the knowledge base to respond to queries within
five seconds so the customer doesn’t get frustrated and hang up.

However, quality requirements are not implemented in the same discrete way as user stories. They
can span multiple stories and multiple iterations. Nor are they always readily divisible into smaller
chunks to be implemented across multiple iterations like user stories.

Developers need to keep nonfunctional requirements in mind as they consider the implications
of implementing individual user stories. As more functionality is added through a series of iterations,
the system’s efficiency and hence performance can deteriorate. Specify performance goals and begin
performance testing with early iterations, so you can become aware of concerns early enough to take
corrective actions.

As you saw in Table 14-5, some quality attributes are the source of derived functionality. On
an agile project, quality requirements can spawn new items for the product backlog. Consider the
 following security requirement:

As an account owner, I want to prevent unauthorized users from accessing my
account so I don’t lose any money.

This requirement would lead the product owner or business analyst on the project to derive multiple
user stories that describe the security-related functionality. These stories can be added to the backlog
and planned for implementation in specific iterations in the usual fashion. Understanding these
 requirements up front ensures that the team implements the security requirements at the right time.

As with user stories, it’s possible to write acceptance tests for quality attributes. This is a way to
quantify the quality attributes. If a performance goal is stated simply as “The knowledge base must
return search results quickly,” you can’t write tests to define what constitutes “quickly.” A better
 acceptance test would be:

Keyword search of the knowledge base takes less than 5 seconds, and preferably
less than 3 seconds, to return a result.

294 PART II Requirements development

Acceptance tests written in this form can present several acceptable levels of satisfaction for the
requirement, much like the Goal, Stretch, and Wish keywords used in Planguage, as discussed earlier
in this chapter. You could use the Planguage keywords Scale and Meter to define more precisely what
exactly is meant by “return a result” and how to perform the test and evaluate the results.

Part of accepting an iteration as being complete is to assess whether the pertinent nonfunctional
requirements are satisfied. Often there is a range of acceptable performance, with some outcomes
more desirable than others. As it does for any other software development approach, satisfying
 quality requirements can distinguish delight from disappointment on agile projects.

Next steps
 ■ Identify several quality attributes from Table 14-1 that might be important to users on

your current project. Formulate a few questions about each attribute that will help your
users articulate their expectations. Based on the user responses, write one or two specific
requirements for each important attribute.

 ■ Examine several documented quality requirements for your project to see if they are
 verifiable. If not, rewrite them so you could assess whether the expected quality outcomes
were achieved in the product.

 ■ Revisit the section titled “Exploring quality attributes” in this chapter and try the
 spreadsheet approach described to rank-order your important quality attributes. Are the
trade-offs between attributes being made on your project in agreement with this priority
analysis?

 ■ Rewrite several of the quality attribute examples in this chapter by using Planguage,
 making assumptions when necessary for the sake of illustration. Can you state those
 quality requirements with more precision and less ambiguity by using Planguage?

 ■ Examine your users’ quality expectations for the system for possible conflicts and resolve
them. The favored user classes should have the most influence on making the necessary
trade-off choices.

 ■ Trace your quality attribute requirements to the functional requirements, design and
implementation constraints, or architectural and design choices that implement them.

 295

C H A P T E R 1 5

Risk reduction through
prototyping

“Sharon, today I’d like to talk with you about the requirements that the buyers in the Purchasing
 Department have for the new Chemical Tracking System,” began Lori, the business analyst. “Can you
tell me what you want to be able to do with the system?”

“I’m not sure what to say,” replied Sharon with a puzzled expression. “I can’t describe what I need,
but I’ll know it when I see it.”

The phrase IKIWISI—”I’ll know it when I see it”—chills the blood of business analysts. It conjures an
image of the development team having to make their best guess at the right software to build, only
to have users tell them, “Nope, that’s not right; try again.” To be sure, envisioning a future software
system and articulating its requirements is hard. People have difficulty describing their needs without
having something tangible in front of them to contemplate; critiquing is much easier than conceiving.

Software prototyping takes a tentative step into the solution space. It makes the requirements
more real, brings use cases to life, and closes gaps in your understanding of the requirements.
 Prototyping puts a mock-up or an initial slice of a new system in front of users to stimulate their
thinking and catalyze the requirements dialog. Early feedback on prototypes helps stakeholders
arrive at a shared understanding of the system’s requirements, which reduces the risk of customer
 dissatisfaction.

Even if you apply the requirements development practices described in earlier chapters, portions
of your requirements might still be uncertain or unclear to customers, developers, or both. If you
don’t correct these problems, an expectation gap between a user’s vision of the product and a
 developer’s understanding of what to build is guaranteed. Prototyping is a powerful way to introduce
those all-important customer contact points that can reduce the expectation gap described in
 Chapter 2, “Requirements from the customer’s perspective.” It’s hard to visualize exactly how software
will behave by reading textual requirements or studying analysis models. Users are more willing to
try out a prototype (which is fun) than to read an SRS (which is tedious). When you hear IKIWISI from
your users, think about what you can provide that would help them articulate their needs or help
you better understand what they have in mind (Boehm 2000). Prototypes are also a valuable tool for
requirements validation. A business analyst can have users interact with prototypes to see if a product
based on the prototype would truly meet their needs.

296 PART II Requirements development

The word prototype has multiple meanings, and participants in a prototyping activity can hold
very different expectations. A prototype airplane actually flies—it’s the first instance of a new type of
 airplane. In contrast, a software prototype is only a portion or a model of a real system—it might not
do anything useful at all. Software prototypes can be static designs or working models; quick sketches
or highly detailed screens; visual displays or full slices of functionality; or simulations (Stevens et al.
1998; Constantine and Lockwood 1999).

This chapter describes how prototyping provides value to the project and different kinds of
 prototypes you might create for different purposes. It also offers guidance on how to use them
during requirements development, as well as ways to make prototyping an effective part of your
software engineering process.

Prototyping: What and why

A software prototype is a partial, possible, or preliminary implementation of a proposed new product.
Prototypes can serve three major purposes, and that purpose must be made clear from the very
beginning:

 ■ Clarify, complete, and validate requirements Used as a requirements tool, the prototype
assists in obtaining agreement, finding errors and omissions, and assessing the accuracy
and quality of the requirements. User evaluation of the prototype points out problems with
 requirements and uncovers overlooked requirements, which you can correct at low cost
 before you construct the actual product. This is especially helpful for parts of the system that
are not well understood or are particularly risky or complex.

 ■ Explore design alternatives Used as a design tool, a prototype lets stakeholders explore
different user interaction techniques, envision the final product, optimize system usability, and
evaluate potential technical approaches. Prototypes can demonstrate requirements feasibility
through working designs. They’re useful for confirming the developer’s understanding of the
requirements before constructing the actual solution.

 ■ Create a subset that will grow into the ultimate product Used as a construction tool, a
prototype is a functional implementation of a subset of the product, which can be elaborated
into the complete product through a sequence of small-scale development cycles. This is a
safe approach only if the prototype is carefully designed with eventual release intended from
the beginning.

The primary reason for creating a prototype is to resolve uncertainties early in the development
process. You don’t need to prototype the entire product. Focus on high-risk areas or known
 uncertainties to decide which parts of the system to prototype and what you hope to learn from the
prototype evaluations. A prototype is useful for revealing and resolving ambiguity and incompleteness
in the requirements. Users, managers, and other nontechnical stakeholders find that prototypes give
them something concrete to contemplate while the product is being specified and designed. For each
 prototype you create, make sure you know—and communicate—why you’re creating it, what you
 expect to learn from it, and what you’ll do with the prototype after you’ve had people evaluate it.

 CHAPTER 15 Risk reduction through prototyping 297

Because of the risk of confusion, it’s important to put some descriptors in front of the word
 “prototype” so the project participants understand why and when you might create one type of
 prototype or another. This chapter describes three classes of prototype attributes, each of which has
two alternatives:

 ■ Scope A mock-up prototype focuses on the user experience; a proof-of-concept prototype
explores the technical soundness of a proposed approach.

 ■ Future use A throwaway prototype is discarded after it has been used to generate feedback,
whereas an evolutionary prototype grows into the final product through a series of iterations.

 ■ Form A paper prototype is a simple sketch drawn on paper, a whiteboard, or in a drawing
tool. An electronic prototype consists of working software for just part of the solution.

Each prototype you create will possess a specific combination of these attributes. For instance, you
could devise a throwaway paper mock-up having simple drawings of possible screens. Or you might
build an evolutionary electronic proof-of-concept, working software that demonstrates a desired
technical capability that you can then grow into a deliverable product. Certain combinations don’t
make sense, though. For instance, you couldn’t create an evolutionary paper proof of concept.

Mock-ups and proofs of concept

When people say “software prototype,” they are usually thinking about a mock-up of a possible user
interface. A mock-up is also called a horizontal prototype. Such a prototype focuses on a portion of
the user interface; it doesn’t dive into all the architectural layers or into detailed functionality. This
type of prototype lets you explore some specific behaviors of the intended system, with the goal of
refining the requirements. The mock-up helps users judge whether a system based on the prototype
will let them do their job in a reasonable way.

A mock-up implies behavior without actually implementing it. It displays the facades of user
 interface screens and permits some navigation between them, but it contains little or no real
 functionality. Think of the set for a Western movie: the cowboy walks into the saloon and then
walks out of the livery stable, yet he doesn’t have a drink and he doesn’t see a horse because there’s
 nothing behind the false fronts of the buildings.

Mock-ups can demonstrate the functional options the user will have available, the look and feel
of the user interface (colors, layout, graphics, controls), and the navigation structure. The navigations
might work, but at certain points the user might see only a message that describes what would
 really be displayed or will find that some controls don’t do anything. The information that appears in
response to a database query could be faked or constant, and report contents are hardcoded. If you
create a mock-up, try to use actual data in sample displays and outputs. This enhances the validity of
the prototype as a model of the real system, but be sure to make it clear to the prototype evaluators
that the displays and outputs are simulated, not live.

298 PART II Requirements development

A mock-up doesn’t perform any useful work, although it looks as if it should. The simulation
is often good enough to let the users judge whether any functionality is missing, wrong, or
 unnecessary. Some prototypes represent the developer’s concept of how a specific use case might
be implemented. User evaluations of the prototype can point out alternative flows for the use case,
 missing interaction steps, additional exceptions, overlooked postconditions, and pertinent business
rules.

When working with a throwaway mock-up prototype, the user should focus on broad requirements
and workflow issues without becoming distracted by the precise appearance of screen elements
 (Constantine 1998). Don’t worry at this stage about exactly where the screen elements will be
 positioned, fonts, colors, or graphics. The time to explore the specifics of user interface design is after
you’ve clarified the requirements and determined the general structure of the interface. With an
 evolutionary mock-up, building in those refinements moves the user interface closer to being releasable.

A proof of concept, also known as a vertical prototype, implements a slice of application functionality
from the user interface through all the technical services layers. A proof-of-concept prototype works
like the real system is supposed to work because it touches on all levels of the system implementation.
Develop a proof of concept when you’re uncertain whether a proposed architectural approach is
feasible and sound, or when you want to optimize algorithms, evaluate a proposed database schema,
confirm the soundness of a cloud solution, or test critical timing requirements. To make the results
meaningful, such prototypes are constructed by using production tools in a production-like operating
environment. A proof of concept is also useful for gathering information to improve the team’s ability
to estimate the effort involved in implementing a specific user story or block of functionality. Agile
development projects sometimes refer to a proof-of-concept prototype as a “spike.”

I once worked with a team that wanted to implement an unusual client/server architecture as
part of a transitional strategy from a mainframe-centric world to an application environment based
on networked UNIX servers and workstations (Thompson and Wiegers 1995). A proof-of-concept
 prototype that implemented just a bit of the user interface client (on a mainframe) and the
 corresponding server functionality (on a UNIX workstation) allowed us to evaluate the communication
components, performance, and reliability of our proposed architecture. The experiment was a success,
as was the ultimate implementation based on that architecture.

Throwaway and evolutionary prototypes

Before constructing a prototype, make an explicit and well-communicated decision as to whether
the prototype is exploratory only or will become part of the delivered product. Build a throwaway
prototype to answer questions, resolve uncertainties, and improve requirements quality (Davis 1993).
Because you’ll discard the prototype after it has served its purpose, build it as quickly and cheaply as
you can. The more effort you invest in the prototype, the more reluctant the project participants are
to discard it and the less time you will have available to build the real product.

 CHAPTER 15 Risk reduction through prototyping 299

You don’t have to throw the prototype away if you see merit in keeping it for possible future use.
However, it won’t be incorporated into the delivered product. For this reason, you might prefer to call
it a nonreleasable prototype.

When developers build a throwaway prototype, they ignore solid software construction techniques.
A throwaway prototype emphasizes quick implementation and modification over robustness, reliability,
performance, and long-term maintainability. For this reason, you must not allow low-quality code from
a throwaway prototype to migrate into a production system. If you do, the users and the maintainers
will suffer the consequences for the life of the product.

A throwaway prototype is most appropriate when the team faces uncertainty, ambiguity,
 incompleteness, or vagueness in the requirements, or when they have difficulty envisioning the
system from the requirements alone. Resolving these issues reduces the risks of proceeding with
construction. A prototype that helps users and developers visualize how the requirements might be
implemented can reveal gaps in the requirements. It also lets users judge whether the requirements
will enable the necessary business processes.

Trap Don’t make a throwaway prototype more elaborate than is necessary to meet the
prototyping objectives. Resist the temptation—or the pressure from users—to keep
 adding more capabilities to the prototype.

A wireframe is a particular approach to throwaway prototyping commonly used for custom user
interface design and website design. You can use wireframes to reach a better understanding of three
aspects of a website:

 ■ The conceptual requirements

 ■ The information architecture or navigation design

 ■ The high-resolution, detailed design of the pages

The pages sketched when exploring conceptual requirements in the first type of wireframe need
not resemble the final screens. This wireframe is useful for working with users to understand the
types of activities they might want to perform at the screen. Paper prototypes can work fine for this
 purpose, as described later in this chapter. The second type of wireframe need not involve page
designs at all. The analysis model called the dialog map, described in Chapter 12, “A picture is worth
1024 words,” is an excellent tool for exploring and iterating on page navigation for a website. The
third type of wireframe gets into the details of what the final pages would look like.

In contrast to a throwaway prototype, an evolutionary prototype provides a solid architectural
foundation for building the product incrementally as the requirements become clear over time
 (McConnell 1996). Agile development provides an example of evolutionary prototyping. Agile teams
construct the product through a series of iterations, using feedback on the early iterations to adjust
the direction of future development cycles. This is the essence of evolutionary prototyping.

300 PART II Requirements development

In contrast to the quick-and-dirty nature of throwaway prototyping, an evolutionary prototype
must be built with robust, production-quality code from the outset. Therefore, an evolutionary
 prototype takes longer to create than a throwaway prototype that simulates the same system
 capabilities. An evolutionary prototype must be designed for easy growth and frequent
 enhancement, so developers must emphasize software architecture and solid design principles.
There’s no room for shortcuts in the quality of an evolutionary prototype.

Think of the first iteration of an evolutionary prototype as a pilot release that implements an initial
portion of the requirements. Lessons learned from user acceptance testing and initial usage lead
to modifications in the next iteration. The full product is the culmination of a series of evolutionary
prototyping cycles. Such prototypes quickly get useful functionality into the hands of the users.
Evolutionary prototypes work well for applications that you know will grow over time, but that can
be valuable to users without having all the planned functionality implemented. Agile projects often
are planned such that they could stop development at the end of an iteration and still have a product
that is useful for customers, even though it is incomplete.

Evolutionary prototyping is well suited for web development projects. On one such project, my
team created a series of four prototypes, based on requirements that we developed from a use case
analysis. Several users evaluated each prototype, and we revised each one based on their responses
to questions we posed. The revisions following the fourth prototype evaluation resulted in the
 production website.

Figure 15-1 illustrates several possible ways to combine the various prototypes. For example, you
can use the knowledge gained from a series of throwaway prototypes to refine the requirements,
which you might then implement incrementally through an evolutionary prototyping sequence. An
alternative path through Figure 15-1 uses a throwaway mock-up to clarify the requirements prior to
finalizing the user interface design, while a concurrent proof-of-concept prototyping effort validates
the architecture and core algorithms. What you cannot do successfully is turn the deliberately
low quality of a throwaway prototype into the maintainable robustness that a production system
 demands. In addition, working prototypes that appear to get the job done for a handful of
concurrent users likely won’t scale up to handle thousands of users without major architectural
changes. Table 15-1 summarizes some typical applications of throwaway, evolutionary, mock-up,
and proof-of-concept prototypes.

TABLE 15-1 Typical applications of software prototypes

Throwaway Evolutionary

Mock-up ■ Clarify and refine user and functional
requirements.

 ■ Identify missing functionality.
 ■ Explore user interface approaches.

 ■ Implement core user requirements.
 ■ Implement additional user requirements based

on priority.
 ■ Implement and refine websites.
 ■ Adapt system to rapidly changing business

needs.

Proof of concept ■ Demonstrate technical feasibility.
 ■ Evaluate performance.
 ■ Acquire knowledge to improve estimates

for construction.

 ■ Implement and grow core multi-tier
 functionality and communication layers.

 ■ Implement and optimize core algorithms.
 ■ Test and tune performance.

 CHAPTER 15 Risk reduction through prototyping 301

FIGURE 15-1 Several possible ways to incorporate prototyping into the software development process.

Paper and electronic prototypes

You don’t always need an executable prototype to resolve requirements uncertainties. A paper
 prototype (sometimes called a low-fidelity prototype) is a cheap, fast, and low-tech way to explore
how a portion of an implemented system might look (Rettig 1994). Paper prototypes help you test
whether users and developers hold a shared understanding of the requirements. They let you take
a tentative and low-risk step into a possible solution space prior to developing production code. A
similar deliverable is called a storyboard (Leffingwell and Widrig 2000). Use low-fidelity prototypes to
explore functionality and flow, and use high-fidelity prototypes to determine precise look and feel.

Paper prototypes involve tools no more sophisticated than paper, index cards, sticky notes, and
whiteboards. The designer sketches ideas of possible screens without worrying about exactly where
the controls appear and what they look like. Users willingly provide feedback on designs drawn on a
piece of paper, although they’re sometimes less eager to critique a lovely computer-based prototype

302 PART II Requirements development

in which it appears the developer has invested a lot of work. Developers, too, might resist making
substantial changes in a carefully crafted electronic prototype.

When a low-fidelity prototype is being evaluated, someone plays the role of the computer while a
user walks through an evaluation scenario. The user initiates actions by saying aloud what she would
like to do at a specific screen: “I’m going to select Print Preview from the File menu.” The person
simulating the computer then displays the piece of paper or index card that represents the display
that would appear when the user takes that action. The user can judge whether that is indeed the
expected response and whether the item displayed contains the correct elements. If it’s wrong, you
simply take a blank page or index card and try again.

Off to see the wizard
A development team that designed large commercial photocopiers once lamented to me that
their previous copier had a usability problem. A common copying activity required five discrete
steps, which the users found clumsy. “I wish we’d prototyped that activity before we designed
the copier,” one developer said wistfully.

How do you prototype a product as complex as a photocopier? First, buy a refrigerator.
Write COPIER on the side of the box that it came in. Have someone sit inside the box, and ask
a user to stand outside the box and simulate doing copier activities. The person inside the box
responds in the way he expects the copier to respond, and the user representative observes
whether that response is what he has in mind. A simple, fun prototype like this—sometimes
called a Wizard of Oz prototype—stimulates the early user feedback that effectively guides the
development team’s design decisions. Plus, you get to keep the refrigerator.

No matter how efficient your prototyping tools are, sketching displays on paper or a whiteboard is
faster. Paper prototyping facilitates rapid iteration, and iteration is a key success factor in requirements
development. Paper prototyping is an excellent technique for refining the requirements prior to
designing detailed user interfaces, constructing an evolutionary prototype, or undertaking traditional
design and construction activities. It also helps the development team manage customer expectations.

Numerous tools are available if you decide to build an electronic throwaway prototype. They
range from simple drawing tools such as Microsoft Visio and Microsoft PowerPoint to commercial
 prototyping tools and graphical user interface builders. Tools also are available specifically for
 creating website wireframes. Such tools will let you easily implement and modify user interface
 components, regardless of how inefficient the temporary code behind the interface is. Of course, if
you’re building an evolutionary prototype, you must use production development tools from the
outset. Because tools and their vendors change so rapidly, we won’t suggest specific ones here.

Various tools are commercially available that let you simulate your application before you build it.
Application simulation lets you quickly assemble screen layouts, user interface controls, navigation
flow, and functionality into something that closely resembles the product you think you need to
build. The ability to iterate on the simulation provides a valuable mechanism for interacting with user
representatives to clarify requirements and revise your thinking about the solution.

 CHAPTER 15 Risk reduction through prototyping 303

With any kind of prototyping—paper prototypes, wireframes, electronic prototypes, or
 simulations—the business analyst must be careful not get drawn into high-precision user interface
designs prematurely. Prototype evaluators often offer feedback like “Can this text be a little darker
red?”, “Let’s move this box up just a little,” or “I don’t like that font.” Unless the purpose of the
 prototype is to perform detailed screen or webpage design, those sorts of comments are just
 distractions. The color, font, and box positioning are immaterial if the application doesn’t properly
support the users’ business tasks. Until you’re sure you have a rich understanding of the necessary
functionality, focus the prototyping efforts on refining requirements, not visual designs.

Working with prototypes

Figure 15-2 shows one possible sequence of development activities that moves from use cases to
detailed user interface design with the help of a throwaway prototype. Each use case description
 includes a sequence of actor actions and system responses, which you can model by using a
 dialog map to depict a possible user interface architecture. A throwaway prototype or a wireframe
 elaborates the dialog elements into specific screens, menus, and dialog boxes. When users evaluate
the prototype, their feedback might lead to changes in the use case descriptions (if, say, an alternative
flow is discovered) or to changes in the dialog map. After the requirements are refined and the
screens sketched, each user interface element can be optimized for usability. These activities don’t
need to be performed strictly sequentially. Iterating on the use case, the dialog map, and the
 wireframe is the best way to quickly reach an acceptable and agreed-upon approach to user interface
design.

FIGURE 15-2 Activity sequence from use cases to user interface design using a throwaway prototype.

This progressive refinement approach is cheaper than leaping directly from use case descriptions
to a complete user interface implementation and then discovering major issues that necessitate
 extensive rework. You only need to perform as many steps in this sequence as are necessary to
 acceptably reduce the risk of going wrong on the user interface design. If your team is confident
that they understand the requirements, that the requirements are sufficiently complete, and that
they have a good handle on the right UI to build, then there’s little point in prototyping. Also, you
can focus prototyping on user requirements that have a big risk of error or a big impact if there is
a problem. One project performed an e-commerce website redesign for a major corporation that
would be used by millions of users. The team prototyped the core elements of the website, including
the online catalog, shopping cart, and checkout process, to make sure they got those right the first
time. They spent less time exploring exception paths and less commonly used scenarios.

304 PART II Requirements development

To help make this whole process more tangible, let’s look at an actual example, a small website
to promote a book, a memoir of life lessons called Pearls from Sand. The author of the book (Karl,
 actually) thought of several things that visitors should be able to do at the website, each of which is a
use case. There are additional use cases for other user classes (Table 15-2).

TABLE 15-2 Some use cases for PearlsFromSand.com

User class Use case

Visitor Get Information about the Book
Get Information about the Author
Read Sample Chapters
Read the Blog
Contact the Author

Customer Order a Product
Download an Electronic Product
Request Assistance with a Problem

Administrator Manage the Product List
Issue a Refund to a Customer
Manage the Email List

The next step was to think of the pages the website should provide and imagine the navigation
pathways between them. The final website might not implement all of these pages separately. Some
pages might be condensed together; others might function as pop-ups or other modifications of
a single page. Figure 15-3 illustrates a portion of a dialog map that illustrates a conceptual page
 architecture. Each box represents a page that would contribute to providing the services identified
in the use cases. The arrows represent links to enable navigation from one page to another. While
drawing a dialog map, you might discover new actions a user would want to perform. While working
through a use case, you might find ways to simplify and streamline the user’s experience.

FIGURE 15-3 Partial dialog map for PearlsFromSand.com.

 CHAPTER 15 Risk reduction through prototyping 305

The next step was to construct a throwaway prototype or a wireframe of selected pages to work
out the visual design approach. Each of these can be a hand-drawn sketch on paper (see the example
in Figure 10-1 in Chapter 10, “Documenting the requirements”), a simple line drawing, or a mock-up
created with a dedicated prototyping or visual design tool. The wireframe illustrated in Figure 15-4
was drawn by using PowerPoint in just a few minutes. Such a simple diagram is a tool to work with
user representatives to understand the broad strokes of what sort of page layout and cosmetic
 features would make the pages easy to understand and use.

FIGURE 15-4 Sample wireframe of one page for PearlsFromSand.com.

Finally, the fourth step illustrated in Figure 15-2 is to create a detailed user interface screen design.
Figure 15-5 shows one final page from the PearlsFromSand.com website, the culmination of the
requirements analysis and prototyping activities that came before. This iterative approach to user
interface design leads to better results than diving immediately into high-resolution page design
without having a clear understanding of what members of various user classes will want to do when
they visit a website.

306 PART II Requirements development

FIGURE 15-5 A final implemented page from PearlsFromSand.com.

Prototype evaluation

Prototype evaluation is related to usability testing (Rubin and Chisnell 2008). You’ll learn more by
watching users work with the prototype than just by asking them to tell you what they think of it.
Watch where the user’s fingers or mouse pointer try to go instinctively. Spot places where the
 prototype conflicts with the behavior of other applications that the evaluators use. The evaluator
might try incorrect keyboard shortcuts or have to “mouse around” hunting for the correct menu
 option. Look for the furrowed brow that indicates a puzzled user who can’t determine what to do
next, how to navigate to a desired destination, or how to take a side trip to another part of the
 application. See if the prototype has any dead ends, as happens sometimes when a user submits a
form on a website.

Have the right people evaluate the prototype from the appropriate perspectives. Include members
of multiple user classes, both experienced and inexperienced. When you present the prototype to the
evaluators, stress that it addresses only a portion of the functionality; the rest will be implemented
when the actual system is developed.

 CHAPTER 15 Risk reduction through prototyping 307

Trap As with any usability testing, watch out for omitting members of significant user
classes from the prototype evaluation. A novice user might love a prototype for its
 apparent ease of use, but a more experienced or power user could hate the way it slows
him down. Make sure both groups are represented.

To improve the evaluation of user interface prototypes, create scripts that guide the users through
a series of operations and ask specific questions to elicit the information you seek. This supplements a
general invitation to “tell me what you think of this prototype.” Derive the evaluation scripts from the
use cases, user stories, or features that the prototype addresses. The script asks evaluators to perform
specific tasks, working through the parts of the prototype that have the most uncertainty. At the end
of each task, and possibly at intermediate points, the script presents specific task-related questions.
You might also ask general questions like the following:

 ■ Does the prototype implement the functionality in the way you expected?

 ■ What functionality is missing from the prototype?

 ■ Can you think of any possible error conditions that the prototype doesn’t address?

 ■ Are any unnecessary functions present?

 ■ How logical and complete does the navigation seem to you?

 ■ Are there ways to simplify any of the tasks that require too many interaction steps?

 ■ Were you ever unsure of what to do next?

Ask evaluators to share their thoughts aloud as they work with the prototype so that you
 understand what they’re thinking and can detect any issues that the prototype handles poorly. Create
a nonjudgmental environment in which the evaluators feel free to express their thoughts, ideas, and
concerns. Avoid coaching users on the “right” way to perform some function with the prototype.

Document what you learn from the prototype evaluation. Use the information from a mock-up
prototype to refine the requirements. If the evaluation led to some user-interface design decisions,
such as the selection of specific interaction techniques, record those conclusions and how you arrived
at them. Decisions that lack the accompanying thought processes tend to be revisited repeatedly.
For a proof of concept, document the evaluations you performed and their results, culminating in
the decisions you made about the technical approaches explored. Resolve any conflicts between the
specified requirements and the prototype.

Risks of prototyping

Creating even a simple prototype costs time and money. Although prototyping reduces the risk of
software project failure, it poses its own risks, some of which are explained in this section.

308 PART II Requirements development

Pressure to release the prototype
The biggest risk is that a stakeholder will see a running throwaway prototype and conclude that the
product is nearly completed. “Wow, it looks like you’re almost done!” says the enthusiastic prototype
evaluator. “This looks great. Can you just finish this up and give it to me?”

In a word: NO! A throwaway prototype is never intended for production use, no matter how
much it looks like the real thing. It is merely a model, a simulation, an experiment. Unless there’s a
 compelling business motivation to achieve a marketplace presence immediately (and management
accepts the resulting high maintenance burden and risk of annoyed users), resist the pressure to
 deliver a throwaway prototype. Delivering this prototype will likely delay the project’s completion
 because the design and code were intentionally created without regard to quality or durability.
Expectation management is a key to successful prototyping. Everyone who sees the prototype
must understand its purpose and its limitations. Be clear about why you are creating specific
kinds of prototypes, decide what their ultimate fate will be, and communicate this clearly to those
 stakeholders who are involved with them.

Don’t let the fear of premature delivery pressure dissuade you from creating prototypes, though.
Make it clear to those who see the prototype that you will not release it as production software. One
way to control this risk is to use paper, rather than electronic, prototypes. No one who evaluates a
paper prototype will think the product is nearly done! Another option is to use prototyping tools that
are different from those used for actual development. No one will mistake a navigable PowerPoint
mock-up or a simple wireframe for the real thing. This will help you resist pressure to “just finish up”
the prototype and ship it. Leaving the prototype looking a bit rough and unpolished also mitigates
this risk. Some of the many tools available for creating wireframes allow for the quick development
of a high-fidelity user interface. This increases the likelihood of people expecting that the software is
almost done, and it adds to the pressure to transform a throwaway prototype into an evolutionary one.

One developer cobbled together an executable prototype of a user interface with a shocking pink
motif. As he explained it, “When we showed the customers the first couple of iterations with this color
scheme, NO ONE thought this was a close-to-finished product. I actually retained that abomination
for an additional iteration just to avoid falling into some of these prototyping risk traps.”

Distraction by details
Another risk of prototyping is that users become fixated on details about how the user interface will
look and operate. When working with real-looking prototypes, it’s easy for users to forget that they
should be primarily concerned with conceptual issues at the requirements stage. Limit the prototype
to the displays, functions, and navigation options that will let you clear up uncertain requirements.

 CHAPTER 15 Risk reduction through prototyping 309

Baby with the bath water
I once consulted at a company where a senior manager had banned prototyping. He had
seen projects in which customers pressured developers into delivering throwaway prototypes
 prematurely as the final product, with predictable results. The prototypes did not handle user
errors or bad input data well, did not cover all the options users wanted, and were difficult to
maintain and enhance. These unpleasant experiences led the senior manager to conclude that
prototyping could only lead to trouble.

As you’ve seen in this chapter, delivering to customers a prototype that was intended to
be discarded and calling it a product certainly will cause problems. Nonetheless, prototyping
 offers a range of powerful techniques that can contribute substantially to building the right
product. Rather than dismissing prototyping as a dangerous method to be avoided, it’s
 important to make sure everyone involved understands the various kinds of prototypes, why a
particular prototype is being created, and how the results will be used.

Unrealistic performance expectations
A third risk is that users will infer the expected performance of the final product from the prototype’s
performance. You won’t be evaluating a mock-up in the intended production environment, though.
You might have built it using tools or languages that differ in efficiency from the production
 development tools, such as interpreted scripts versus compiled code. A proof-of-concept prototype
might not use tuned algorithms, or it could lack security layers that will reduce the ultimate
 performance. If evaluators see the prototype respond instantaneously to a simulated database query
using hard-coded sample query results, they might expect the same fabulous performance in the
 production software with an enormous distributed database. Consider building in time delays to
more realistically simulate the expected behavior of the final product—and perhaps to make the
 prototype look even less ready for immediate delivery. You might put a message on the screen to
clearly state that this is not necessarily representative of the final system.

In agile development and other evolutionary prototyping situations, be sure to design a robust
and extendable architecture and craft high-quality code from the beginning. You’re building
 production software, just a small portion at a time. You can tune up the design through refactoring in
later iterations, but don’t substitute refactoring in the future for thinking about design today.

Investing excessive effort in prototypes
Finally, beware of prototyping activities that consume so much effort that the development team
runs out of time and is forced to deliver the prototype as the product or to rush through a haphazard
product implementation. This can happen when you are prototyping the whole solution rather than
only the most uncertain, high-risk, or complex portions. Treat a prototype as an experiment. You’re
testing the hypothesis that the requirements are sufficiently defined and the key human-computer

310 PART II Requirements development

interface and architectural issues are resolved so that design and construction can proceed. Do just
enough prototyping to test the hypothesis, answer the questions, and refine the requirements.

Prototyping success factors

Software prototyping provides a powerful set of techniques that can minimize development
 schedules, ensure customer satisfaction, and produce high-quality products. To make prototyping an
effective part of your requirements process, follow these guidelines:

 ■ Include prototyping tasks in your project plan. Schedule time and resources to develop,
 evaluate, and modify the prototypes.

 ■ State the purpose of each prototype before you build it, and explain what will happen with
the outcome: either discard (or archive) the prototype, retaining the knowledge it provided, or
build upon it to grow it into the ultimate solution. Make sure those who build the prototypes
and those who evaluate them understand these intentions.

 ■ Plan to develop multiple prototypes. You’ll rarely get them right on the first try, which is the
whole point of prototyping!

 ■ Create throwaway prototypes as quickly and cheaply as possible. Invest the minimum amount
of effort that will answer questions or resolve requirements uncertainties. Don’t try to perfect
a throwaway prototype.

 ■ Don’t include input data validations, defensive coding techniques, error-handling code, or
extensive code documentation in a throwaway prototype. It’s an unnecessary investment of
effort that you’re just going to discard.

 ■ Don’t prototype requirements that you already understand, except to explore design
 alternatives.

 ■ Use plausible data in prototype screen displays and reports. Evaluators can be distracted by
unrealistic data and fail to focus on the prototype as a model of how the real system might
look and behave.

 ■ Don’t expect a prototype to replace written requirements. A lot of behind-the-scenes
 functionality is only implied by the prototype and should be documented in an SRS to make it
complete, specific, and traceable. Screen images don’t give the details of data field definitions
and validation criteria, relationships between fields (such as UI controls that appear only if the
user makes certain selections in other controls), exception handling, business rules, and other
essential bits of information.

Thoughtfully applied and skillfully executed, prototypes serve as a valuable tool to help with
 requirements elicitation, requirements validation, and that tricky translation from needs into
 solutions.

 CHAPTER 15 Risk reduction through prototyping 311

Next steps

 ■ Identify a portion of your project that exhibits confusion about requirements or is
a high-risk area of functionality. Sketch out a portion of a possible user interface
that represents your understanding of the requirements and how they might be
 implemented—a paper prototype. Have some users walk through your prototype to
simulate performing a usage scenario. Identify places where the initial requirements were
incomplete or incorrect. Modify the prototype accordingly and walk through it again to
confirm that the shortcomings are corrected.

 ■ Summarize this chapter for your prototype evaluators to help them understand the
 rationale behind the prototyping activities and to help them have realistic expectations for
the outcome.

 ■ If your product is a hardware device, think of a way you can physically simulate it so users
can interact with it to validate and flesh out their requirements.

 313

C H A P T E R 1 6

First things first: Setting
requirement priorities

After most of the user requirements for the Chemical Tracking System were identified, the project
 manager, Dave, and the business analyst, Lori, met with two of the product champions. Tim represented
the chemist community and Roxanne spoke for the chemical stockroom staff.

Dave said, “Now that we have a general idea of the main capabilities you want, we need to think
about allocating some of the user stories you’ve identified to the first few iterations. It’s important that
we agree on where to start so you can begin getting some value from the system as quickly as possible.
Let’s do a first-cut prioritization on these user stories so we know what’s most important to you. Then
we can learn more about exactly what you expect from each of those initial capabilities.”

Tim was puzzled. “Why do you need the requirements prioritized? They’re all important, or we
wouldn’t have given them to you.”

Lori, the BA, explained, “We know they’re all important, but we need to address the most urgent
 requirements in the first few iterations. We’re asking you to help us distinguish the requirements
that must be included initially from those that can wait for later iterations. Can you think of certain
 functionality that would provide the greatest immediate value to chemists or other user classes?”

“I know that the reports that the Health and Safety Department needs to generate for the
 government have to be available soon or the company will get in trouble,” Roxanne pointed out.
“We can use our current inventory system for a few more months if we have to.”

Tim added, “I promised the online catalog search function to the chemists as a way for this system
to save them time. Can we please start on that right away? It doesn’t have to be perfect, but we want to
get access to the catalogs as quickly as we can.”

Tim and Roxanne realized that, because the project couldn’t deliver every desired feature at the same
time, it would be better if everyone could agree on the set to implement first. They continued sorting
their user stories into a top-priority category for early implementation and others that could wait a
while.

Few software projects deliver all the capabilities that all stakeholders want by the targeted initial
delivery date. Every project with resource limitations needs to define the relative priorities of the
requested product capabilities. Prioritization, also called requirements triage (Davis 2005), helps reveal
competing goals, resolve conflicts, plan for staged or incremental deliveries, control scope creep,

314 PART II Requirements development

and make the necessary trade-off decisions. This chapter discusses the importance of prioritizing
 requirements, describes several prioritization techniques, and presents a spreadsheet tool for
 prioritization analysis based on value, cost, and risk.

Why prioritize requirements?

When customer expectations are high and timelines are short, you need to make sure the product
 delivers the most critical or valuable functionality as early as possible. Prioritization is a way to
deal with competing demands for limited resources. Establishing the relative priority of each
 product capability lets you plan construction to provide the highest value at the lowest cost.
 Because prioritization is relative, you can begin prioritization as soon as you discover your second
 requirement.

Sometimes customers don’t like to prioritize requirements, thinking that they won’t ever get the
ones that are low priority. Well, if you aren’t going to get everything you’d like, as is often the case,
you should make sure that you do get the capabilities that are most important to achieving your
business objectives. Sometimes developers don’t like to prioritize requirements because it gives the
impression that they can’t do it all. The reality is that they can’t, at least not all at once. Prioritization
helps the project deliver the maximum business value as quickly as possible within the project
 constraints.

Prioritization is a critical strategy for agile or other projects that develop products through a series
of fixed-schedule timeboxes. Project teams can populate their product backlog with user stories,
features, business processes, and defect stories (bugs awaiting correction). Customers prioritize the
stories in the backlog and select which ones they’d like to have implemented in each development
iteration. Developers estimate the effort involved with implementing each story and judge how many
of these stories they can fit into each iteration, based on their empirically demonstrated delivery
capacity as measured by the team’s velocity. As new stories are proposed, customers assess their
priorities against the contents of the backlog, thus dynamically adjusting scope for the upcoming
iterations. All projects should do this to ensure that the team is always working on those capabilities
that will get useful software in the users’ hands as soon as possible.

On every project, a project manager must balance the desired project scope against the
 constraints of schedule, budget, staff, and quality goals (Wiegers 1996). One way to accomplish
this is to drop—or to defer to a later release—low-priority requirements when new, more essential
 requirements are accepted or when other project conditions change. That is, prioritization is a
 dynamic and ongoing process. If customers don’t distinguish their requirements by importance and
urgency, project managers must make these decisions on their own. Not surprisingly, customers
might not agree with a project manager’s priorities; therefore, customers must indicate which
 requirements are needed initially and which can wait. Establish priorities early in the project, when
you have more flexibility for achieving a successful project outcome, and revisit them periodically.

It’s difficult enough to get any one customer to decide which of his requirements are top
 priority. Achieving consensus among multiple customers with diverse expectations is even harder.

 CHAPTER 16 First things first: Setting requirement priorities 315

People naturally have their own interests at heart and aren’t eager to compromise their needs for
 someone else’s benefit. However, contributing to requirements prioritization is one of the customer’s
 responsibilities in the customer-development partnership, as was discussed in Chapter 2,
“Requirements from the customer’s perspective.” More than simply defining the sequence of
 requirements implementation, discussing priorities helps to clarify the customers’ expectations.

Some prioritization pragmatics

Even a medium-sized project can have dozens of user requirements and hundreds of functional
requirements, too many to classify analytically and consistently. To keep it manageable, choose an
appropriate level of abstraction for the prioritization—features, use cases, user stories, or functional
requirements. Within a use case, some alternative flows could have a higher priority than others. You
might decide to do an initial prioritization at the feature level and then to prioritize the functional
requirements within certain features separately. This will help you to distinguish the core functionality
from refinements that can be deferred or cut entirely. As was described in Chapter 5, “Establishing the
business requirements,” feature prioritization feeds directly into scope and release planning. Don’t
lose sight of the low-priority requirements, although there’s no point in analyzing them further just
yet. Their priority might change later, and knowing about them now will help the developers plan for
future enhancements.

Various stakeholders need to participate in prioritization, representing customers, project
 sponsors, project management, development, and perhaps other perspectives. You really need one
ultimate decision maker when stakeholders can’t agree. A good starting point is for the prioritization
participants to agree upon a set of criteria to use for judging whether one requirement has higher
priority than another. The prioritization can include considerations of customer value, business value,
business or technical risk, cost, difficulty of implementation, time to market, regulatory or policy
 compliance, competitive marketplace advantage, and contractual commitments (Gottesdiener 2005).
Alan Davis (2005) indicates that successful prioritization requires an understanding of six issues:

 ■ The needs of the customers

 ■ The relative importance of requirements to the customers

 ■ The timing at which capabilities need to be delivered

 ■ Requirements that serve as predecessors for other requirements and other relationships
among requirements

 ■ Which requirements must be implemented as a group

 ■ The cost to satisfy each requirement

Customers place a high priority on those functions that provide the greatest business or usability
benefit. However, after a developer points out the cost, difficulty, technical risk, or trade-offs
 associated with a specific requirement, the customers might conclude that it isn’t as essential as
they first thought. The developer might also decide to implement certain lower-priority functions

316 PART II Requirements development

early on because of their effect on the system’s architecture, laying the foundation to implement
future functionality efficiently without major restructuring. Some functionality must have high
 priority because it is required to meet regulatory demands for the application. As with all aspects of
 requirements development, the overarching business objectives that led to launching the project in
the first place should drive priority decisions.

Certain requirements must be implemented together or in a specific sequence. It makes no sense
to implement a redo edit capability in release 1 but not implement the corresponding undo capability
until some months later. Similarly, suppose you implement just the normal flow of a particular use
case in release 1, deferring the lower-priority alternative flows to some later date. That’s fine, but you
must also implement the corresponding exception handlers at the same time you implement each
success flow. Otherwise, you could end up writing code to, say, accept credit card payments without
checking to see if the card is valid, rejecting cards that were reported stolen, or handling other
 exceptions.

Games people play with priorities

The knee-jerk response to a request for customers to set priorities sometimes is, “I need all these
features. Just make it happen.” They feel that every requirement should be ranked as high priority,
and they might not recognize that prioritization will help to ensure the project’s success. Start by
 explaining that all things cannot be done simultaneously, so you want to make sure you work on
the right things first. It can be difficult to persuade customers to discuss priorities if they know
that low-priority requirements might never be implemented. One developer told me that it wasn’t
 politically acceptable in his company to say that a requirement had low priority. Therefore, the
 priority categories they adopted were “high,” “super-high,” and “incredibly high.” Another developer
who was filling the BA role claimed that priorities weren’t necessary: if he wrote something in the SRS,
he intended to build it. That doesn’t address the issue of when each piece of functionality gets built,
though.

I recently visited one company that had great difficulty getting their projects done on time.
 Although management claimed that there would be multiple releases of applications so lower-priority
requirements could wait, in reality each project delivered just a single release. Consequently, the
stakeholders all knew that they only had one shot to get all the functionality they needed. Every
requirement, therefore, became high priority, overloading the team’s capacity to deliver.

In reality, some system capabilities are more essential than others from the perspective of
 satisfying business objectives. This becomes apparent during the all-too-common “rapid descoping
phase” late in the project, when nonessential features are jettisoned to ensure that the critical
 capabilities ship on schedule. At that point, people are clearly making priority decisions, but in a
panicked state. Setting priorities early in the project and reassessing them in response to changing
customer preferences, market conditions, and business events lets the team spend time wisely on
high-value activities. Implementing most of a feature before you conclude that it isn’t necessary is
wasteful and frustrating.

 CHAPTER 16 First things first: Setting requirement priorities 317

If left to their own devices, customers will establish perhaps 85 percent of the requirements as high
priority, 10 percent as medium, and 5 percent as low. This doesn’t give the project manager much
flexibility. If all requirements truly are of top priority, your project has a high risk of not being fully
successful. Scrub the requirements to eliminate any that aren’t essential and to simplify those that are
unnecessarily complex. One study found that nearly two-thirds of the features developed in software
systems are rarely or never used (The Standish Group 2009). To encourage customers to acknowledge
that some requirements have lower priority, the analyst can ask questions such as the following:

 ■ Is there some other way to satisfy the need that this requirement addresses?

 ■ What would the consequences be of omitting or deferring this requirement?

 ■ What effect would it have on the project’s business objectives if this requirement weren’t
implemented for several months?

 ■ Why might a customer be unhappy if this requirement were deferred to a later release?

 ■ Is having this feature worth delaying release of all of the other features with this same priority?

Important If you go through a prioritization process and all of the requirements come out
with about the same priority, you really haven’t prioritized them at all.

When you evaluate priorities, look at the connections and interrelationships among requirements
and their alignment with the project’s business objectives. The management team on one
large commercial project displayed impatience over the analyst’s insistence on prioritizing the
 requirements. The managers pointed out that often they can do without a particular feature but that
another feature might need to be beefed up to compensate. If they deferred too many requirements,
the resulting product wouldn’t achieve the projected revenue.

Conflicts arise among stakeholders who are convinced that their requirements are the most
 important. As a general rule, members of the favored user classes should get preference in the case of
competing priorities. This is one reason to identify and assess your user classes early in the project.

Some prioritization techniques

On a small project, the stakeholders should be able to agree on requirement priorities informally.
Large or contentious projects with many stakeholders demand a more structured approach that
removes some of the emotion, politics, and guesswork from the process. Several analytical and
 mathematical techniques have been proposed to assist with requirements prioritization. These
 methods involve estimating the relative value and relative cost of each requirement. The highest
priority requirements are those that provide the largest fraction of the total product value at the
smallest fraction of the total cost (Karlsson and Ryan 1997; Jung 1998). This section discusses several
techniques people use for prioritizing requirements. Simpler is better, provided the technique is
 effective.

318 PART II Requirements development

Trap Avoid “decibel prioritization,” in which the loudest voice heard gets top priority, and
“threat prioritization,” in which stakeholders holding the most political power always get
what they demand.

In or out
The simplest of all prioritization methods is to have a group of stakeholders work down a list of
requirements and make a binary decision: is it in, or is it out? Keep referring to the project’s business
objectives to make this judgment, paring the list down to the bare minimum needed for the first
release. Then, when implementation of that release is under way, you can go back to the previously
“out” requirements and go through the process again for the next release.

Pop goes the requirement
I once facilitated a workshop that had six stakeholders in the room and four more on the
phone. We had 400 requirements to prioritize. We opted to decide simply if each was in or out,
then figured we’d deal with the “out” ones for the next release. We blocked off several hours
in this room to grind through the list. One executive stakeholder had the final prioritization
decision when there were conflicts. Shortly into this meeting, he realized that the day was
going to be long and monotonous. He decided to have some fun. Every time the team cut a
 requirement, he made an explosion sound, like blowing up the requirement. It was a fun way to
cut scope.

Pairwise comparison and rank ordering
People sometimes try to assign a unique priority sequence number to each requirement. Rank
 ordering a list of requirements involves making pairwise comparisons between all of them so
you can judge which member of each pair has higher priority. Figure 14-1 in Chapter 14, “Beyond
 functionality,” illustrated the use of a spreadsheet to perform just such a pairwise comparison of
quality attributes; the same strategy could be applied to a set of features, user stories, or any other
set of requirements of the same type. Performing such comparisons becomes unwieldy for more than
a couple of dozen requirements. It could work at the granularity level of features, but not for all the
functional requirements for a system as a whole.

In reality, rank ordering all of the requirements by priority is overkill. You won’t be implementing
all of these in individual releases; instead, you’ll group them together in batches by release or
 development timebox. Grouping requirements into features, or into small sets of requirements that
have similar priority or that otherwise must be implemented together, is sufficient.

 CHAPTER 16 First things first: Setting requirement priorities 319

Three-level scale
A common prioritization approach groups requirements into three categories. No matter how you
label them, if you’re using three categories they boil down to high, medium, and low priority. Such
prioritization scales are subjective and imprecise. To make the scale useful, the stakeholders must
agree on what each level means in the scale they use.

One way to assess priority is to consider the two dimensions of importance and urgency
(Covey 2004). Every requirement can be considered as being either important to achieving business
 objectives or not so important, and as being either urgent or not so urgent. This is a relative
 assessment among a set of requirements, not an absolute binary distinction. As Figure 16-1 shows,
these alternatives yield four possible combinations, which you can use to define a priority scale:

 ■ High-priority requirements are both important (customers need the capability) and urgent
(customers need it in the next release). Alternatively, contractual or compliance obligations
might dictate that a specific requirement must be included, or there might be compelling
business reasons to implement it promptly. If you can wait to implement a requirement in a
later release without adverse consequences, then it is not high priority per this definition.

 ■ Medium-priority requirements are important (customers need the capability) but not urgent
(they can wait for a later release).

 ■ Low-priority requirements are neither important (customers can live without the capability if
necessary) nor urgent (customers can wait, perhaps forever).

 ■ Requirements in the fourth quadrant appear to be urgent to some stakeholder, perhaps for
political reasons, but they really aren’t important to achieving the business objectives. Don’t
waste your time working on these, because they don’t add sufficient value to the product. If
they aren’t important, either set them to low priority or scrub them entirely.

FIGURE 16-1 Requirements prioritization based on importance and urgency.

Include the priority of each requirement as an attribute of the requirement in the user
 requirements documents, the SRS, or the requirements database. Establish a convention so that
the reader knows whether the priority assigned to a high-level requirement is inherited by all its
 subordinate requirements or whether every individual functional requirement is to have its own
 priority attribute.

320 PART II Requirements development

Sometimes, particularly on a large project, you might want to perform prioritization iteratively.
Have the team rate requirements as high, medium, or low priority. If the number of high-priority
requirements is excessive and you’re not convinced that they all really must be delivered in the
next release, perform a second-level partitioning of the high-priority ones into three groups. You
could call them high, higher, and highest if you like, so people don’t lose sight of the fact that they
were originally designated as being important. The requirements rated “highest” become your
new group of top-priority requirements. Group the “high” and “higher” requirements in with your
 original medium-priority group (Figure 16-2). Taking a hard line on the criterion of “must be in the
next release or that release is not shippable” helps keep the team focused on the truly high-priority
 capabilities.

FIGURE 16-2 Multipass prioritization keeps the focus on a manageable set of top-priority requirements.

When performing a prioritization analysis with the three-level scale, you need be aware of
 requirement dependencies. You’ll run into problems if a high-priority requirement is dependent on
another that is ranked lower in priority and hence planned for implementation later on.

MoSCoW
The four capitalized letters in the MoSCoW prioritization scheme stand for four possible priority
 classifications for the requirements in a set (IIBA 2009):

 ■ Must: The requirement must be satisfied for the solution to be considered a success.

 ■ Should: The requirement is important and should be included in the solution if possible, but
it’s not mandatory to success.

 CHAPTER 16 First things first: Setting requirement priorities 321

 ■ Could: It’s a desirable capability, but one that could be deferred or eliminated. Implement it
only if time and resources permit.

 ■ Won’t: This indicates a requirement that will not be implemented at this time but could be
included in a future release.

The MoSCoW scheme changes the three-level scale of high, medium, and low into a four-level
scale. It doesn’t offer any rationale for making the decision about how to rate the priority of a given
requirement compared to others. MoSCoW is ambiguous as to timing, particularly when it comes to
the “Won’t” rating. “Won’t” could mean either “not in the next release” or “not ever.” Such distinctions
must be made clear so that all stakeholders share a common understanding of the implications of a
particular priority rating. The three-level scale described previously, which relies on analysis of the
two dimensions of importance and urgency, and focuses specifically on the forthcoming release or
development timebox, is a crisper way to think about priorities. We don’t recommend MoSCoW.

MoSCoW in practice
One consultant described how a client company actually practiced the MoSCoW method on its
projects. “All the action centers around getting an ‘M’ for almost every feature or requirement
that is captured,” he said. “If something is not an ‘M’ it will almost certainly not get built.
Although the original intent may have been to prioritize, users have long since figured out
to never submit something that does not have an ‘M’ associated with it. Do they understand
the nuanced differences between S, C, and W? I have no idea. But they have figured out the
 implications of these rankings. They treat them all the same and understand their meaning to
be ‘not happening any time soon’.”

$100
Prioritization is about thoughtfully allocating limited resources to achieve the maximum benefit from
the investment an organization makes in a project. One way to make prioritization more tangible is to
cast it in terms of an actual resource: money. In this case, it’s just play money, but money nonetheless.

Give the prioritization team 100 imaginary dollars to work with. Team members allocate these
dollars to “buy” items that they would like to have implemented from the complete set of candidate
 requirements. They weight the higher-priority requirements more heavily by allocating more dollars to
them. If one requirement is three times as important to a stakeholder as another requirement, she would
assign perhaps nine dollars to the first requirement and three dollars to the second. But 100 dollars is all
the prioritizers get—when they are out of money, nothing else can be implemented, at least not in the
release they are currently focusing on. One approach is to have different participants in the prioritization
process perform their own dollar allocations, then add up the total number of dollars assigned to each
requirement to see which ones collectively come out as having the highest priority.

322 PART II Requirements development

The hundred-dollar approach is not a bad way to get a group of people to think in terms of
 allocating resources based on priority. However, Davis (2005) points out several ways that participants
can “game” the process to skew the results. For instance, if you really, REALLY want a particular
requirement, you might give it all 100 of your dollars to try to float it to the top of the list. In reality,
you’d never accept a system that possessed just that single requirement, though. Nor does this
scheme take into account any concern about the relative amount of effort needed to implement each
of those requirements. If you could get three requirements each valued at $10 for the same effort as
one valued at $15, you’re likely better off with the three. The scheme is based solely on the perceived
value of certain requirements to a particular set of stakeholders, a limitation of many prioritization
techniques.

Another prioritization technique is based on real money, not play money. In Joy Beatty and
 Anthony Chen’s (2012) objective chain technique, you assign an estimated dollar value that represents
how much each proposed feature contributes to achieving the project’s business objectives. You can
then compare the relative value of features to one another and select which ones to implement first.

Prioritization based on value, cost, and risk

When the stakeholders can’t agree on requirement priorities through the other relatively informal
techniques, it might be useful to apply a more analytical method. A definitive, rigorous way to relate
customer value to proposed product features is with a technique called Quality Function Deployment,
or QFD (Cohen 1995). Few software organizations seem to be willing to undertake the rigor of QFD,
although a structured prioritization method adapted from QFD has proven to be helpful.

Table 16-1 illustrates a spreadsheet model to help estimate the relative priorities for a set of
 requirements. This technique was ranked in the top tier of effectiveness in a comparative evaluation
of 17 requirements prioritization methods (Kukreja et al. 2012). The Microsoft Excel spreadsheet is
available in the companion content for this book. The example in Table 16-1 lists several features
from (what else?) the Chemical Tracking System. This scheme borrows from the QFD concept of
basing customer value on both the benefit provided to the customer if a specific product feature
is present and the penalty paid if that feature is absent (Pardee 1996). A feature’s attractiveness is
directly proportional to the value it provides and inversely proportional to its cost and the technical
risk associated with implementing it. All other things being equal, those features with the highest
 risk-adjusted value/cost ratio should have the highest priority. This approach distributes a set of
 estimated priorities across a continuum, rather than grouping them into just a few discrete levels.

 CHAPTER 16 First things first: Setting requirement priorities 323

TABLE 16-1 Sample prioritization matrix for the Chemical Tracking System

Relative weights 2 1 1 0.5

Feature Relative
benefit

Relative
penalty

Total
value

Value
%

Relative
cost

Cost % Relative
risk

Risk % Priority

1. Print a material safety
data sheet.

2 4 8 5.2 1 2.7 1 3.0 1.22

2. Query status of a
 vendor order.

5 3 13 8.4 2 5.4 1 3.0 1.21

3. Generate a chemical
stockroom inventory
report.

9 7 25 16.1 5 13.5 3 9.1 0.89

4. See history of a
 specific chemical
 container.

5 5 15 9.7 3 8.1 2 6.1 0.87

5. Search vendor catalogs
for a specific chemical.

9 8 26 16.8 3 8.1 8 24.2 0.83

6. Maintain a list of
 hazardous chemicals.

3 9 15 9.7 3 8.1 4 12.1 0.68

7. Change a pending
chemical request.

4 3 11 7.1 3 8.1 2 6.1 0.64

8. Generate a laboratory
inventory report.

6 2 14 9.0 4 10.8 3 9.1 0.59

9. Check training
 database for
 hazardous chemical
training record.

3 4 10 6.5 4 10.8 2 6.1 0.47

10. Import chemical
 structures from
 structure drawing
tools.

7 4 18 11.6 9 24.3 7 21.2 0.33

Totals 53 49 155 100.0 37 100.0 33 100.0

Apply this prioritization scheme to discretionary requirements, those that aren’t obviously top
 priority. For instance, you wouldn’t include in this analysis items that implement the product’s core
business functions, key product differentiators, or items required for regulatory compliance. After
you’ve identified those features that absolutely must be included for the product to be releasable,
use the model in Table 16-1 to scale the relative priorities of the remaining capabilities. Typical
 participants in the prioritization process include:

 ■ The project manager or business analyst, who leads the process, arbitrates conflicts, and
 adjusts prioritization data received from the other participants if necessary.

 ■ Customer representatives, such as product champions, a product manager, or a product
owner, who supply the benefit and penalty ratings.

 ■ Development representatives, who provide the cost and risk ratings.

324 PART II Requirements development

Follow these steps to use this prioritization model (it’s more complicated to explain than to use):

1. List in the spreadsheet all the features, use cases, use case flows, user stories, or functional
 requirements that you want to prioritize against each other. We’ve used features in the
 example. All the items must be at the same level of abstraction—don’t mix functional
 requirements with features, use cases, or user stories. Certain features might be logically
linked (you’d implement feature B only if feature A were included) or have dependencies
 (feature A must be implemented before feature B). For those, include only the driving feature
in the analysis. This model will work with up to several dozen items before it becomes
 unwieldy. If you have more than that, group related items together to create a manageable
list. You can apply the method hierarchically. After you perform an initial prioritization
on, for example, features, you can apply it again within a feature to prioritize its individual
 subfeatures or functional requirements.

2. Have the customer representatives estimate the relative benefit each feature would provide to
the customer or to the business on a scale of 1 to 9. A rating of 1 indicates that no one would
find it useful; 9 means that it would be extremely valuable. These benefit ratings indicate
alignment of the features with the product’s business objectives.

3. Estimate the relative penalty that the customer or the business would suffer if each feature
were not included. Again, use a scale of 1 to 9. A rating of 1 means that no one will be upset
if it’s absent; 9 indicates a serious downside. Requirements with both a low benefit and a
low penalty add cost but little value. Sometimes a feature could have a fairly low value, if
not many customers will use it, but a high penalty if your competitor’s product boasts that
feature and the customers expect it to be there—even if they don’t personally plan to use it!
 Marketing people sometimes call these “checkbox features”: you need to say you have it, even
if few people really care. When assigning penalty ratings, consider what might happen if you
do not include the capability:

• Would your product suffer in comparison with other products that do have that capability?

• Would there be any legal or contractual consequences?

• Would you be violating some government or industry standard?

• Would users be unable to perform some necessary or expected functions?

• Would it be a lot harder to add that capability later as an enhancement?

• Would problems arise because marketing promised a feature to some customers?

4. The spreadsheet calculates the total value for each feature as the sum of its benefit and
 penalty scores (weighted as described later in the chapter). The spreadsheet sums the values
for all the features and calculates the percentage of the total value that comes from each of
the features (the Value % column). Note that this is not the percentage of total value for the
entire product, just for the set of features you’re prioritizing against each other here.

 CHAPTER 16 First things first: Setting requirement priorities 325

5. Have developers estimate the relative cost of implementing each feature, again on a scale
of 1 (quick and easy) to 9 (time-consuming and expensive). The spreadsheet will calculate
the percentage of the total cost that each feature contributes. Developers estimate the cost
ratings based on the feature’s complexity, the extent of user interface work required, the
 potential ability to reuse existing code, the amount of testing needed, and so forth. Agile
teams could base these cost ratings on the number of story points they’ve assigned to each
user story. (See Chapter 19, “Beyond requirements development,” for more about estimation
on agile projects.)

6. Similarly, have developers rate the relative technical (not business) risk associated with each
feature on a scale of 1 to 9. Technical risk is the probability of not getting the feature right
on the first try. A rating of 1 means you can program it in your sleep. A 9 indicates serious
 concerns about feasibility, the lack of necessary expertise on the team, the use of unfamiliar
tools and technologies, or concern about the amount of complexity hidden within the
 requirement. The spreadsheet will calculate the percentage of the total risk that comes from
each feature.

7. After you’ve entered all the estimates into the spreadsheet, it will calculate a priority value for
each feature by using the following formula:

 priority =
 value %

cost % + risk %

8. Finally, sort the list of features in descending order by calculated priority, the rightmost
column. The features at the top of the list have the most favorable balance of value, cost, and
risk and thus—all other factors being equal—should have highest priority. Discussions that
focus on those features at the top of the list will let you refine that preliminary ranking into a
priority sequence that stakeholders can agree on, even if not everyone gets exactly what they
want.

By default, the benefit, penalty, cost, and risk terms are weighted equally. You can change the
relative weights for the four factors in the top row of the spreadsheet, to reflect the thought process
by which your team makes priority decisions. In Table 16-1, all benefit ratings are weighted twice as
heavily as the corresponding penalty ratings, penalty and cost are weighted the same, and risk has
half the weight of the cost and penalty terms. To drop a term out of the model, set its weight to zero.

When using this spreadsheet model with prioritization participants, you might want to hide certain
columns that appear in Table 16-1: Total value, Value %, Cost %, and Risk %. These show intermediate
results from the calculations that could just be a distraction. Hiding them will let the customers focus
on the four rating categories and the calculated priority values.

326 PART II Requirements development

Or, we could arm wrestle
One company that introduced a requirements prioritization procedure based on this
 spreadsheet found that it helped a project team to break through an impasse. Several
 stakeholders had different opinions about which features were most important on a large
project; the team was deadlocked. The spreadsheet analysis made the priority assessment more
objective and less emotionally charged, enabling the team to agree on some conclusions and
move ahead.

Consultant Johanna Rothman (2000) reported that, “I have suggested this spreadsheet to
my clients as a tool for decision-making. Although the ones who tried it have never completely
filled out the spreadsheet, they found the discussion it stimulated extremely helpful in deciding
the relative priorities of the different requirements.” That is, you can use the framework of
benefit, penalty, cost, and risk to guide discussions about priorities. This is more valuable than
working completely through the spreadsheet analysis and relying exclusively on the calculated
priority sequence. Because requirements and their priorities can change with time, use the
spreadsheet tool throughout the project to help manage the backlog of work remaining to
be done.

This priority model’s usefulness is limited by the team’s ability to estimate the benefit, penalty, cost,
and risk for each item. Therefore, use the calculated priorities only as a guideline. Stakeholders should
review the completed spreadsheet to agree on the ratings and the resulting sorted priority sequence.
If you aren’t sure whether you can trust the results, consider calibrating this model for your own use
with a set of implemented requirements from a previous project. Adjust the weighting factors until
the calculated priority sequence correlates well with your after-the-fact evaluation of how important
the requirements in your calibration set really were. This will give you some confidence in using the
tool as a predictive model of how you make priority decisions on your projects.

Trap Don’t over-interpret small differences in calculated priority numbers. This
 semi-quantitative method is not mathematically rigorous. Group together sets of
 requirements that have approximately the same calculated priority numbers.

Different stakeholders often have conflicting ideas about the relative benefit of a specific
 requirement or the penalty of omitting it. The prioritization spreadsheet includes a variant that
 accommodates input from several user classes or other stakeholder groups. In the Multiple
 Stakeholders worksheet tab in the downloadable spreadsheet, duplicate the Relative Benefit and
 Relative Penalty columns so that you have a set for each stakeholder who’s contributing to the
 analysis. Then assign a weighting factor to each stakeholder, giving higher weights to favored user
classes than to groups who have less influence on the project’s decisions. Have each stakeholder
representative provide his own benefit and penalty ratings for each feature. The spreadsheet will
incorporate the stakeholder weights when it calculates the final value scores.

 CHAPTER 16 First things first: Setting requirement priorities 327

This model can also help you to make trade-off decisions when you’re evaluating proposed
 requirements additions. Add the new requirements to the prioritization spreadsheet and see
how their priorities align with those of the existing requirements baseline so you can choose an
 appropriate implementation sequence.

You don’t always need to use a method this elaborate. Keep your prioritization process as simple
as possible, but no simpler. Strive to move prioritization away from the political and emotional arena
into a forum in which stakeholders can make honest assessments. This will give you a better chance of
building products that deliver the maximum business value with the minimum cost.

Next steps
 ■ Reevaluate the requirements in your backlog for an upcoming release, using the

 definitions in Figure 16-1 to distinguish requirements that truly must be included in that
release from those that could wait if necessary. Does this make you change any of your
priorities?

 ■ Apply the spreadsheet model illustrated in Table 16-1 to prioritize 10 or 15 features, use
cases, or user stories from a recent project. How well do the calculated priorities compare
with the priorities you had determined by some different method? How well do they
 compare with your subjective sense of the proper priorities?

 ■ If the model’s priorities don’t match what you think is right, analyze which part of the
model isn’t giving sensible results. Try using different weighting factors for benefit,
penalty, cost, and risk. Adjust the model until it provides results consistent with what you
expect. Otherwise, you can’t trust its predictive capability.

 ■ After you’ve calibrated the prioritization model, apply it to a new project. Incorporate
the calculated priorities into the decision-making process. See whether this yields results
that the stakeholders find more satisfying than those from their previous prioritization
 approach.

 ■ Try one new prioritization technique today that you have not used before. For example, if
you use MoSCoW already, try using the three-level method to see how it compares.

 329

C H A P T E R 1 7

Validating the requirements

Barry, a test lead, was the moderator for an inspection meeting whose participants were carefully
 examining a software requirements specification for problems. The meeting included representatives
from two user classes, a developer named Jeremy, and Trish, the business analyst who wrote the SRS.
One requirement stated, “The system shall provide unattended terminal timeout security of workstations
accessing the training system.” Jeremy presented his interpretation of this requirement to the rest of the
group. “This requirement says the system will automatically log off the current user of any workstation
logged into the training system if there hasn’t been any activity within a certain period of time.”

Hui-Lee, one of the product champions, chimed in. “How does the system determine that the
 terminal is unattended? Is it like a screen saver, so if there isn’t any mouse or keyboard activity for
 several minutes, it logs the user off? That could be annoying if the user was just talking to someone
briefly.”

Trish added, “The requirement doesn’t say anything about logging off the user. I assumed that
 timeout security meant a logoff, but maybe the user just has to retype her password to keep going.”

Jeremy was confused also. “Does this mean any workstation that can connect to the training system,
or just workstations that are actively logged into the system at the moment? How long of a timeout
period are we talking about? Maybe there’s a security guideline for this kind of thing.”

Barry made sure that the inspection recorder had captured all these concerns accurately. He followed
up with Trish after the meeting to ensure that she understood all of the issues so she could resolve them.

Most software developers have experienced the frustration of being presented with requirements
that were ambiguous or incomplete. If they can’t get the information they need, the developers have
to make their own interpretations, which aren’t always correct. As you saw in Chapter 1, “The essential
software requirement,” it costs far more to correct a requirement error after implementation than
to correct one found during requirements development. One study found that it took an average of
30 minutes to fix a defect discovered during the requirements phase. In contrast, 5 to 17 hours were
needed to correct a defect identified during system testing (Kelly, Sherif, and Hops 1992). Clearly, any
measures you can take to detect errors in the requirements specifications will save time and money.

On many projects, testing is a late-stage activity. Requirements-related problems linger in the
product until they’re finally revealed through time-consuming system testing or—worse—by the
end user. If you start your test planning and test-case development in parallel with requirements
 development, you’ll detect many errors shortly after they’re introduced. This prevents them from
 doing further damage and minimizes your development and maintenance costs.

330 PART II Requirements development

Figure 17-1 illustrates the V model of software development. It shows test activities beginning in
parallel with the corresponding development activities. This model indicates that acceptance tests
are derived from the user requirements, system tests are based on the functional requirements,
and integration tests are based on the system’s architecture. This model is applicable whether the
 software development activities being tested are for the product as a whole, a particular release, or a
single development increment.

FIGURE 17-1 The V model of software development incorporates early test planning and test design.

As we will discuss later in the chapter, you can use the tests to validate each of these requirement
types during requirements development. You can’t actually execute any tests during requirements
 development because you don’t have any running software yet. However, conceptual (that is,
implementation-independent) tests based on the requirements will reveal errors, ambiguities, and
omissions in your requirements and models before the team writes any code.

Project participants sometimes are reluctant to spend time reviewing and testing requirements.
Their intuition tells them that inserting time into the schedule to improve requirements quality would
delay the planned ship date by that same duration. However, this expectation assumes a zero return
on your investment in requirements validation. In reality, that investment can actually shorten the
delivery schedule by reducing the rework required and by accelerating system integration and testing
(Blackburn, Scudder, and Van Wassenhove 1996). Better requirements lead to higher product quality
and customer satisfaction, which reduce the product’s lifetime costs for maintenance, enhancement,
and customer support. Investing in requirements quality usually saves you much more than you
spend.

Various techniques can help you to evaluate the correctness and quality of your requirements
(Wallace and Ippolito 1997). One approach is to quantify each requirement so that you can think of
a way to measure how well a proposed solution satisfies it. Suzanne and James Robertson (2013) use
the term fit criteria to describe such quantifications. This chapter addresses the validation techniques
of formal and informal requirements reviews, developing tests from requirements, and having
 customers define their acceptance criteria for the product.

 CHAPTER 17 Validating the requirements 331

Validation and verification

Requirements validation is the fourth component of requirements development, along with
 elicitation, analysis, and specification. Some authors use the term “verification” for this step. In this
book, we’ve adopted the terminology of the Software Engineering Body of Knowledge (Abran et al.
2004) and refer to this aspect of requirements development as “validation.” Verifying requirements
to ensure that they have all the desired properties of high-quality requirements is also an essential
 activity. Precisely speaking, validation and verification are two different activities in software
 development. Verification determines whether the product of some development activity meets its
requirements (doing the thing right). Validation assesses whether a product satisfies customer needs
(doing the right thing).

Extending these definitions to requirements, verification determines whether you have written the
requirements right: your requirements have the desirable properties described in Chapter 11, “Writing
excellent requirements.” Validation of requirements assesses whether you have written the right
requirements: they trace back to business objectives. These two concepts are closely intertwined. For
simplicity in this chapter, we talk about validating the requirements, but the techniques we describe
contribute both to having the correct requirements and to having high-quality requirements.

Validating requirements allows teams to build a correct solution that meets the stated business
objectives. Requirements validation activities attempt to ensure that:

 ■ The software requirements accurately describe the intended system capabilities and properties
that will satisfy the various stakeholders’ needs.

 ■ The software requirements are correctly derived from the business requirements, system
requirements, business rules, and other sources.

 ■ The requirements are complete, feasible, and verifiable.

 ■ All requirements are necessary, and the entire set is sufficient to meet the business objectives.

 ■ All requirements representations are consistent with each other.

 ■ The requirements provide an adequate basis to proceed with design and construction.

Validation isn’t a single discrete phase that you perform after eliciting and documenting all the
requirements. Some validation activities, such as incremental reviews of the growing requirements set,
are threaded throughout the iterative elicitation, analysis, and specification processes. Other activities,
such as formal inspections, provide a final quality gate prior to baselining a set of requirements.
 Include requirements validation activities as tasks in your project plan. Of course, you can validate only
 requirements that have been documented, not implicit requirements that exist only in someone’s mind.

332 PART II Requirements development

Reviewing requirements

Anytime someone other than the author of a work product examines the product for problems, a
peer review is taking place. Reviewing requirements is a powerful technique for identifying ambiguous
or unverifiable requirements, requirements that aren’t defined clearly enough for design to begin,
and other problems.

Different kinds of peer reviews go by a variety of names (Wiegers 2002). Informal reviews are
useful for educating other people about the product and collecting unstructured feedback. However,
they are not systematic, thorough, or performed in a consistent way. Informal review approaches
include:

 ■ A peer deskcheck, in which you ask one colleague to look over your work product.

 ■ A passaround, in which you invite several colleagues to examine a deliverable concurrently.

 ■ A walkthrough, during which the author describes a deliverable and solicits comments on it.

Informal reviews are good for catching glaring errors, inconsistencies, and gaps. They can help you
spot statements that don’t meet the characteristics of high-quality requirements. But it’s hard for a
reviewer to catch all of the ambiguous requirements on his own. He might read a requirement and
think he understands it, moving on to the next without a second thought. Another reviewer might
read the same requirement, arrive at a different interpretation, and also not think there is an issue. If
these two reviewers never discuss the requirement, the ambiguity will go unnoticed until later in the
project.

Formal peer reviews follow a well-defined process. A formal requirements review produces a
 report that identifies the material examined, the reviewers, and the review team’s judgment as to
whether the requirements are acceptable. The principal deliverable is a summary of the defects found
and the issues raised during the review. The members of a formal review team share responsibility
for the quality of the review, although authors ultimately are responsible for the quality of the
 deliverables they create.

The best-established type of formal peer review is called an inspection. Inspection of requirements
documents is one of the highest-leverage software quality techniques available. Several companies
have avoided as many as 10 hours of labor for every hour they invested in inspecting requirements
documents and other software deliverables (Grady and Van Slack 1994). A 1,000 percent return on
investment is not to be sneezed at.

If you’re serious about maximizing the quality of your software, your teams will inspect most of
their requirements. Detailed inspection of large requirements sets is tedious and time consuming.
Nonetheless, the teams I know who have adopted requirements inspections agree that every
 minute they spent was worthwhile. If you don’t have time to inspect everything, use risk analysis to
 differentiate those requirements that demand inspection from less critical, less complex, or less novel
material for which an informal review will suffice. Inspections are not cheap. They’re not even that
much fun. But they are cheaper—and more fun—than the alternative of expending lots of effort and
customer goodwill fixing problems found much later on.

 CHAPTER 17 Validating the requirements 333

The closer you look, the more you see
On the Chemical Tracking System project, the user representatives informally reviewed their
latest contribution to the growing SRS after each elicitation workshop. These quick reviews
uncovered many errors. After elicitation was complete, one of the BAs combined the input
from all user classes into a single SRS of about 50 pages plus several appendices. Two BAs,
one developer, three product champions, and one tester then inspected this full SRS in three
 two-hour inspection meetings held over the course of a week. The inspectors found 223
 additional errors, including dozens of major defects. All the inspectors agreed that the time
they spent grinding through the SRS, one requirement at a time, saved the project team
 countless more hours in the long run.

The inspection process
Michael Fagan developed the inspection process at IBM (Fagan 1976; Radice 2002), and others
have extended or modified his method (Gilb and Graham 1993; Wiegers 2002). Inspection has been
 recognized as a software industry best practice (Brown 1996). Any software work product can be
inspected, including requirements, design documents, source code, test documentation, and project
plans.

Inspection is a well-defined multistage process. It involves a small team of participants who
 carefully examine a work product for defects and improvement opportunities. Inspections serve as a
quality gate through which project deliverables must pass before they are baselined. There are several
forms of inspection, but any one of them is a powerful quality technique. The following description is
based on the Fagan inspection technique.

Participants
Ensure that you have all of the necessary people in an inspection meeting before proceeding.
 Otherwise you might correct issues only to find out later that someone important disagrees with the
change. The participants in an inspection should represent four perspectives (Wiegers 2002):

 ■ The author of the work product and perhaps peers of the author The business analyst
who wrote the requirements document provides this perspective. Include another experienced
BA if you can, because he’ll know what sorts of requirements-writing errors to look for.

 ■ People who are the sources of information that fed into the item being
 inspected These participants could be actual user representatives or the author of a
predecessor specification. In the absence of a higher-level specification, the inspection must
include customer representatives, such as product champions, to ensure that the requirements
describe their needs correctly and completely.

334 PART II Requirements development

 ■ People who will do work based on the item being inspected For an SRS, you might
 include a developer, a tester, a project manager, and a user documentation writer because
they will detect different kinds of problems. A tester is most likely to catch an unverifiable
requirement; a developer can spot requirements that are technically infeasible.

 ■ People who are responsible for interfacing systems that will be affected by the item
being inspected These inspectors will look for problems with the external interface
 requirements. They can also spot ripple effects, in which changing a requirement in the SRS
being inspected affects other systems.

Try to limit the team to seven or fewer inspectors. This might mean that some perspectives won’t
be represented in every inspection. Large teams easily get bogged down in side discussions, problem
solving, and debates over whether something is really an error. This reduces the rate at which they
cover the material during the inspection and increases the cost of finding each defect.

The author’s manager normally should not attend an inspection meeting, unless the manager
is actively contributing to the project and his presence is acceptable to the author. An effective
 inspection that reveals many defects might create a bad impression of the author to a hypercritical
manager. Also, the manager’s presence might stifle discussion from other participants.

Inspection roles
All participants in an inspection, including the author, look for defects and improvement
 opportunities. Some of the inspection team members perform the following specific roles during the
inspection (Wiegers 2002).

Author The author created or maintains the work product being inspected. The author of a
 requirements document is usually the business analyst who elicited customer needs and wrote the
requirements. During informal reviews such as walkthroughs, the author often leads the discussion.
However, the author takes a more passive role during an inspection. The author should not assume
any of the other assigned roles—moderator, reader, or recorder. By not having an active role, the
 author can listen to the comments from other inspectors, respond to—but not debate—their
 questions, and think. This way the author can often spot errors that other inspectors don’t see.

Moderator The moderator plans the inspection with the author, coordinates the activities, and
 facilitates the inspection meeting. The moderator distributes the materials to be inspected, along with
any relevant predecessor documents, to the participants a few days before the inspection meeting.
Moderator responsibilities include starting the meeting on time, encouraging contributions from
all participants, and keeping the meeting focused on finding major defects rather than resolving
 problems or being distracted by minor stylistic issues and typos. The moderator follows up on
proposed changes with the author to ensure that the issues that came out of the inspection were
 addressed properly.

 CHAPTER 17 Validating the requirements 335

Reader One inspector is assigned the role of reader. During the inspection meeting, the reader
paraphrases the requirements and model elements being examined one at a time. The other
 participants then point out potential defects and issues that they see. By stating a requirement in her
own words, the reader provides an interpretation that might differ from that held by other inspectors.
This is a good way to reveal an ambiguity, a possible defect, or an assumption. It also underscores
the value of having someone other than the author serve as the reader. In less formal types of peer
reviews, the reader role is omitted, with the moderator walking the team through the work product
and soliciting comments on one section at a time.

Recorder The recorder uses standard forms to document the issues raised and the defects found
during the meeting. The recorder should review aloud or visually share (by projecting or sharing in a
web conference) what he wrote to confirm its accuracy. The other inspectors should help the recorder
capture the essence of each issue in a way that clearly communicates to the author the location and
nature of the issue so he can address it efficiently and correctly.

Entry criteria
You’re ready to inspect a requirements document when it satisfies specific prerequisites. These entry
criteria set some clear expectations for authors to follow while preparing for an inspection. They
also keep the inspection team from spending time on issues that should be resolved prior to the
 inspection. The moderator uses the entry criteria as a checklist before deciding to proceed with the
inspection. Following are some suggested inspection entry criteria for requirements documents:

 q The document conforms to the standard template and doesn’t have obvious spelling,
 grammatical, or formatting issues.

 q Line numbers or other unique identifiers are printed on the document to facilitate referring to
specific locations.

 q All open issues are marked as TBD (to be determined) or accessible in an issue-tracking tool.

 q The moderator didn’t find more than three major defects in a ten-minute examination of a
representative sample of the document.

Inspection stages
An inspection is a multistep process, as illustrated in Figure 17-2. You can inspect small sets of
 requirements at a time—perhaps those allocated to a specific development iteration—thereby
eventually covering the full requirements collection. The purpose of each inspection process stage is
summarized briefly in this section.

336 PART II Requirements development

FIGURE 17-2 Inspection is a multistep process. The dotted lines indicate that portions of the inspection process
might be repeated if reinspection is necessary because of extensive rework.

Planning The author and moderator plan the inspection together. They determine who should
 participate, what materials the inspectors should receive prior to the inspection meeting, the total
meeting time needed to cover the material, and when the inspection should be scheduled. The
 number of pages reviewed per hour has a large impact on how many defects are found (Gilb and
Graham 1993). As Figure 17-3 shows, proceeding through a requirements document slowly reveals
the most defects. (An alternative interpretation of this frequently reported relationship is that the
inspection slows down if you encounter a lot of defects. It’s not totally clear which is cause and
which is effect.) Because no team has infinite time available for requirements inspections, select an
 appropriate inspection rate based on the risk of overlooking major defects. Two to four pages per
hour is a practical guideline, although the optimum rate for maximum defect-detection effectiveness
is about half that rate (Gilb and Graham 1993). Adjust this rate based on the following factors:

 ■ The team’s previous inspection data, showing inspection effectiveness as a function of rate

 ■ The amount of text on each page

 ■ The complexity of the requirements

 ■ The likelihood and impact of having errors remain undetected

 ■ How critical the material being inspected is to project success

 ■ The experience level of the person who wrote the requirements

Preparation Prior to the inspection meeting, the author should share background information
with inspectors so they understand the context of the items being inspected and know the author’s
objectives for the inspection. Each inspector then examines the product to identify possible defects
and issues, using the checklist of typical requirements defects described later in this chapter or other

 CHAPTER 17 Validating the requirements 337

analysis techniques (Wiegers 2002). Up to 75 percent of the defects found by an inspection are
 discovered during preparation, so don’t omit this step (Humphrey 1989). The techniques described
in the “Finding missing requirements” section in Chapter 7, “Requirements elicitation,” can be helpful
during preparation. Plan on spending at least half as much time on individual preparation as is
 scheduled for the team inspection meetings.

FIGURE 17-3 The number of defects found depends on the inspection rate.

Trap Don’t proceed with an inspection meeting if the participants haven’t already
 examined the work product on their own. Ineffective meetings can lead to the erroneous
conclusion that inspections are a waste of time.

Inspection meeting During an inspection meeting, the reader leads the other inspectors through
the document, describing one requirement at a time in his own words. As inspectors bring up possible
defects and other issues, the recorder captures them in the action item list for the requirements
author. The purpose of the meeting is to identify as many major defects as possible. The inspection
meeting shouldn’t last more than about two hours; tired people aren’t effective inspectors. If you
need more time to cover all the material, schedule additional meetings.

After examining all the material, the team decides whether to accept the requirements document
as is, accept it with minor revisions, or indicate that major revision is needed. An outcome of “major
revision needed“ could suggest that the requirements development process has some shortcomings
or that the BA who wrote the requirements needs additional training. Consider holding a retrospective
to explore how the process can be improved prior to the next specification activity (Kerth 2001). If
major revisions are necessary, the team might elect to re-examine portions of the product that require
 extensive rework, as shown by the dotted line between Rework and Preparation in Figure 17-2.

Sometimes inspectors report only superficial and cosmetic issues. In addition, inspectors are easily
sidetracked into discussing whether an issue really is a defect, debating questions of project scope,
and brainstorming solutions to problems. These activities can be useful, but they distract attention
from the core objective of finding significant defects and improvement opportunities.

338 PART II Requirements development

Rework Nearly every quality control activity reveals some defects. The author should plan to spend
some time reworking the requirements following the inspection meeting. Uncorrected requirement
defects will be expensive to fix down the road, so this is the time to resolve the ambiguities, eliminate
the fuzziness, and lay the foundation for a successful development project.

Follow-up In this final inspection step, the moderator or a designated individual works with
the author to ensure that all open issues were resolved and that errors were corrected properly.
 Follow-up brings closure to the inspection process and enables the moderator to determine whether
the inspection’s exit criteria have been satisfied. The follow-up step might reveal that some of the
modifications made were incomplete or not performed correctly, leading to additional rework, as
shown by the dotted line between Follow-up and Rework in Figure 17-2.

Exit criteria
Your inspection process should define the exit criteria that must be satisfied before the moderator
 declares the full inspection process (not just the meeting) complete. Here are some possible exit
 criteria for requirements inspections:

 q All issues raised during the inspection have been addressed.

 q Any changes made in the requirements and related work products were made correctly.

 q All open issues have been resolved, or each open issue’s resolution process, target date, and
owner have been documented.

Defect checklist
To help reviewers look for typical kinds of errors in the products they review, develop a defect
 checklist for each type of requirements document your projects create. Such checklists call the
 reviewers’ attention to historically frequent requirement problems. Checklists serve as reminders.
Over time, people will internalize the items and look for the right issues in each review out of habit.
Figure 17-4 illustrates a requirements review checklist, which is included with the companion content
for this book. If you create particular requirements representations or models, you might expand
the items in the checklist to be more thorough for those. Business requirements, such as a vision and
scope document, might warrant their own checklist. Cecilie Hoffman and Rebecca Burgess (2009)
provide several detailed review checklists, including one to validate software requirements against
business requirements.

No one can remember all the items on a long checklist. If there are more than six or eight items on
the list, a reviewer will likely have to do multiple passes through the material to look for everything
on the list; most reviewers won’t bother. Pare the lists to meet your organization’s needs, and modify
the items to reflect the problems that people encounter most often with your own requirements.
Some studies have shown that giving reviewers specific defect-detection responsibilities—providing
structured thought processes or scenarios to help them hunt for particular kinds of errors—is more
effective than simply handing all reviewers the same checklist and hoping for the best (Porter, Votta,
and Basili 1995).

 CHAPTER 17 Validating the requirements 339

FIGURE 17-4 A defect checklist for reviewing requirements documents.

Requirements review tips
Chapter 8 of Karl Wiegers’ More About Software Requirements: Thorny Issues and Practical Advice
(Microsoft Press, 2006) offers suggestions to improve your requirements reviews. The following tips
apply whether you are performing informal or formal reviews on your projects, and whether you’re
storing your requirements in traditional documents, in a requirements management tool, or in any
other tangible form.

Plan the examination When someone asks you to review a document, the temptation is to begin
at the top of page one and read it straight through. But you don’t need to do that. The consumers of
the requirements specification won’t be reading it front-to-back like a book; reviewers don’t have to,
either. Invite certain reviewers to focus on specific sections of documents.

340 PART II Requirements development

Start early Begin reviewing sets of requirements when they are perhaps only 10 percent complete,
not when you think they’re “done.” Detecting major defects early and spotting systemic problems in
the way the requirements are being written is a powerful way to prevent—not just find—defects.

Allocate sufficient time Give reviewers sufficient time to perform the reviews, both in terms of
actual hours to review (effort) and calendar time. They have other important tasks that the review has
to fit around.

Provide context Give reviewers context for the document and perhaps for the project if they are
not all working on the same project. Seek out reviewers who can provide a useful perspective based
on their knowledge. For example, you might know a co-worker from another project who has a good
eye for finding major requirement gaps even without being intimately familiar with the project.

Set review scope Tell reviewers what material to examine, where to focus their attention, and what
issues to look for. Suggest that they use a defect checklist like the one described in the preceding
section. You might want to maximize availability and skills by asking different reviewers to review
 different sections or to use different parts of the checklists.

Limit re-reviews Don’t ask anyone to review the same material more than three times. He will be
tired of looking at it and won’t spot major issues after a third cycle because of “reviewer fatigue.” If
you do need someone to review it multiple times, highlight the changes so he can focus on those.

Prioritize review areas Prioritize for review those portions of the requirements that are of high risk
or have functionality that will be used frequently. Also, look for areas of the requirements that have
few issues logged already. It might be the case that those sections have not yet been reviewed, not
that they are problem-free.

Requirements review challenges
A peer review is both a technical activity and a social activity. Asking some colleagues to tell you
what’s wrong with your work is a learned—not instinctive—behavior. It takes time for a software
organization to instill peer reviews into its culture. Following are some common challenges that
 organizations face regarding requirements reviews, some of which apply specifically to formal
 inspections, with suggestions for how to address each one (Wiegers 1998a; Wiegers 2002).

Large requirements documents The prospect of thoroughly examining a several-hundred-page
requirements document is daunting. You might be tempted to skip the review entirely and just
proceed with construction—not a wise choice. Even given a document of moderate size, all reviewers
might carefully examine the first part and a few stalwarts will study the middle, but it’s unlikely that
anyone will look at the last part.

To avoid overwhelming the review team, perform incremental reviews throughout requirements
development. Identify high-risk areas that need a careful look through inspection, and use informal
reviews for less risky material. Ask particular reviewers to start at different locations in the document
to make certain that fresh eyes have looked at every page. To judge whether you really need to
 inspect the entire specification, examine a representative sample (Gilb and Graham 1993). The number
and types of errors you find will help you determine whether investing in a full inspection is likely to
pay off.

 CHAPTER 17 Validating the requirements 341

Large inspection teams Many project participants and customers hold a stake in the requirements,
so you might have a long list of potential participants for requirements inspections. However, large
review teams increase the cost of the review, make it hard to schedule meetings, and have difficulty
reaching agreement on issues. I once participated in a meeting with 13 other inspectors. Fourteen
people cannot agree to leave a burning room, let alone agree on whether a particular requirement is
correct. Try the following approaches to deal with a potentially large inspection team:

 ■ Make sure every participant is there to find defects, not to be educated or to protect a
 position.

 ■ Understand which perspective (such as customer, developer, or tester) each inspector
 represents. Several people who represent the same community can pool their input and send
just one representative to the inspection meeting.

 ■ Establish several small teams to inspect the requirements in parallel and combine their defect
lists, removing any duplicates. Research has shown that multiple inspection teams find more
requirements defects than does a single large group (Martin and Tsai 1990; Schneider, Martin,
and Tsai 1992; Kosman 1997). The results of parallel inspections are primarily additive rather
than redundant.

Geographically separated reviewers Organizations often build products through the
 collaboration of geographically dispersed teams. This makes reviews more challenging.
 Teleconferencing doesn’t reveal the body language and expressions of other reviewers like a
 face-to-face meeting does, but videoconferencing can be an effective solution. Web conferencing
tools allow reviewers to ensure that they are all looking at the same material during the discussion.

Reviews of an electronic document placed in a shared network repository provide an alternative to
a traditional review meeting. In this approach, reviewers use word-processor features to insert their
comments into the text. (This is how Karl and Joy reviewed each other’s work as we were writing this
book.) Each comment is labeled with the reviewer’s initials, and each reviewer can see what previous
 reviewers had to say. Web-based collaboration tools also can help. Some requirements management
tools include components to facilitate distributed asynchronous reviews that do not involve live
 meetings. If you choose not to hold a meeting, recognize that this can reduce a review’s effectiveness,
but it’s certainly better than not performing the review at all.

Unprepared reviewers One of the prerequisites to a formal review meeting is that the participants
have examined the material being reviewed ahead of time, individually identifying their initial sets of
issues. Without this preparation, you risk people spending the meeting time doing all of their thinking
on the spot and likely missing many important issues.

One project had a 50-page SRS to be reviewed by 15 people, far too many to be effective and
efficient. Everyone had one week to review the document on their own and send issues back to the
author. Not surprisingly, most people didn’t look at it at all. So the lead BA scheduled a mandatory
meeting for the reviewers to review the document together. He projected the SRS on the screen,
dimmed the lights, and began reading through the requirements one by one. (The room had one
very bright light shining down in the middle, directly on the lead BA—talk about being in the

342 PART II Requirements development

s potlight!) A couple of hours into the review meeting, the participants were yawning, their attention
fading. Not surprisingly, the rate of issue detection decreased. Everyone longed for the meeting to
end. This BA let the participants leave, suggesting that they review the document on their own time
to speed up the next review meeting. Sure enough, being bored during the meeting triggered them
to do their prep work. See the “Workshops” section in Chapter 7 for suggestions about how to keep
participants engaged during review meetings.

Prototyping requirements

It’s hard to visualize how a system will function under specific circumstances just by reading the
requirements. Prototypes are validation tools that make the requirements real. They allow the user to
experience some aspects of what a system based on the requirements would be like. Chapter 15, “Risk
reduction through prototyping,” has more information on different types of prototypes and how
they improve requirements. Here we describe how prototypes can help stakeholders judge whether a
product built according to the requirements would meet their needs, and whether the requirements
are complete, feasible, and clearly communicated.

All kinds of prototypes allow you to find missing requirements before more expensive activities
like development and testing take place. Something as simple as a paper mock-up can be used to
walk through use cases, processes, or functions to detect any omitted or erroneous requirements.
 Prototypes also help confirm that stakeholders have a shared understanding of the requirements.
Someone might implement a prototype based on his understanding of the requirements, only to
learn that a requirement wasn’t clear when prototype evaluators don’t agree with his interpretation.

Proof-of-concept prototypes can demonstrate that the requirements are feasible. Evolutionary
prototypes allow the users to see how the requirements would work when they are implemented, to
validate that the result is what they expect. Additional levels of sophistication in prototypes, such as
simulations, allow more precise validation of the requirements; however, building more sophisticated
prototypes will also take more time.

Testing the requirements

Tests that are based on the functional requirements or derived from user requirements help make
the expected system behaviors tangible to the project participants. The simple act of designing
tests will reveal many problems with the requirements long before you can execute those tests on
 running software. Writing functional tests crystallizes your vision of how the system should behave
under certain conditions. Vague and ambiguous requirements will jump out at you because you
won’t be able to describe the expected system response. When BAs, developers, and customers walk
through tests together, they’ll achieve a shared vision of how the product will work and increase
their confidence that the requirements are correct. Testing is a powerful tool for both validating and
 verifying requirements.

 CHAPTER 17 Validating the requirements 343

Trap Watch out for testers who claim they can’t begin their work until the requirements
are done, as well as for testers who claim they don’t need requirements to test the soft-
ware. Testing and requirements have a synergistic relationship; they represent complemen-
tary views of the system.

Making Charlie happy
I once asked my group’s UNIX scripting guru, Charlie, to build a simple email interface
 extension for a commercial defect-tracking system we had adopted. I wrote a dozen functional
 requirements that described how the email interface should work. Charlie was thrilled. He’d
written many scripts for people, but he’d never seen written requirements before.

Unfortunately, I waited two weeks before writing the tests for this email function. Sure
enough, one of the requirements had an error. I found the mistake because my mental image
of how I expected the function to work, represented in about 20 tests, conflicted with one
requirement. Chagrined, I corrected the bad requirement before Charlie had completed his
implementation, and when he delivered the script, it was defect-free. Finding the error before
implementation was a small victory, but small victories add up.

You can begin deriving conceptual tests from user requirements early in the development process
(Collard 1999; Armour and Miller 2001). Use the tests to evaluate functional requirements, analysis
models, and prototypes. The tests should cover the normal flow of each use case, alternative flows,
and the exceptions you identified during elicitation and analysis. Similarly, if you identified business
process flows, the tests should cover the business process steps and all possible decision paths.

These conceptual tests are independent of implementation. For example, consider a use case
called “View a Stored Order” for the Chemical Tracking System. Some conceptual tests are:

 ■ User enters order number to view, order exists, user had placed the order. Expected result:
show order details.

 ■ User enters order number to view, order doesn’t exist. Expected result: Display message “Sorry,
I can’t find that order.”

 ■ User enters order number to view, order exists, user hadn’t placed the order. Expected result:
Display message “Sorry, that’s not your order.”

Ideally, a BA will write the functional requirements and a tester will write the tests from a common
starting point: the user requirements, as shown in Figure 17-5. Ambiguities in the user requirements
and differences of interpretation will lead to inconsistencies between the views represented by the
functional requirements, models, and tests. As developers translate requirements into user interface
and technical designs, testers can elaborate the conceptual tests into detailed test procedures
(Hsia, Kung, and Sell 1997).

344 PART II Requirements development

FIGURE 17-5 Development and testing work products are derived from a common source.

Let’s see how the Chemical Tracking System team tied together requirements and visual models
with early test thinking. Following are several pieces of requirements-related information, all of which
pertain to the task of requesting a chemical.

Business requirement As described in Chapter 5, “Establishing the business requirements,” one of
the primary business objectives for the Chemical Tracking System was to:

Reduce chemical purchasing expenses by 25% in the first year.

Use case A use case that aligns with this business requirement is “Request a Chemical.” This use case
includes a path that permits the user to request a chemical container that’s already available in the
chemical stockroom. Here’s the use case description from Figure 8-3 in Chapter 8, “Understanding
user requirements”:

The Requester specifies the desired chemical to request by entering its name or
chemical ID number or by importing its structure from a chemical drawing tool. The
system either offers the Requester a container of the chemical from the chemical
stockroom or lets the Requester order one from a vendor.

Functional requirement Here’s a bit of functionality derived from this use case:

1. If the stockroom has containers of the chemical being requested, the system shall
display a list of the available containers.

2. The user shall either select one of the displayed containers or ask to place an order
for a new container from a vendor.

Dialog map Figure 17-6 illustrates a portion of the dialog map for the “Request a Chemical” use
case that pertains to this function. As was described in Chapter 12, “A picture is worth 1024 words,”
the boxes in this dialog map represent user interface displays, and the arrows represent possible
 navigation paths from one display to another. This dialog map was created far enough along in
requirements development that the project participants were beginning to identify specific screens,
menus, dialog boxes, and other dialog elements so they could give them names and contemplate a
possible user interface architecture.

 CHAPTER 17 Validating the requirements 345

FIGURE 17-6 Portion of the dialog map for the “Request a Chemical” use case.

Test Because this use case has several possible execution paths, you can envision multiple tests to
address the normal flow, alternative flows, and exceptions. The following is just one test, based on the
flow that shows the user the available containers in the chemical stockroom.

At dialog box DB40, enter a valid chemical ID; the chemical stockroom has two
containers of this chemical. Dialog box DB50 appears, showing the two containers.
Select the second container. DB50 closes and container 2 is added to the bottom of
the Current Chemical Request List in dialog box DB70.

Ramesh, the test lead for the Chemical Tracking System, wrote several tests like this one based on
his understanding of the use case. Such abstract tests are independent of implementation details.
They don’t discuss entering data into specific fields, clicking buttons, or other specific interaction
techniques. As development progresses, the tester can refine such conceptual tests into specific test
procedures.

Now comes the fun part—testing the requirements. Ramesh first mapped each test to the
 functional requirements. He checked to make certain that every test could be “executed” by going
through a set of existing requirements. He also made sure that at least one test covered each
 functional requirement. Next, Ramesh traced the execution path for every test on the dialog map
with a highlighter pen. The shaded line in Figure 17-7 shows how the preceding test traces onto the
dialog map.

346 PART II Requirements development

FIGURE 17-7 Tracing a test onto the dialog map for the “Request a Chemical” use case.

By tracing the execution path for each test, you can find incorrect or missing requirements,
 improve the user’s navigation options, and refine the tests. Suppose that after “executing” all the tests
in this fashion, the dialog map navigation line labeled “order new container” that goes from DB50 to
DB60 in Figure 17-6 hasn’t been highlighted. There are two possible interpretations:

 ■ That navigation is not a permitted system behavior. The BA needs to remove that line from the
dialog map. If the SRS contains a requirement that specifies the transition, that requirement
must also be removed.

 ■ The navigation is legitimate, but the test that demonstrates the behavior is missing.

In another scenario, suppose a tester wrote a test based on his interpretation of the use case that
says the user can take some action to move directly from dialog box DB40 to DB70. However, the
dialog map in Figure 17-6 doesn’t contain such a navigation line, so that test can’t be “executed” with
the existing requirements set. Again, there are two possible interpretations. You’ll need to determine
which of the following is correct:

 ■ The navigation from DB40 to DB70 is not a permitted system behavior, so the test is wrong.

 ■ The navigation from DB40 to DB70 is legitimate, but the dialog map and perhaps the SRS are
missing the requirement that is exercised by the test.

In these examples, the BA and the tester combined requirements, analysis models, and tests
to detect missing, erroneous, or unnecessary requirements long before any code was written.
 Conceptual testing of software requirements is a powerful technique for controlling a project’s cost
and schedule by finding requirement ambiguities and errors early in the game. As Ross Collard (1999)
pointed out,

 CHAPTER 17 Validating the requirements 347

Use cases and tests work well together in two ways: If the use cases for a system are
complete, accurate, and clear, the process of deriving the tests is straightforward.
And if the use cases are not in good shape, the attempt to derive tests will help to
debug the use cases.

Validating requirements with acceptance criteria

Software developers might believe that they’ve built the perfect product, but the customer is the
final arbiter. Customers need to assess whether a system satisfies its predefined acceptance criteria.
Acceptance criteria—and hence acceptance testing—should evaluate whether the product satisfies
its documented requirements and whether it is fit for use in the intended operating environment
(Hsia, Kung, and Sell 1997; Leffingwell 2011; Pugh 2011). Having users devise acceptance tests is a
valuable contributor to effective requirements development. The earlier that acceptance tests are
written, the sooner they can help the team filter out defects in the requirements and, ultimately, in
the implemented software.

Acceptance criteria
Working with customers to develop acceptance criteria provides a way to validate both the
 requirements and the solution itself. If a customer can’t express how she would evaluate the system’s
satisfaction of a particular requirement, that requirement is not clear enough. Acceptance criteria
define the minimum conditions for an application to be considered business-ready.

Thinking about acceptance criteria offers a shift in perspective from the elicitation question of
“What do you need to do with the system?” to “How would you judge whether the solution meets
your needs?” Encourage users to use the SMART mnemonic—Specific, Measurable, Attainable,
 Relevant, and Time-sensitive—when defining acceptance criteria. The criteria should be specified such
that multiple objective observers would reach the same conclusion about whether they were satisfied.
Acceptance criteria keep the focus on stakeholders’ business objectives and the conditions that
would allow the project sponsor to declare victory. This is more important than simply delivering on a
 requirements specification that might not really solve the stakeholders’ business problems.

Defining acceptance criteria is more than just saying that all the requirements are implemented
or all the tests passed. Acceptance tests constitute just a subset of acceptance criteria. Acceptance
criteria could also encompass dimensions such as the following:

 ■ Specific high-priority functionality that must be present and operating properly before the
product could be accepted and used. (Other planned functionality could perhaps be delivered
later, or capabilities that aren’t working quite right could be fixed without delaying an initial
release.)

 ■ Essential nonfunctional criteria or quality metrics that must be satisfied. (Certain quality
 attributes must be at least minimally satisfied, although usability improvements, cosmetics,
and performance tuning could be deferred. The product might have to meet quality metrics
such as a certain minimum duration of operational usage without experiencing a failure.)

348 PART II Requirements development

 ■ Remaining open issues and defects. (You might stipulate that no defects exceeding a
 particular severity level remain open against high-priority requirements, although minor bugs
could still be present.)

 ■ Specific legal, regulatory, or contractual conditions. (These must be fully satisfied before the
product is considered acceptable.)

 ■ Supporting transition, infrastructure , or other project (not product) requirements. (Perhaps
training materials must be available and data conversions completed before the solution can
be released.)

It can also be valuable to think of “rejection criteria,” conditions or assessment outcomes that
would lead a stakeholder to deem the system not yet ready for delivery. Watch out for conflicting
acceptance criteria, such that meeting one could block the satisfaction of another. In fact, looking for
conflicting acceptance criteria early on is a way to discover conflicting requirements.

Agile projects create acceptance criteria based on user stories. As Dean Leffingwell (2011) put it,

Acceptance criteria are not functional or unit tests; rather, they are the conditions of
 satisfaction being placed on the system. Functional and unit tests go much deeper
in testing all functional flows, exception flows, boundary conditions, and related
functionality associated with the story.

In principle, if all of the acceptance criteria for a user story are met, the product owner will accept
the user story as being completed. Therefore, customers should be very specific in writing acceptance
criteria that are important to them.

Acceptance tests
Acceptance tests constitute the largest portion of the acceptance criteria. Creators of acceptance tests
should consider the most commonly performed and most important usage scenarios when deciding
how to evaluate the software’s acceptability. Focus on testing the normal flows of the use cases and
their corresponding exceptions, devoting less attention to the less frequently used alternative flows.
Ken Pugh (2011) offers a wealth of guidance for writing requirements-based acceptance tests.

Agile development approaches often create acceptance tests in lieu of writing precise functional
requirements. Each test describes how a user story should function in the executable software.
Because they are largely replacing detailed requirements, the acceptance tests on an agile project
should cover all success and failure scenarios (Leffingwell 2011). The value in writing acceptance
tests is that it guides users to think about how the system will behave following implementation.
The problem with writing only acceptance tests is that the requirements exist only in people’s
minds. By not documenting and comparing alternate views of requirements—user requirements,
 functional requirements, analysis models, and tests—you can miss an opportunity to identify errors,
 inconsistencies, and gaps.

Automate the execution of acceptance tests whenever possible. This makes it easier to repeat the
tests when changes are made and functionality is added in future iterations or releases. Acceptance

 CHAPTER 17 Validating the requirements 349

tests must also address nonfunctional requirements. They should ensure that performance goals are
achieved, that the system complies with usability standards, and that security expectations are fulfilled.

Some acceptance testing might be performed manually by users. The tests used in user acceptance
testing (UAT) should be executed after a set of functionality is believed to be release-ready. This
allows users to get their hands on the working software before it is officially delivered and permits
 users to familiarize themselves with the new software. The customer or product champion should
 select tests for UAT that represent the highest risk areas of the system. The acceptance tests will
validate that the solution does what it is supposed to. Be sure to set up these tests using plausible test
data. Suppose the test data used to generate a sales report isn’t realistic for the application. A user
who is performing UAT might incorrectly report a defect just because the report doesn’t look right to
him, or he might miss an erroneous calculation because the data is implausible.

Trap Don’t expect user acceptance testing to replace comprehensive requirements-based
system testing, which covers all the normal and exception paths and a wide variety of data
combinations, boundary values, and other places where defects might lurk.

Writing requirements isn’t enough. You need to make sure that they’re the right requirements
and that they’re good enough to serve as a foundation for design, construction, testing, and project
management. Acceptance test planning, informal peer reviews, inspections, and requirements testing
techniques will help you to build higher-quality systems faster and more inexpensively than you ever
have before.

Next steps
 ■ Choose a page of functional requirements at random from your project’s SRS. Ask a group

of people who represent different stakeholder perspectives to carefully examine that page
of requirements for problems, using the defect checklist in Figure 17-4.

 ■ If you found enough errors during the random sample review to make the team nervous
about the overall quality of the requirements, persuade the user and development
 representatives to inspect the entire SRS. Train the team in the inspection process.

 ■ Define conceptual tests for a use case or for a portion of the functionality that hasn’t yet
been coded. See whether the user representatives agree that the tests reflect the intended
system behavior. Make sure you’ve defined all the functionality that will permit the tests to
be passed and that there are no superfluous requirements.

 ■ Work with your product champions to define the acceptance criteria that they and their
colleagues will use to assess whether the system is acceptable to them. Have them define
acceptance tests that could be used to judge completeness.

 351

C H A P T E R 1 8

Requirements reuse

Sylvia, the product manager at Tailspin Toys, was meeting with the development lead for their line of
tablet apps for musicians. “Prasad, I just learned that Fabrikam, Inc., is going to release a larger version
of their tablet, called a Substrate. Right now our guitar amplifier emulator runs on their smaller tablet,
the ScratchPad. We need to come up with a version for the Substrate. We can do more with the larger
screen. The Substrate will come with the new release of their operating system, which will run on both.”

“Wow, this is great,” said Prasad. “I’d like to be able to show more amp controls on the screen. We
can make the controls bigger and easier to manipulate, too. We can reuse a lot of the core functionality
from the ScratchPad emulator version. Unless Fabrikam changed the operating system APIs, we can
reuse some of the code, too. We might want to drop some functionality in the ScratchPad version that
our customers don’t use. We can add the solid state/tube hybrid amp sounds from the web version, but
we need to make some changes to suit the frequency response on the tablet. This should be fun!”

Reuse is an eternal goal for those seeking increased software productivity. People think most often in
terms of code reuse, but many other software project components also have reuse potential. Reusing
requirements can increase productivity and improve quality, as well as leading to greater consistency
between related systems.

Reuse means taking advantage of work that has been done previously, whether on the same
 project or on an earlier project. Anytime you can avoid starting from scratch, you’ve got a running
start on the project. The simplest way to reuse a requirement is to copy and paste it from an
 existing specification. The most sophisticated way is to reuse an entire functional component, from
 requirements through design, code, and tests. Numerous reuse options exist between these extremes.

Reuse is not free. It presents its own risks, both with respect to reusing existing items and to
 creating items with good reuse potential. It will likely take more time and effort to create high-quality
reusable requirements than to write requirements you intend to use only on the current project.
Despite the obvious merits, one study found that only about half of the organizations surveyed are
actually practicing requirements reuse, primarily because of the poor quality of existing requirements
(Chernak 2012). An organization that is serious about reuse needs to establish some infrastructure to
make existing high-quality requirements knowledge accessible to future BAs and to foster a culture
that values reuse.

This chapter describes several kinds of requirements reuse, identifies some classes of requirements
information that have reuse potential in various contexts, and offers suggestions about how to
 perform requirements reuse. It presents some issues around making requirements reusable.

352 PART II Requirements development

The chapter concludes with both barriers to effective reuse and success factors that can help your
 organization better take advantage of its existing body of requirements knowledge.

Why reuse requirements?

The benefits of effective requirements reuse include faster delivery, lower development costs,
 consistency both within and across applications, higher team productivity, fewer defects, and reduced
rework. Reusing trusted requirements can save review time, accelerate the approval cycle, and speed
up other project activities, such as testing. Reuse can improve your ability to estimate implementation
effort if you have data available from implementing the same requirements on a previous project.

From the user’s perspective, requirements reuse can improve functional consistency across related
members of a product line or among a set of business applications. Consider the ability to format
blocks of text by applying the same styling, spacing, and other properties in all members of a suite
of related applications. Making this work in a uniform fashion involves reusing both functional and
 usability requirements. Such consistency can minimize the user’s learning curve and frustration levels.
It also saves time for stakeholders, who then will not need to specify similar requirements repeatedly.

Even if the implementation varies in different environments, the requirements might be the same.
An airline’s website might have a feature to let a passenger check in for a flight, pay for seat upgrades,
and print boarding passes. The airline might also have self-service check-in kiosks at airports. The
functionality for both check-in operations will be nearly identical, and hence reusable across the two
products, even though the implementations and user experiences are dissimilar.

Dimensions of requirements reuse

We can imagine several types of requirements reuse. Sometimes a business analyst will recognize
that a user-presented requirement resembles one from a previous project. Perhaps he can retrieve
that existing requirement and adapt it for the new project. Such ad hoc reuse is most common with
experienced BAs who have good memories and access to previous requirements collections. In other
cases, a BA might use some existing requirements during elicitation to help users identify topics to
consider for the new system. It’s easier to modify something that exists than to create something new.

Table 18-1 describes three dimensions of requirements reuse: the extent of assets being reused,
the extent to which an item must be modified for use in its new setting, and the mechanism being
used to perform the reuse. When you’re contemplating reusing requirements information, think
about which option in each of these dimensions is most appropriate and practical for meeting your
objectives.

 CHAPTER 18 Requirements reuse 353

TABLE 18-1 Three dimensions of requirements reuse

Dimension Options

Extent of reuse ■ Individual requirement statement
 ■ Requirement plus its attributes
 ■ Requirement plus its attributes, context, and associated information such as data

 definitions, glossary definitions, acceptance tests, assumptions, constraints, and
 business rules

 ■ A set of related requirements
 ■ A set of requirements and their associated design elements
 ■ A set of requirements and their associated design, code, and test elements

Extent of modification ■ None
 ■ Associated requirement attributes (priority, rationale, origin, and so on)
 ■ Requirement statement itself
 ■ Related information (tests, design constraints, data definitions, and so on)

Reuse mechanism ■ Copy-and-paste from another specification
 ■ Copy from a library of reusable requirements
 ■ Refer to an original source

Extent of reuse
The first dimension has to do with the quantity of material that you are reusing. You might reuse
just a single functional requirement. Or you might reuse such a statement along with any associated
attributes, such as its rationale, origin, priority, and more if those are relevant to the target project.
In some cases you can reuse not just the requirement but also associated artifacts: data definitions,
acceptance tests, relevant business rules, constraints, assumptions, and so on. Often, a set of related
requirements can be reused, such as all the functional requirements associated with a particular
feature. Applications that run on similar platforms, such as different smartphone operating systems,
could reuse requirements and design elements but perhaps not much code.

In the ideal scenario you can reuse a whole package of requirements, models, design components,
code, and tests. That is, you reuse an entire chunk of implemented functionality essentially
 unchanged from a related product. This level of reuse can work when common operations are
being employed across various projects on a common platform. Examples of such operations are
 error-handling strategies, internal data logging and reporting, communication protocol abstractions,
and help systems. These functions must be developed for reuse with clear application programming
interfaces (APIs) and all supporting documentation and test artifacts.

A reuse success tale
I once worked for a large retailer that was merging two online catalogs, one for consumers
and one for corporations, into a single new system. The business objective was to reduce
 maintenance costs and make it easier to add new features that would appear in both catalogs.
We developed the consumer catalog requirements first, based on the existing catalog
 functionality. For the corporate side, we started with those same consumer catalog requirements,
then edited those that had to vary. Some new requirements were added for the new corporate
catalog as well. The project delivered on schedule partly because of the time savings from reuse.

354 PART II Requirements development

Extent of modification
The next dimension to consider is how much modification will be needed to make existing
 requirements reusable on the new project. In some cases, you’ll be able to reuse a requirement
unchanged. In the example given earlier about the airline’s check-in kiosk, many of the functional
 requirements would be identical for the kiosk and for a website that offers passenger check-in. In
other cases, you might reuse a requirement statement unchanged but have to modify some of its
attributes, such as its priority or rationale as it applies to the new system. Often, you will start with
an existing requirement but modify it to exactly suit the new purpose. Finally, whether or not you
change the requirement, you might need to modify some designs and tests. An example is porting
 functionality from a PC to a tablet that has a touch screen rather than a mouse-and-keyboard
 interface.

Reuse mechanism
The most rudimentary form of reuse is simply a copy-and-paste of a piece of requirements
 information, either from another specification or from a library of reusable requirements. You
don’t retain a history of where the original information came from, and you can modify the copies
you make. Copy-and-paste within a project increases the size of your specifications because
you’re duplicating information. If you find yourself populating a specification by doing a lot of
 copy-and-paste, a warning bell should ring. And just as when you copy code, copying and pasting
requirements can introduce problems because of context issues, when the context isn’t carried across
with the paste operation.

In most cases, you’re better off reusing existing content by referring to it instead of replicating it.
This means that the original source of the information must be accessible to anyone who needs to
view the requirement, and it must be persistent. If you’re storing your requirements in a document
and want the same requirement to appear in multiple places, you can use the cross-referencing
feature of your word processor to link copies back to the master instance (Wiegers 2006). When the
master instance is altered, the change is echoed everywhere you inserted a cross-reference link. This
avoids the inconsistencies that can arise when one instance gets changed manually but others do not.
However, it also runs the risk of all those requirements changing if someone else can alter the master
instance.

Another copy-by-reference mechanism is to store not the actual requirement information but
simply a pointer to it in your project documentation. Suppose you want to reuse descriptions of
some user classes from other projects in your organization. First, collect such reusable information
into a shared location. Possible forms for this collection include a word processing file, spreadsheet,
HTML or XML file, database, and a specialized requirements tool. Give each object in that collection a
unique identifier. To incorporate that information by reference, enter the identifier for each object you
want to reuse in the appropriate section of your document. If technology allows, include a hyperlink
directly to the reused object in the information collection. A reader who wants to view that user class
description can simply follow the link to go to the master source. If you maintain that collection of
reusable artifacts properly, those links and the destination information will always be current.

 CHAPTER 18 Requirements reuse 355

A much more effective way to reuse by reference is to store requirements in a requirements
 management tool, as described in Chapter 30, “Tools for requirements engineering.” Depending
on the tool’s capabilities, you might be able to reuse a requirement that is already in the database
 without replicating it. Some such tools retain historical versions of individual requirements, which
allows you to reuse a specific version of a requirement or set of related requirements. If someone
modifies that requirement in the database, the older version that you are reusing still exists. You can
then tailor your own version of that requirement to suit the needs of your project without disrupting
other reusers.

Figure 18-1 illustrates this process. Project A creates the initial version of a particular requirement.
Later on, Project B decides to reuse that same requirement, so the two projects share a common
 version. Then Project A modifies that requirement, thereby spawning version 2. However, version 1
still exists unchanged for use in Project B. If Project B needs to modify its copy later, it creates
version 3, which does not affect any other project using any other version of that same requirement.

FIGURE 18-1 How a requirement can evolve through reuse in multiple projects.

Types of requirements information to reuse

Table 18-2 identifies some types of requirements-related assets that have good reuse potential for
various scopes of applicability. Several of these assets appear in multiple scope categories. Some
types of assets have very broad reusability, such as accessibility requirements (a subset of usability).

A set of related requirements in a specific functional area offers more reuse value than do single,
isolated requirements. One example is around security (Firesmith 2004). There’s no reason for every
project team in an organization to reinvent requirements for user logon and authentication, changing
and resetting passwords, and so forth. If you can write a set of comprehensive, well-specified
 requirements for these common capabilities, they can be reused many times to save time and provide
consistency across applications. You might be able to reuse sets of constraints within a specific
 operating environment or delivery platform. For instance, developers of smartphone apps need to be

356 PART II Requirements development

aware of screen size, resolution, and user interaction constraints. Following are some other groupings
of related requirements information to reuse in sets:

 ■ Functionality plus associated exceptions and acceptance tests

 ■ Data objects and their associated attributes and validations

 ■ Compliance-related business rules, such as Sarbanes–Oxley, other regulatory constraints by
industry, and organization policy-focused directives

 ■ Symmetrical user functions such as undo/redo (if you reuse the requirements for an
 application’s undo function, also reuse the corresponding redo requirements)

 ■ Related operations to perform on data objects, such as create, read, update, and delete

TABLE 18-2 Some types of reusable requirements information

Scope of reuse Potentially reusable requirements assets

Within a product or application User requirements, specific functional requirements within use cases, performance
requirements, usability requirements, business rules

Across a product line Business objectives, business rules, business process models, context diagrams,
ecosystem maps, user requirements, core product features, stakeholder profiles,
user class descriptions, user personas, usability requirements, security requirements,
compliance requirements, certification requirements, data models and definitions,
acceptance tests, glossary

Across an enterprise Business rules, stakeholder profiles, user class descriptions, user personas, glossary,
security requirements

Across a business domain Business process models, product features, user requirements, user class
 descriptions, user personas, acceptance tests, glossary, data models and definitions,
business rules, security requirements, compliance requirements

Within an operating
 environment or platform

Constraints, interfaces, infrastructures of functionality needed to support certain
types of requirements (such as a report generator)

Common reuse scenarios

Whether you are creating a family of products, building applications across an organization, or even
developing a product having a feature that appears in multiple contexts, there are opportunities for
reuse. Let’s look at some scenarios where requirements reuse offers good potential.

Software product lines
Anytime you’re creating a set of products in a family—a software product line—those products will
have a lot of functionality in common. Sometimes you’re producing variations of a base product
for different customers or markets. Requirements you’ve incorporated into a specific variant for a
 particular customer might be folded into a common specification for the base product. Other product
lines involve a family of related products that are based on a common architectural platform. For
 example, the vendor of a popular income tax preparation package offers a free version for online

 CHAPTER 18 Requirements reuse 357

use as well as basic, deluxe, premier, home and business, and business versions for use on personal
 computers. Analyze the features in the software product line to see which ones are:

 ■ Common, appearing in all members of the product line.

 ■ Optional, appearing in certain family members but not others.

 ■ Variants, with different versions of the feature appearing in different family members
(Gomaa 2004; Dehlinger and Lutz 2008).

The common features offer the greatest opportunities for reusing not just certain requirements,
but also their downstream work products, including architectural components, design elements,
code, and tests. This is the most powerful form of reuse, but we don’t often detect the opportunity
to take advantage of it. Reusing the common functionality is far better than reimplementing it each
time, perhaps making it slightly different without good reason. Be aware of any constraints that the
operating environment or hardware platform of certain products might impose that could limit reuse
options. If the implementation must be different in certain product-line members, you’re limited to
reusing only requirements, not designs and code.

Reengineered and replacement systems
Reengineered and replacement systems always reuse some requirements from the original
 incarnation, even if those “requirements” were never written down. If you have to reverse-engineer
requirements knowledge from an older system for possible reuse, you might need to move your
thinking up to a higher level of abstraction to get away from specific implementation characteristics.
Often, you can harvest business rules that were embedded in an old system and reuse them on future
projects, updating them as necessary, as in the case of regulatory or compliance rules.

Trap Watch out for the temptation to reuse too much of an old system in the interest of
saving time, thereby missing the opportunities offered by new platforms, architectures,
and workflows.

Other likely reuse opportunities
Table 18-3 lists several other situations in which reusing requirements information is common.
If you encounter any of these opportunities in your organization, contemplate whether it is worth
 accumulating the reusable artifacts into a shared repository and managing the information as an
 enterprise-level asset. If you previously worked on a project similar to the current one, consider
whether you can use any artifacts from the earlier project again.

358 PART II Requirements development

TABLE 18-3 Common opportunities where requirements reuse can be valuable

Reuse opportunity Examples

Business processes Often business processes are common across organizations and need to be commonly
supported by software. Many institutions maintain a set of business process
 descriptions that are reused across IT projects.

Distributed deployments Often the same system is deployed multiple times with slight variations. This is fairly
typical for retail stores and warehouses. A common set of requirements is reused for
each separate deployment.

Interfaces and integration There is often a need to reuse requirements for interfaces and integration purposes.
For example, in hospitals, most ancillary systems need interfaces to and from the
 admissions, discharge, and transfer system. This also applies to financial interfaces to
an enterprise resource planning system.

Security User authentication and security requirements are often the same across systems. For
example, the systems might have a common requirement that all products must have
a single sign-on using Active Directory for user authentication.

Common application
 features

Business applications often contain common functionality for which requirements—
and perhaps even full implementations—can be reused. Possibilities include search
operations, printing, file operations, user profiles, undo/redo, and text formatting.

Similar products for multiple
platforms

The same core set of requirements is used even though there might be some detailed
requirement and/or user interface design differences based on the platform. Examples
include applications that run on both Mac and Windows or on both iOS and Android.

Standards, regulations, and
legal compliance

Many organizations have developed a set of standards, often based on regulations,
that are defined as a set of requirements. These are reused between projects.
Examples are ADA Standards for Accessible Design and HIPAA privacy rules for
 healthcare companies.

Requirement patterns

Taking advantage of knowledge that makes the job of writing requirements easier can be regarded
as reuse. That’s the rationale behind requirement patterns: to package considerable knowledge
about a particular type of requirement in a way that’s convenient for a BA who wants to define such a
 requirement.

Pioneered by Stephen Withall (2007), a requirement pattern offers a systematic approach
to specifying a particular type of requirement. A pattern defines a template with categories of
 information for each of the common types of requirements a project might encounter. Different types
of requirement patterns will have their own sets of content categories. Populating the template will
likely provide a more detailed specification of a requirement than if the BA simply wrote it in natural
language. The structure and content of a requirement written according to a pattern facilitates reuse.

A requirement pattern contains several sections (Withall 2007):

1. Guidance Basic details about the pattern, including related patterns, situations to which it is
(and is not) applicable, and a discussion of how to approach writing a requirement of this type.

2. Content A detailed explanation of the content that such a requirement ought to convey,
item by item.

 CHAPTER 18 Requirements reuse 359

3. Template A requirement definition with placeholders wherever variable pieces of
 information need to go. This can be used as a fill-in-the-blanks starting point for writing a
specific requirement of that type.

4. Examples One or more illustrative requirements of this type.

5. Extra requirements Additional requirements that can define certain aspects of the topic,
or an explanation of how to write a set of detailed requirements that spell out what must be
done to satisfy an original, high-level requirement.

6. Considerations for development and testing Factors for developers to keep in mind
when implementing a requirement of the type specified by the pattern, and factors for testers
to keep in mind when testing such requirements.

As an illustration, many software applications generate reports. Withall (2007) provides a pattern
for specifying requirements that define reports. Withall’s pattern includes a template that shows
how to structure numerous report elements into a set of more detailed requirements that constitute
a complete report specification. But the template is just one piece of the pattern. The pattern
also contains an example of a reporting requirement, possible extra requirements to include, and
 considerable guidance about specifying, implementing, and testing such requirements.

You can create requirement patterns of your own that are ideally suited to your organization’s style
and projects. Following a pattern helps create consistency and will likely give you richer and more
precise requirements. Simple templates like these remind you about important information that you
might otherwise overlook. If you need to write a requirement on an unfamiliar topic, using a pattern
is likely to be quicker than researching the topic yourself.

Tools to facilitate reuse

In an ideal world, your organization would store all of its software requirements in a requirements
management tool with a complete set of traceability links. These links would tie each requirement
back to a parent requirement or other origin, to other requirements it depends on, and to
 downstream development artifacts that are linked to it. Every historical version of each requirement
would be available. This is the best way to enable effective reuse on a large scale across a whole
 application, product portfolio, or organization.

Few organizations have reached this level of sophistication, but storing your requirements in a tool
will still enhance reuse in several ways (Akers 2008). Commercial requirements management tools
provide various capabilities to facilitate reuse. Some even contain large libraries of requirements from
certain domains available for ready reuse. When you’re selecting a tool, include your expectations
regarding how it will help you reuse requirements as part of the evaluation process. Chapter 30
 describes typical capabilities of commercially available requirements management tools.

A tool might allow you to reuse a specific requirement by sharing it across multiple projects
or baselines. If you do this, you need to think about what should happen if you change either the
 original requirement or its clones. Some tools let you lock the content so you can edit only

360 PART II Requirements development

the original instance of the requirement. This ensures that any places where that requirement is
 reused are also updated at the time of the editing. Of course, if you start with a reused requirement
and then do want to modify it for use in its new setting, you don’t want to keep that lock in place. In
that case, you would like to copy it using a mode that permits you to change the copied requirement.

Similarly, when you copy a requirement that has associated traceability relationships, you might
or might not want to carry along everything that is linked to it. Sometimes, you might want to pull
just the requirement, plus its children and requirements on which it depends, into a new project.
This would be the case if the function is the same but the delivery platforms differ, as is the case with
 applications that run on a web browser, tablet, smartphone, and kiosk.

Trap If BAs can’t find what they’re looking for in the reuse repository, it doesn’t matter
how good the stored requirements are or how much time they might save: the BAs will
write their own. Writing reusable requirements according to standard patterns provides
a set of fields on which to search. Some people advocate adding meaningful keywords or
requirement attributes to assist with searching.

Making requirements reusable

Just because a requirement exists doesn’t mean it’s reusable in its present form. It could be specific to
a particular project. It might be written at too high a level because the BA could safely assume certain
knowledge on the part of the development team or because some details were communicated
only verbally. A requirement could be lacking information about how possible exceptions should be
handled. You might have to tune up the original requirements to increase their value to future BAs.

Well-written requirements lend themselves to reuse. The steps you take to make requirements
more reusable also increases their value to the project for which you originally write them; it simply
makes them better requirements. Reusers need to know about dependencies each requirement has
on others, as well as other requirements that go with it and that might also be reused, so that they
can package sets of related requirements appropriately. Although reuse saves your team time and
money, making something readily reusable is likely to cost time and money.

Reusable requirements must be written at the right level of abstraction and scope. Domain-specific
requirements are written at a low level of abstraction. They are likely to be applicable only in
their original domain (Shehata, Eberlein, and Hoover 2002). Generic requirements have broader
 applicability for reuse in a variety of systems. However, if you attempt to reuse requirements at too
general a level, you won’t save much effort because the BA will still have to elaborate the details.
It’s tricky to find the right balance between making reuse easier (with more abstract or generalized
requirements) and making reuse pay off (with more detailed or specific requirements).

Figure 18-2 provides an example. Perhaps you’re building an application that includes a user
requirement to accept credit card payments. This user requirement would expand into a set of related

 CHAPTER 18 Requirements reuse 361

functional and nonfunctional requirements around handling credit card payments. Other applications
also might need to take payments by credit card, so that’s a potentially reusable set of requirements.

FIGURE 18-2 Generalized requirements offer greater reuse potential.

But suppose you could generalize that user requirement to encompass several payment
 mechanisms: credit card, debit card, gift card, eCheck, and electronic funds transfer. The resulting
requirement offers greater reuse potential in a wider range of future projects. One project might
need just credit card processing, whereas others require several of the payment processing methods.
Generalizing an initial user requirement like this—from “accept credit card payment” to “accept
 payment”—could be valuable even on the current project. Even if the customer only asked to handle
credit card payments initially, users might really like to accept multiple payment methods either now
or in the future.

Choosing the right abstraction level for requirements can pay off during construction, as well. On
one project that had exactly this need for multiple payment methods, generating clear requirements
and rules for each case revealed both commonalities and distinctions. Independent from future reuse
possibilities, building the higher-level abstractions contributed to easier design and construction.

That’s the good news. The bad news is that it will take some effort to generalize the initially
presented requirement. That’s the investment you make in reusability, anticipating that you will
recoup the investment—and more—through multiple, future reuse instances. It’s up to you to decide
whether to simply place today’s requirements into a shared location for possible reuse or to invest
effort to improve their reusability on future projects.

The “reusable requirements” explosion
A colleague offered a cautionary tale of how to reduce the potential value of reuse by writing
excessively detailed requirements. A team tasked with writing requirements for a new project
was obsessed with reuse. The BAs thought that if they documented all of the details for each
requirement separately, then they could be reused. They ended up with more than 14,000
requirements! The repository contained entries that should have been just one requirement but
had been structured as a parent with multiple child requirements, each giving a specific detail
about the parent. Requirements this detailed were relevant only to that one application.

362 PART II Requirements development

This volume of requirements also made the testing cycle much more difficult, leading to
daily complaints from the testers. It was taking them much longer than expected to write test
cases because they had to wade through such a vast quantity of requirements. The testers
had to document the requirement ID in their test cases to ensure that test coverage of the
 requirements was achieved for traceability, but the number of traces on this many requirements
became difficult to manage. In addition, the requirements underwent extensive change; they
never did fully stabilize. All of these factors led to the project being deployed a year late,
 without producing the desired collection of reusable requirements.

Requirements reuse barriers and success factors

Requirements reuse sounds like a grand idea, but it isn’t always practical or appropriate. This section
describes some considerations to help your organization succeed with requirements reuse.

Reuse barriers
The first step to overcoming an obstacle is to recognize and understand it. Following are several
 barriers you might encounter when it comes to reusing requirements.

Missing or poor requirements A common barrier is that the requirements developed on previous
projects weren’t documented, so it’s impossible to reuse them. And even if you find a relevant
 requirement, it might be badly written, incomplete, or a poor fit for your present circumstances. Even
if they’re documented, the original requirements for an old application might not have been kept
 current as the application evolved over time, rendering them obsolete.

NIH and NAH Two barriers to reuse are NIH and NAH syndromes. NIH means “not invented here.”
Some people are reluctant to reuse requirements from another organization or generic requirements
found in a public collection. Requirements written elsewhere could be harder to understand:
 terminology could be different; the requirements might refer to documents that are unavailable; you
might not be able to discern the context of the original requirements; and important background
information could go unexplained. A BA might correctly decide that it takes less work to write new
requirements than to understand and fix up the existing ones.

NAH, or “not applicable here,” syndrome reveals itself when practitioners protest that a new
process or approach does not apply to their project or organization. “We’re different,” they claim. The
members might feel that their project is unique, so no existing requirements could possibly apply.
Sometimes that’s true, but often NIH and NAH indicate an inflexible attitude.

Writing style The BAs on previous projects might have used a wide variety of requirements
 representation techniques and conventions. It’s best to adopt some standard notations for
 documenting requirements to facilitate reuse, such as using patterns. If requirements are written
at a common level of granularity, it’s easier for future BAs to search for candidate requirements at
the right level of detail. Consistent terminology is also important. You might overlook a potentially

 CHAPTER 18 Requirements reuse 363

reusable requirement simply because some of the terminology involved is not the same as what
your stakeholders are used to. Requirements written in natural language are notoriously prone to
 ambiguities, missing information, and hidden assumptions. These issues reduce their reuse potential.

Requirements that have embedded design constraints will offer little opportunity for reuse in
a different environment. Think about the airport check-in kiosk described earlier. If user interface
 details about the kiosk were embedded in the requirements, you couldn’t reuse those requirements
for software having essentially the same functionality but running on a website.

Inconsistent organization It can be difficult to find requirements to reuse because authors
organize their requirements in many different ways: by project, process flow, business unit, product
feature, category, subsystem or component, and so forth.

Project type Requirements that are tightly coupled to specific implementation environments
or platforms are less likely to generate reusable requirements or to benefit from an existing pool
of requirements knowledge. Rapidly evolving domains don’t yet have a pool of requirements
 information to reuse; requirements that are relevant today might be obsolete tomorrow.

Ownership Another barrier has to do with ownership (Somerville and Sawyer 1997). If you’re
 developing a software product for a specific customer, its requirements are likely the proprietary
 intellectual property of the customer. You might not have the legal right to reuse any of those
 requirements in a different system you develop for your own company or for other customers.

Reuse success factors
An organization that is serious about reuse should create mechanisms to make it easy to share and
take advantage of existing information. This means pulling information that has the potential for
 reuse out of a specific project so others can access and reuse it. Keep the following success tips in
mind.

Repository You can’t reuse something if you can’t find it. An enabling tool for effective large-scale
reuse, therefore, is a searchable repository in which to store requirements information. This repository
could take several forms:

 ■ A single network folder that contains previous requirements documents

 ■ A collection of requirements stored in a requirements management tool that can be searched
across projects

 ■ A database that stores sets of requirements culled from projects for their reuse potential and
enhanced with keywords to help future BAs know their origin, judge their suitability, and learn
about their limitations

Consider giving someone the responsibility to manage the reusable requirements repository. This
person would adapt existing requirements knowledge as necessary to represent and store the assets
in a form suitable for efficient discovery, retrieval, and reuse. A scheme similar to that used to store
and manage business rules as an enterprise asset could be adapted to handle reusable requirements.

364 PART II Requirements development

Quality No one wants to reuse junk. Potential reusers need confidence in the quality of the
 information. And even if a requirement you are reusing isn’t perfect, you should try to make it better
when you reuse it. This way you iteratively improve a requirement over time, increasing its reuse
potential for future projects.

Interactions Requirements often have logical links or dependencies on each other. Use traceability
links in a tool to identify these dependencies so people know just what they’re getting into when
they select a requirement for reuse. Reused requirements must conform to existing business rules,
 constraints, standards, interfaces, and quality expectations.

Terminology Establishing common terminology and definitions across your projects will be helpful
for reusability. Terminology variations won’t prevent you from reusing requirements, but you’ll have
to deal with the inconsistencies and take steps to prevent misunderstandings. Glossaries and data
 dictionaries are good sources of reusable information. Rather than incorporating an entire glossary
into every requirements specification, create links from key terms to their definitions in the shared
glossary.

Organizational culture Management should encourage reuse from two perspectives: contributing
high-quality components with real reuse potential, and effectively reusing existing artifacts. The
 individuals, project teams, and organizations that practice reuse most effectively are likely to enjoy
the highest productivity. In a reuse culture, BAs look at the reusable requirements repository before
creating their own requirements. They might start with a user story or other high-level requirement
statement and see to what extent they can populate the details through reuse of existing information.

Your project requirements constitute valuable corporate information. To maximize the investment
your teams make in requirements engineering, look for requirements knowledge that you can treat
as an enterprise-level asset. The requirements you reuse do not have to be perfect to be valuable.
Even if they just save you 20 percent of the work you might have otherwise spent writing new
 requirements, that’s a big gain. A culture that encourages BAs to borrow first and create second, and
that makes a little extra investment in making requirements reusable, can increase the productivity of
both analysts and development teams and lead to higher-quality products.

Next steps
 ■ Examine your current project to see if you can simplify requirements sets by reusing

 requirements knowledge from previous projects or other sources.

 ■ Analyze your current project for requirements that are potentially reusable. Assess the
scope of reuse from Table 18-2 for each requirement. Remember, you need to have a
realistic chance of recouping the cost of extracting the reusable assets, packaging them,
storing them, and making them accessible to others; otherwise, it’s not a worthwhile
investment.

 ■ Think about what information you should store about your reusable requirements to make
it easy for a future BA to search for them and judge whether they could be used on his
project. Decide on a pragmatic repository in which to store requirements for reuse.

 365

C H A P T E R 1 9

Beyond requirements
development

The Chemical Tracking System’s project sponsor, Gerhard, had been skeptical of the need to spend time
defining requirements. However, he joined the development team and product champions at a one-day
training class on software requirements, which motivated him to support the requirements activities.

As the project progressed, Gerhard received excellent feedback from the user representatives about
how well requirements development had gone. He even sponsored a luncheon for the analysts and
product champions to celebrate reaching the significant milestone of baselined requirements for the first
system release. At the luncheon, Gerhard thanked the participants for their effective teamwork. Then he
said, “Now that the requirements are done, I look forward to seeing the final product.”

“Please keep in mind, Gerhard, we won’t have the final product for about a year,” the project
 manager explained. “We plan to deliver the system through a series of bimonthly releases. If we take
the time to think about design now, it will be easier for developers to add more functionality later. We’ll
also learn more about requirements as we go along. We will show you some working software at each
release, though.”

Gerhard was frustrated. It looked like the development team was stalling rather than getting down to
the real work of programming. But was he jumping the gun?

Experienced project managers and developers understand the value of translating software
 requirements into rational project plans and robust designs. These steps are necessary whether the
next release represents 1 percent or 100 percent of the final product. This chapter explores some
 approaches for bridging the gap between requirements development and a successful product
release. Some of these activities are the business analyst’s responsibility, whereas others fall within the
project manager’s domain. We’ll look at several ways in which requirements influence project plans,
designs, code, and tests, as shown in Figure 19-1. In addition to these connections, there is a link
between the requirements for the software to be built and other project and transition requirements.
Those include data migrations, training design and delivery, business process and organizational
changes, infrastructure modifications, and others. Those activities aren’t discussed further in this
book.

366 PART II Requirements development

FIGURE 19-1 Requirements drive project planning, design, coding, and testing activities.

Estimating requirements effort

One of the earliest project planning activities is to judge how much of the project’s schedule and
 effort should be devoted to requirements activities. Karl Wiegers (2006) suggests some ways to judge
this and some factors that would lead you to spend either more or less time than you might otherwise
expect. Small projects typically spend 15 to 18 percent of their total effort on requirements work
(Wiegers 1996), but the appropriate percentage depends on the size and complexity of the project.
Despite the fear that exploring requirements will slow down a project, considerable evidence shows
that taking time to understand the requirements actually accelerates development, as the following
examples illustrate:

 ■ A study of 15 projects in the telecommunications and banking industries revealed that the
most successful projects spent 28 percent of their resources on requirements elicitation,
 modeling, validation, and verification (Hofmann and Lehner 2001). The average project
 devoted 15.7 percent of its effort and 38.6 percent of its schedule to requirements
 engineering.

 ■ NASA projects that invested more than 10 percent of their total resources on requirements
development had substantially smaller cost and schedule overruns than projects that devoted
less effort to requirements (Hooks and Farry 2001).

 ■ In a European study, teams that developed products more quickly devoted more of their
schedule and effort to requirements than did slower teams, as shown in Table 19-1
(Blackburn, Scudder, and Van Wassenhove 1996).

TABLE 19-1 Investing in requirements accelerates development

Effort devoted to requirements Schedule devoted to requirements

Faster projects 14% 17%

Slower projects 7% 9%

 CHAPTER 19 Beyond requirements development 367

Requirements engineering activity is distributed throughout the project in different ways,
 depending on whether the project is following a sequential (waterfall), iterative, or incremental
development life cycle, as was illustrated in Figure 3-3 in Chapter 3, “Good practices for requirements
engineering.”

Trap Watch out for analysis paralysis. A project with massive up-front effort aimed at
perfecting the requirements “once and for all” often delivers little useful functionality in
an appropriate time frame. On the other hand, don’t avoid requirements development
 because of the specter of analysis paralysis. As with so many issues in life, a sensible
 balance point lies somewhere between the two extremes.

When estimating the effort a project should devote to requirements development, let experience
be your guide. Look back at the requirements effort from previous projects and judge how effective
the requirements work on those projects was. If you can attribute issues to poor requirements,
 perhaps more emphasis on requirements work would pay off for you. Of course, this assessment
 demands that you retain some historical data from previous projects so you can better estimate
future projects. You might not have any such data now, but if team members record how they spend
their time on today’s project, that becomes tomorrow’s “historical data.” It’s not more complicated
than that. Recording both estimated and actual effort allows you to think of how you can improve
future estimates.

The requirements engineering consulting company Seilevel (Joy’s company) developed an
 effective approach for estimating a project’s requirements development effort, refined from work
estimates and actual results from many projects. This approach involves three complementary
estimates: percent of total work; a developer-to-BA ratio; and an activity breakdown that uses basic
resource costs to generate a bottom-up estimate. Comparing the results from all three estimates and
reconciling any significant disconnects allows the business analyst team to generate the most accurate
estimates.

The first estimate is based on a percentage of the estimated total project work. Specifically, we
consider that about 15 percent of the total project effort should be allocated to requirements work.
This value is in line with the percentages cited earlier in this section. So if the full project is estimated
at 1,000 hours, we estimate 150 hours of requirements work. Of course, the overall project estimate
might change after the requirements are better understood.

The second type of estimate assumes a typical ratio of developers to business analysts. Our default
value is 6:1, meaning that one BA can produce enough requirements to keep six developers busy.
The BAs also will be working with quality assurance, project management, and the business itself, so
this estimate encompasses all of the BA team’s project work. For a packaged solution (COTS) project,
this ratio changes to 3:1 (three developers per BA). There are still many selection, configuration,
and transition requirements to be elicited and documented, but the development team is smaller
because the code is largely purchased instead of developed new. So if we know the development
team size, we can estimate an appropriate BA staffing level. This is a rule-of-thumb estimator, not a
 cast-in-concrete prediction of the future, so be sure to adjust for your organization and project type.

368 PART II Requirements development

The third estimate considers the various activities a BA performs, based on estimates of the
 numbers of various artifacts that might be created on a specific project. The BA can estimate the
number of process flows, user stories, screens, reports, and the like and then make reasonable
 assumptions of how many other requirements artifacts are needed. Based on time estimates per
activity that we have accumulated from multiple projects, we can generate a total requirements effort
estimate.

We created a spreadsheet tool for calculating all three of these requirements estimates, which is
available with this book’s companion content. Figure 19-2 illustrates a portion of the spreadsheet’s
results. The Summary Total Effort Comparison shows the estimates for the number of BAs and the BA
budgets for both the requirements work and the entire project. These estimates serve as a starting
point for reconciling the differences, negotiating resources, and planning the project’s BA needs.

FIGURE 19-2 Partial output from the requirements effort estimation spreadsheet.

The requirements estimation tool has three worksheet tabs. First, there is a summary where
you input several project characteristics. The tool will calculate various elements of the three types
of estimates. Second, there is an assumptions tab where you can adjust items that vary from the
 provided assumptions. The third tab provides instructions about how to use the estimation tool.

The assumptions built into this estimation tool are based on Seilevel’s extensive experience
with actual projects. You’ll need to tweak some of the assumptions for your own organization. For
 example, if your BAs are either novices or especially highly experienced, some of your estimates of the
time needed per activity may vary from the defaults. To tailor the tool to best suit your reality, collect
some data from your own projects and modify the adjustable parameters.

Important All estimates are based on the knowledge the estimator has available at the
time and the assumptions he makes. Preliminary estimates based on limited information
have large uncertainties. Refine your estimates as knowledge is gained and work is
 completed during the project. Record your assumptions so that it’s clear what you were
thinking when you came up with the numbers.

 CHAPTER 19 Beyond requirements development 369

Betty’s in a corner
Sridhar, the project manager of a million-dollar project, approached the BA, Betty, to discuss
her initial estimate regarding how long requirements development would take. In an earlier
email exchange she had estimated eight weeks. Sridhar asked, “Betty, is it really going to take
you eight weeks to do the requirements for our shopping portal? Surely your team can have
it done in four weeks; the system is just not that complex. I mean, really, people come to the
website to search for and buy products. That’s it! Heck, the development manager is thinking
that his team can just develop the system without any requirements at all, so that’s what they’re
planning to do if you don’t have the requirements done in four weeks.”

Betty is backed into a corner here. She can give in and agree to an unreasonable four-week
deadline for this large project. Or, she can push back at the risk of looking ineffective because
the project is supposed to be “simple.” After all, Betty isn’t actually sure how long it will take
her to develop an adequate set of requirements, because she doesn’t yet know the size of the
system. Until she begins the analysis, she doesn’t know what she doesn’t know.

Variations on this story are a big part of why Seilevel developed the estimation tool
 described in this chapter. This tool aids Betty in her stressful conversation with Sridhar. She
can say, “Well, if I only have four weeks, let me show you what I CAN do.” She can tweak the
 numbers of reports or processes for which requirements are needed. Betty can effectively
 timebox the requirements effort. However, it’s important for Sridhar to recognize that
 understanding the requirements for only the tip of the iceberg can lead to unpleasant surprises
further down the road.

From requirements to project plans

Because requirements are the foundation for the project’s intended work, you should base estimates,
 project plans, and schedules on those requirements. Remember, the most important project
 outcome is a system that meets its business objectives, not simply one that implements all the initial
 requirements according to the original project plan. The requirements and plans represent the team’s
assessment at a specific point in time of what it will take to achieve that outcome. But the project’s
scope might have been off target, or the initial plans might not have been realistic or well-aligned
with the objectives. Business needs, business rules, and project constraints all can change. The
 project’s business success will be problematic if you don’t update your plans to align with evolving
objectives and realities.

370 PART II Requirements development

Estimating project size and effort from requirements
Making realistic estimates of the effort and time needed to complete a project depends on many
 factors, but it begins with estimating the size of the product to be built. You can base size estimates
on functional requirements, user stories, analysis models, prototypes, or user interface designs.
 Although there’s no perfect measure of software size, the following are some frequently used metrics:

 ■ The number of individually testable requirements (Wilson 1995)

 ■ Function points (Jones 1996b; IFPUG 2010)

 ■ Story points (Cohn 2005; McConnell 2006) or use case points (Wiegers 2006)

 ■ The number, type, and complexity of user interface elements

 ■ Estimated lines of code needed to implement specific requirements

Base whatever approach you choose on your experience and on the nature of the software you’re
developing. Understanding what the development team has successfully achieved on similar projects
using similar technologies lets you gauge team productivity. After you estimate size and productivity,
you can estimate the total effort needed to implement the project. Effort estimates depend on the
team size (multitasking people are less productive, and more communication interfaces slow things
down) and planned schedule (compressed schedules actually increase the total effort needed).

One approach is to use commercial software estimation tools that suggest various feasible
 combinations of development effort and schedule. These tools let you adjust estimates based on
 factors such as the skill of the developers, project complexity, and the team’s experience in the
 application domain. Complex, nonlinear relationships exist between product size, effort, development
time, productivity, and staff buildup time (Putnam and Myers 1997). Understanding these
 relationships can keep you from being trapped in the “impossible region,” combinations of product
size, schedule, and team size where the probability of success is extremely low.

The best estimation processes acknowledge the early uncertainty and ongoing volatility of scope.
People using such a process will express each estimate as a range, not a single value. They manage
the accuracy of their estimate by widening the range based on the uncertainty and volatility of the
data that fed into the estimate.

Agile projects estimate scope in units of story points, a measure of the relative effort that will
be needed to implement a particular user story. Estimates of the size of a specific story depend on
the knowledge you have—and lack—about the story, its complexity, and the functionality involved
 (Leffingwell 2011). Agile teams measure their team’s velocity, the number of story points the team
 expects to complete in a standard iteration based on its previous experience and the results from
 early iterations on a new project. The team members combine the size of the product backlog
with velocity to estimate the project’s schedule, cost, and the number of iterations required. Dean
 Leffingwell (2011) describes several techniques for estimating and planning agile projects in this
fashion.

 CHAPTER 19 Beyond requirements development 371

Important If you don’t compare your estimates to the actual project results and improve
your estimating ability, your estimates will forever remain guesses. It takes time to
 accumulate enough data to correlate some measure of software size with requirements
development effort and with total project effort. The early iterations on agile projects give
the team an assessment of its velocity.

Even a good estimating process will be challenged if your project must cope with requirements
that customers, managers, or lawmakers frequently change. If the changes are so great that the
development team can’t keep up with them, they can become paralyzed, unable to make meaningful
progress. Agile development methods provide another way to deal with highly volatile requirements.
These methods start by implementing a relatively solid portion of the requirements, knowing up front
that changes will be made later. Teams then use customer feedback on the early increments to clarify
the remaining product requirements.

A goal is not the same thing as an estimate. Anytime an imposed deadline and a thoughtfully
 estimated schedule don’t agree, negotiation is in order. A project manager who can justify an
 estimate based on a well-thought-out process and historical data is in a better bargaining position
than someone who simply makes her best guess. The project’s business objectives should guide
stakeholders to resolve the schedule conflict by stretching timelines, reducing scope, adding
 resources, or compromising on quality. These decisions aren’t easy, but making them is the only way
to maximize the delivered product value.

Got an hour?
A customer once asked our software group to adapt a small program that he had written for
his personal use so that his colleagues could also access it on our network. “Got an hour?” my
manager asked me, giving his top-of-the-head assessment of the project’s size. When I spoke
with the customer and his colleagues to understand what they really had in mind, the problem
turned out to be a bit larger. I spent 100 hours writing the program they were looking for. The
100-fold expansion factor suggested that my manager’s initial estimate of one hour was a trifle
hasty. The team should perform a preliminary exploration of requirements, evaluate scope, and
judge the product size before anyone makes estimates or commitments.

Uncertain requirements lead to uncertain estimates. Because requirements uncertainty is
 unavoidable early in the project and because estimates are usually optimistic, include contingency
buffers in your schedule and budget to accommodate some requirements growth (Wiegers 2007).
Scope growth takes place because business needs change, users and markets shift, and stakeholders
reach a better understanding of what the software can or should do. On agile projects, scope growth
typically leads to adding more iterations to the development cycle. Extensive requirements growth,
however, often indicates that many requirements were missed during elicitation.

372 PART II Requirements development

Important Don’t let your estimates be swayed by what you think someone else wants to
hear. Your prediction of the future shouldn’t change just because someone doesn’t like it.
Too large a mismatch in predictions indicates the need for negotiation, though.

Requirements and scheduling
Many projects practice “right-to-left scheduling”: a delivery date is cast in concrete and then the
 product’s requirements are defined. In such cases, it often proves impossible to meet the specified
ship date while including all the demanded functionality at the expected quality level. It’s more
 realistic to define the software requirements before making detailed plans and commitments. A
 design-to-schedule strategy can work if the project manager can negotiate what portion of the desired
functionality can fit within the schedule constraints. Requirements prioritization is a key success factor.

For complex systems in which software is only a part of the final product, project managers
 generally establish high-level schedules after developing the product-level (system) requirements and
a preliminary architecture. At this point, the key delivery dates can be established, based on input
from sources including marketing, sales, customer service, and development.

Consider planning and funding the project in stages. An initial requirements exploration stage
will provide enough information to let you make realistic plans and estimates for one or more
 construction stages. Projects that have uncertain requirements benefit from incremental and
 iterative development approaches. Incremental development lets the team begin delivering useful
 software long before the requirements become fully clear. Prioritization of requirements dictates the
 functionality to include in each construction timebox.

Software projects frequently fail to meet their goals because the developers and other project
 participants are optimistic estimators and poor planners, not because they’re poor software
 engineers. Typical planning mistakes include overlooking common tasks, underestimating effort or
time, failing to account for project risks, and not anticipating rework (McConnell 2006). Effective
 project scheduling requires the following elements:

 ■ Estimated product size

 ■ Known productivity of the development team, based on historical performance

 ■ A list of the tasks needed to completely implement and verify a feature or use case

 ■ Reasonably stable requirements, at least for the forthcoming development iteration

 ■ Experience, which helps the project manager adjust for intangible factors and the unique
aspects of each project

Trap Don’t succumb to pressure to make commitments that you know are unachievable.
This is a recipe for a lose-lose outcome.

 CHAPTER 19 Beyond requirements development 373

From requirements to designs and code

The boundary between requirements and design is not a sharp line but a gray, fuzzy area
(Wiegers 2006). Try to keep requirements free from implementation bias, except when there’s a
 compelling reason to intentionally constrain the design. Ideally, the descriptions of what the system
is intended to do should not be slanted by design considerations. Practically speaking, though,
projects often possess design constraints from prior products, product line standards, and user
interface conventions. Because of this, a requirements specification almost always contains some
design information. Try to avoid inadvertent design, needless or unintended restrictions on the
 design. Include designers in requirements reviews to make sure the requirements can serve as a solid
 foundation for design.

Architecture and allocation
A product’s functionality, quality attributes, and constraints drive its architecture design (Bass, Clements,
and Kazman 1998; Rozanski and Woods 2005). Analyzing a proposed architecture helps the analyst to
verify the requirements and tune their precision, as does prototyping. Both methods use the following
thought process: “If I understand the requirements correctly, this approach I’m reviewing is a good way
to satisfy them. Now that I have a preliminary architecture (or a prototype) in hand, does it help me
 better understand the requirements and spot incorrect, missing, or conflicting requirements?”

Architecture is especially critical for systems that include both software and hardware
 components and for complex software-only systems. An essential step is to allocate the high-level
system requirements to the various subsystems and components. An analyst, system engineer, or
 architect decomposes the system requirements into functional requirements for both software and
 hardware subsystems. Requirements trace information lets the development team track where each
 requirement is addressed in the design.

Inappropriate allocation decisions can result in the software being expected to perform functions
that should have been assigned to hardware components (or the reverse), in poor performance, or in
the inability to replace one component easily with an improved version. On one project, the hardware
engineer blatantly told my group that he expected our software to overcome all limitations of his
hardware design! Although software is more malleable than hardware, engineers shouldn’t use that
flexibility as a reason to skimp on hardware design. Take a systems engineering approach to decide
which capabilities each system component should deliver.

Allocation of system capabilities to subsystems and components must be done from the top down
(Hooks and Farry 2001). Consider a Blu-ray Disc player. As illustrated in Figure 19-3, it includes motors
to open and close the disc tray and to spin the disc, an optical subsystem to read the data on the disc,
an image-rendering subsystem, a multifunction remote control, and more. The subsystems interact to
control the behavior that results when, say, the user presses a button on the remote control to open
the disc tray while the disc is playing. The system requirements drive the architecture design for such
complex products, and the architecture influences the requirements allocation.

374 PART II Requirements development

FIGURE 19-3 Complex products such as Blu-ray Disc players contain multiple software and hardware subsystems.

The incredible shrinking design
I once worked on a project that simulated the behavior of a photographic system with eight
computational processes. After working hard on requirements analysis, the team was eager
to start coding. Instead, we took the time to create a design model to think about how we’d
build a solution. We quickly realized that three of the steps in the photographic simulation
used identical computational algorithms, three more used another set, and the remaining two
shared a third set. The design perspective simplified the problem from eight sets of complex
 calculations to just three. Had we skipped design, we likely would have noticed the code
 repetition at some point, but we saved a lot of time by detecting these simplifications early on.
It’s more efficient to revise design models than to rewrite code.

Software design
Software design receives short shrift on some projects, yet the time spent on design is an excellent
investment. A variety of software designs will satisfy most products’ requirements. These designs will
vary in their performance, efficiency, robustness, and the technical methods employed. If you leap
 directly from requirements into code, you’re essentially designing the software mentally and on the
fly. You come up with a design but not necessarily with an excellent design. Poorly structured software
is the likely result.

As with requirements, excellent designs result from iteration. Make multiple passes through
the design to refine your initial concepts as you gain information and generate additional ideas.
 Shortcomings in design lead to products that are difficult to maintain and extend and that don’t
satisfy the customer’s performance, usability, and reliability objectives. The time you spend translating
requirements into designs is an excellent investment in building high-quality, robust products.

A project that’s applying object-oriented development methods might begin with object-oriented
analysis of requirements, using class diagrams and other UML models to represent and analyze
 requirements information. A designer can elaborate these conceptual class diagrams, which are free
of implementation specifics, into more detailed object models for design and implementation.

You needn’t develop a complete, detailed design for the entire product before you begin
 implementation, but you should design each component before you code it. Formal design is of most

 CHAPTER 19 Beyond requirements development 375

benefit to particularly difficult projects, projects involving systems with many internal component
interfaces and interactions, and projects staffed with inexperienced developers (McConnell 1998). All
projects, however, will benefit from the following strategies:

 ■ Developing a solid architecture of subsystems and components that will permit enhancement
over the product’s life

 ■ Identifying the key functional modules or object classes you need to build, as well as defining
their interfaces, responsibilities, and collaborations with other units

 ■ Ensuring that the design accommodates all the functional requirements and doesn’t contain
unnecessary functionality

 ■ Defining each code unit’s intended functionality, following the sound design principles of
strong cohesion, loose coupling, and information hiding (McConnell 2004)

 ■ Ensuring that the design addresses exception conditions that can arise

 ■ Ensuring that the design will achieve stated performance, security, and other quality goals

 ■ Identifying any existing components that can be reused

 ■ Defining—and respecting—any limitations or constraints that have a significant impact on the
design of the software components

As developers translate requirements into designs and code, they’ll encounter points of
 ambiguity and confusion. Ideally, developers can route these issues back to customers or BAs for
 resolution through the project’s issue-tracking process. If an issue can’t be resolved immediately, any
 assumptions, guesses, or interpretations that a developer makes should be documented and reviewed
with customer representatives.

User interface design
User interface design is an extensively studied domain that goes well beyond the scope of this
book. Your requirements explorations probably took at least tentative steps into UI design. UI
design is so closely related to requirements that you shouldn’t just push it downstream to be done
 without end-user engagement. Chapter 15, “Risk reduction through prototyping,” described how
use cases lead to dialog maps, wireframes, or prototypes, and ultimately into detailed UI designs. A
 display-action-response (DAR) model is a useful tool for documenting the UI elements that appear in
screens and how the system responds to user actions (Beatty and Chen 2012). A DAR model combines
a visual screen layout with tables that describe the elements on the screen and their behaviors under
different conditions. Figure 19-4 shows a sample page from a website, and Figure 19-5 shows a
 corresponding DAR model. The DAR model contains enough details about the screen layout and
behavior that a developer should be able to implement it with confidence.

376 PART II Requirements development

FIGURE 19-4 High-fidelity webpage design.

UI Element: Submit a Pearl Page at PearlsFromSand.com

UI Element Description

ID submit.html

Description Page where users can submit their own life lessons to be posted on the Pearls from Sand blog

UI Element Description

Precondition Display

Always “Home” link
“About the Book” link
“About the Author” link
“Blog” link
“Submit a Pearl” link (inactive, different color because it’s the current page)
“Buy the Book” link
“Contact” link
“Name” text field
“City” text field
“State or Province” drop-down list
“Email” text field
“Title” text field
“Pearl Category” drop-down list
“Your Story” text field
“I agree” check box, cleared
“Submit” button
“Pearl Submission Guidelines” link
“Pearl Submission Terms” link

User just
 submitted a pearl

“Name,” “City,” “State or Province,” and “Email” fields are populated with values from previous pearl.
“Title,” “Pearl Category,” “Your Story,” and “I agree” fields are reset to default values.

 CHAPTER 19 Beyond requirements development 377

UI Element Behaviors

Precondition User Action Response

Always User clicks on navigation links: “Home,”
“About the Book,” “About the Author,” “Buy
the Book,” “Contact,” “Pearl Submission
Guidelines,” “Pearl Submission Terms”

Corresponding page is displayed

Always User clicks on either “Blog” link Pearls from Sand blog opens in new browser tab

Always User types or pastes text into a text field User’s text is displayed in field; for “Your Story”
field, count of remaining characters is displayed

Always User clicks on “I agree” check box Check box toggles on/off

One or more
 invalid entries

User clicks on “Submit” link Error message appears for any invalid text entry
or length or for required fields that are blank

All fields have
valid entries; “I
agree” check box
is selected

User clicks on “Submit” link Pearl is submitted; pearl counter is incremented;
email with pearl info is sent to Submitter
and Administrator; successful submission
 acknowledgment message is displayed.

“I agree” box not
checked

User clicks on “Submit” link System displays error message on this page

FIGURE 19-5 Display-action-response (DAR) model for the webpage shown in Figure 19-4.

From requirements to tests

Requirements analysis and testing fit together beautifully. As consultant Dorothy Graham (2002)
points out, “Good requirements engineering produces better tests; good test analysis produces
 better requirements.” The requirements provide the foundation for system testing. The product
should be tested against what it was intended to do as recorded in the requirements documentation,
not against its design or code. System testing that’s based on the code can become a self-fulfilling
 prophecy. The product might correctly exhibit all the behaviors described in tests based on the code,
but that doesn’t mean that it meets the customers’ needs. Include testers in requirements reviews to
make sure the requirements are verifiable and can serve as the basis for system testing.

Agile development teams typically write acceptance tests in lieu of precise requirements
(Cohn 2004). Rather than specifying the capabilities the system must exhibit or the actions a user
must be able to take, the acceptance tests flesh out the expected behavior of a user story. This
 conveys to developers the information they need to feel confident that they’ve correctly and
 completely implemented each story. As described in Chapter 17, “Validating the requirements,”
 acceptance tests should cover:

 ■ Expected behavior under normal conditions (good input data and valid user actions).

 ■ How anticipated error conditions and expected failure scenarios should be handled (bad input
data or invalid user actions).

 ■ Whether quality expectations are satisfied (for example, response times, security protections,
and the average time or number of user actions needed to accomplish a task).

378 PART II Requirements development

What to test?
A seminar attendee once said, “I’m in our system testing group. We don’t have written
 requirements, so we have to test what we think the software is supposed to do. Sometimes
we’re wrong, so we have to ask the developers what the software does and test it again.”

Testing what the developers built isn’t the same as testing what they were supposed to
build. The requirements are the ultimate reference for system and user acceptance testing.
If the system has poorly specified requirements, the testers will discover many requirements
that developers inferred—rightly or wrongly—and implemented. The analyst should document
legitimate implied requirements and their origins to make future regression testing more
 effective.

The testers or quality assurance staff should determine how they’d verify the implementation of
each requirement. Possible methods include:

 ■ Testing (executing the software to look for defects)

 ■ Inspection (examining the code to ensure that it satisfies the requirements)

 ■ Demonstration (showing that the product works as expected)

 ■ Analysis (reasoning through how the system should work under certain circumstances)

Connecting testing back to requirements helps keep the testing effort prioritized and focused
for maximum benefit. One colleague, a seasoned project manager and business analyst, related her
experience along these lines: “A clearly articulated business need can drive user acceptance testing
(UAT), which is typically the final hurdle a project undergoes prior to going live. On a recent web
 portal development project, we worked with the business sponsor to understand the real gains the
web portal was expected to deliver. Understanding the critical requirements allowed the project
manager to craft clear definitions of critical, moderate, and cosmetic defects. By tying defect criteria
clearly to requirements, we guided our customers through UAT and successfully completed a major
development effort without any ambiguity about quality or acceptance criteria.”

The simple act of thinking about how you’ll verify each requirement is a useful quality practice. Use
analytical techniques such as cause-and-effect graphs to derive tests based on the logic described in
a requirement. This will reveal ambiguities, missing or implied else conditions, and other problems.
Each functional requirement should map to at least one test so that no expected system behavior
goes unverified. Requirements-based testing applies several test design strategies: action-driven,
data-driven (including boundary value analysis and equivalence class partitioning), logic-driven,
event-driven, and state-driven (Poston 1996). Skillful testers will augment requirements-based testing
with additional testing based on the product’s history, intended usage scenarios, overall quality
 characteristics, service level agreements, boundary conditions, and quirks.

 CHAPTER 19 Beyond requirements development 379

The effort invested in early test thinking isn’t wasted, even if you plan a separate system testing
effort before release. It’s a matter of reallocating test effort that historically was weighted toward
the latter project stages. Conceptual tests are readily transformed into specific test scenarios and
 automated, where feasible and appropriate. Moving test thinking up earlier in the development
cycle will pay off with better requirements, clear communication and common expectations among
stakeholders , and early defect removal.

As development progresses, the team will elaborate the requirements from the high level found
in user requirements, through the functional requirements, and ultimately down to specifications
for individual code modules. Testing authority Boris Beizer (1999) points out that testing against
 requirements must be performed at every level of software construction, not just the end-user level.
Some application code isn’t directly accessed by users but is needed for infrastructure operations.
Each module must satisfy its own specification, even if that module’s function is invisible to the user.
Consequently, testing the system against user requirements is a necessary—but not sufficient—
strategy for system testing.

From requirements to success

I once encountered a project in which a contract development team came on board to implement a
very large application for which an earlier team had developed the requirements. The new team took
one look at the dozen three-inch binders of requirements, shuddered in horror, and began coding.
They didn’t refer to the SRS during construction. Instead, they built what they thought they were
supposed to build, based on an incomplete and inaccurate understanding of the project’s goals. Not
surprisingly, this project encountered a lot of problems. Trying to understand a huge volume of even
excellent requirements is certainly hard, but ignoring them is a decisive step toward project failure.

It’s faster to read the requirements, however extensive, before implementation than it is to
build the wrong system and then have to build it again correctly. It’s even faster to engage the
 development team early in the project so that they can participate in the requirements work and
perform early prototyping or take an iterative development approach. The development team still has
to read the entire specification eventually. However, they are spreading their reading time across the
project, which alleviates some of the tedious nature of the activity.

A more successful team had a practice of listing all the requirements that were planned for a
 specific release. The project’s quality assurance group evaluated each release by executing the tests
for those requirements. A requirement that didn’t satisfy its test criteria was counted as a defect. The
QA group rejected the release if more than a predetermined number of requirements weren’t met or
if specific high-impact requirements weren’t satisfied. This project was successful largely because it
used its documented requirements to decide when a release was shippable.

380 PART II Requirements development

The ultimate deliverable from a software development project is a solution that meets the
 customers’ needs and expectations. Requirements are an essential step on the path from business
need to satisfied customers. If you don’t base your project plans, designs, and acceptance and system
tests on a foundation of high-quality requirements, you’re likely to waste a great deal of effort trying
to deliver a solid product. Don’t become a slave to your requirements processes, though. There’s no
point in spending time generating unnecessary documents and holding ritualized meetings. Strive
for a sensible balance between rigorous specification and off-the-top-of-the-head coding that will
reduce the risk of building the wrong product to an acceptable level.

Next steps
 ■ Estimate the requirements work on your next project by using the requirements

 estimation tool from Figure 19-2. Track your time on the project and compare the results
to your initial estimation. Adapt the estimation tool for your next project.

 ■ Estimate the percentage of unplanned requirements growth on your last several projects.
Can you build contingency buffers into your project schedules to accommodate a similar
scope increase on future projects? Use the growth data from previous projects to justify
the schedule contingency so that it doesn’t look like arbitrary padding.

 ■ Try to trace all the requirements in an implemented portion of your SRS to individual
design elements. The design elements might be processes in design data flow diagrams,
tables in data models, object classes or methods, or other design components. Are any
design elements missing? Were any requirements overlooked?

 ■ Record the number of lines of code, function points, story points, or UI elements that
are needed to implement each feature or user requirement. Also record the actual effort
needed to fully implement and verify each feature or use case. Look for correlations
 between size and effort that will help you make more accurate estimates in the future.

 ■ Record your estimates of size and effort for the requirements development activities and
deliverables on your project, and compare those to the actual results. Did you really do
the 5 interviews planned, or did you end up doing 15? Did you create twice as many use
cases as expected? How can you change your estimation process to be more accurate in
the future?

 381

PART III

Requirements for
specific project
classes

CHAPTER 20 Agile projects .383

CHAPTER 21 Enhancement and reengineering projects393

CHAPTER 22 Packaged solution projects405

CHAPTER 23 Outsourced projects .415

CHAPTER 24 Business process automation projects421

CHAPTER 25 Business analytics projects .427

CHAPTER 26 Embedded and other real-time
systems projects .439

 383

C H A P T E R 2 0

Agile projects

Agile development refers to a set of software development methods that encourage continuous
 collaboration among stakeholders and rapid and frequent delivery of small increments of useful
functionality. There are many different types of agile methods; some of the most popular are Scrum,
Extreme Programming, Lean Software Development, Feature-Driven Development, and Kanban. The
term “agile development” has gained popularity since the publication of the “Manifesto for Agile
Software Development” (Beck et al. 2001). Agile methods are based on iterative and incremental
 approaches to software development, which have been around for many years (for example, see
Boehm 1988; Gilb 1988; and Larman and Basili 2003).

The agile development approaches have characteristics that distinguish them from one another,
but they all fundamentally champion an adaptive (sometimes called “change-driven”) approach
over a predictive (sometimes called “plan-driven”) approach (Boehm and Turner 2004; IIBA 2009).
A predictive approach, such as waterfall development, attempts to minimize the amount of risk in
a project by doing extensive planning and documentation prior to initiating construction of the
 software. The project managers and business analysts make sure that all stakeholders understand
 exactly what will be delivered before it gets built. This can work well if the requirements are well
understood at the outset and are likely to remain relatively stable during the project. Adaptive
 approaches such as agile methods are designed to accommodate the inevitable change that takes
place on projects. They also work well for projects with highly uncertain or volatile requirements.

This chapter describes the characteristics of agile approaches as they relate to the requirements
activities for a software project, the major adaptations of traditional requirements practices for an
 agile project, and a road map of where to find more detailed guidance throughout the rest of the
book.

Agile requirements?
We do not use the term “agile requirements,” because that implies that the requirements for
an agile project are somehow qualitatively different from those for projects following other life
cycles. Developers need to know the same information to be able to correctly implement the
right functionality in the right way on all projects. However, agile and traditional projects do
handle requirements differently in various respects, particularly with regard to the timing and
depth of requirements activities and the extent of written requirements documentation. This is
why we use the term “requirements for agile projects.”

384 PART III Requirements for specific project classes

Limitations of the waterfall

Organizations often think of a waterfall development process as involving a linear sequence of
 activities, where project teams fully specify (and sometimes overspecify) the requirements, then
create designs, then write code, and finally test the solution. In theory, this approach has several
 advantages. The team can catch any flaws in the application’s requirements and design early on rather
than during construction, testing, or maintenance, when fixing an error is much more costly. If the
requirements are correct up front, it is easy to allocate budget and resources, to measure progress,
and to estimate an accurate completion date. However, in practice, software development is rarely
that straightforward.

Few projects follow a purely sequential waterfall approach. Even predictive projects expect a
 certain amount of change and put mechanisms in place to handle it. There is always some overlap
and feedback between the phases. In general, though, on waterfall development projects the team
puts considerable effort into trying to get the full requirements set “right” early on. There are many
possible software development life cycles in addition to waterfall and agile approaches. They place
varying degrees of emphasis on developing a complete set of requirements early in the project
 (McConnell 1996; Boehm and Turner 2004). A key differentiator across the spectrum between totally
fixed, predictive projects and totally uncertain, adaptive projects is the amount of time that elapses
between when a requirement is created and when software based on that requirement is delivered to
customers.

Large projects that use a waterfall approach are often delivered late, lack necessary features, and
fail to meet users’ expectations. Waterfall projects are susceptible to this kind of failure because of
the layers of dependency built upon the requirements. Stakeholders often change their require-
ments during the course of a long project, and projects struggle when the software development
teams cannot respond to these changes effectively. The reality is that stakeholders will change
 requirements—because they don’t know precisely what they want at the beginning of the project,
because sometimes they can articulate their vision only after they see something that clearly doesn’t
match their vision, and because business needs sometimes change during the course of a project.

Although Winston Royce (1970) is often credited with being the first to publish the formal waterfall
model (though not by that name), he actually presented it in the context of being an approach that is
“risky and invites failure.” He identified the exact problem that projects today still experience: errors
in requirements likely aren’t caught until testing, late in the project. He went on to explain that the
steps ideally should be performed in the sequence of requirements, design, code, and test, but that
projects really need to overlap some of these phases and iterate between them. Royce even proposed
using simulations to prototype the requirements and designs as an experiment before committing to
the full development effort. Modified waterfalls, though, are followed by many projects today, with
varying degrees of success.

 CHAPTER 20 Agile projects 385

Disruptive changes to business objectives
A year into a large waterfall project, a new director of marketing took over as the executive
sponsor. The team had already developed a lot of software, but they had not yet deployed
anything that was useful to customers. Not surprisingly, the new sponsor had different business
objectives than his predecessor. The business analysts shared the news with the development
team that there were new business objectives, and consequently new user requirements, new
functional requirements, and revised priorities on the old requirements.

The development team had become accustomed to allocating all new requirements to a
planned enhancement phase following the initial deployment. They lashed out, protesting that
it was unacceptable to change course in the middle of the project. However, to continue to
develop and deliver a product that fulfilled only the original requirements would have left the
new sponsor dissatisfied. Had the team been using a development approach that anticipated
and accommodated requirements changes, this shift in strategic direction would have been far
less disruptive.

The agile development approach

Agile development methods attempt to address some limitations of the waterfall model. Agile
methods focus on iterative and incremental development, breaking the development of software
into short cycles called iterations (or, in the agile method known as Scrum, “sprints”). Iterations can
be as short as one week or as long as a month. During each iteration, the development team adds a
small set of functionality based on priorities established by the customer, tests it to make sure it works
properly, and validates it with acceptance criteria established by the customer. Subsequent increments
modify what already exists, enrich the initial features, add new ones, and correct defects that were
discovered. Ongoing customer participation enables the team to spot problems and changes in
 direction early, thereby guiding developers to adjust their course before they are too far down the
wrong path. The goal is to have a body of potentially shippable software at the end of each iteration,
even if it constitutes just a small portion of the ultimately desired product.

Essential aspects of an agile approach to requirements

The following sections describe several differences in the ways that agile projects and traditional
 projects approach requirements. Many of the requirements practices applied on agile projects also
work well on—and are a good idea for—projects following any other development life cycle.

386 PART III Requirements for specific project classes

Customer involvement
Collaborating with customers on software development projects always increases the chances of
 project success. This is true for waterfall projects as well as for agile projects. The main difference
between the two approaches is in the timing of the customer involvement. On waterfall projects,
customers typically dedicate considerable time up front, helping the BA understand, document,
and validate requirements. Customers should also be involved later in the project during user
 acceptance testing, providing feedback on whether the product meets their needs. However, during
the construction phase, there is generally little customer involvement, which makes it difficult for a
project to adapt to changing customer needs.

On agile projects, customers (or a product owner who represents them) are engaged continuously
throughout the project. During an initial planning iteration on some agile projects, customers work
with the project team to identify and prioritize user stories that will serve as the preliminary road map
for the development of the product. Because user stories are typically less detailed than traditional
functional requirements, customers must be available during iterations to provide input and
 clarification during the design and construction activities. They should also test and provide feedback
on the newly developed features when the construction phase of the iteration is complete.

It is common to have product owners, customers, and end users participate in writing user stories
or other requirements, but these individuals might not all be trained in effective requirements
 methods. Inexpertly written user stories are likely not sufficient for clear communication of
 requirements. Regardless of who is writing the user stories, someone with solid business analysis skills
should review and edit the stories before the team begins implementing them. Chapter 6, “Finding
the voice of the user,” further elaborates on customer involvement on agile projects.

Documentation detail
Because developers have little interaction with customers after construction begins on waterfall
 projects, the requirements must specify system behavior, data relationships, and user experience
 expectations in considerable detail. The close collaboration of customers with developers on agile
projects generally means that requirements can be documented in less detail than on traditional
 projects. Instead, BAs or other people responsible for requirements will develop the necessary
 precision through conversations and documentation when it is needed (IIBA 2013).

People sometimes think that agile project teams are not supposed to write requirements. That is
not accurate. Instead, agile methods encourage creating the minimum amount of documentation
needed to accurately guide the developers and testers. Any documentation beyond what the
 development and test teams need (or that is required to satisfy regulations or standards) represents
wasted effort. Certain user stories might have little detail provided, with only the riskiest or
 highest-impact functionality being specified in more detail, typically in the form of acceptance tests.

 CHAPTER 20 Agile projects 387

The backlog and prioritization
The product backlog on an agile project contains a list of requests for work that the team might
 perform (IIBA 2013). Product backlogs typically are composed of user stories, but some teams also
populate the backlog with other requirements, business processes, and defects to be corrected.
Each project should maintain only one backlog (Cohn 2010). Therefore, defects might need to be
 represented in the backlog for prioritization against new user stories. Some teams rewrite defects
as new user stories or variants of old stories. Backlogs can be maintained on story cards or in tools.
Agile purists might insist on using cards, but they are not practical for large projects or distributed
teams. Chapter 27, “Requirements management practices,” discusses the product backlog in more
detail. Various tools for agile project management, including backlog management, are commercially
 available.

Prioritization of the backlog is an ongoing activity to select which work items go into upcoming
iterations and which items are discarded from the backlog. The priorities assigned to backlog items
don’t have to remain constant forever, just for the next iteration (Leffingwell 2011). Tracing items in
the backlog back to the business requirements facilitates prioritization. All projects, not just agile
projects, ought to be managing priorities of the work remaining in their backlog.

Timing
Agile projects require fundamentally the same types of requirements activities as traditional
 development projects. Someone still needs to elicit requirements from user representatives, analyze
them, document requirements of various kinds at appropriate levels of detail, and validate that the
 requirements will achieve the business objectives for the project. However, detailed requirements are
not documented all at once at the beginning of an agile project. Instead, high-level requirements,
typically in the form of user stories, are elicited to populate a product backlog early in a project for
planning and prioritization.

As shown in Figure 20-1, user stories are allocated to specific iterations for implementation, and
the details for each story are further clarified during that iteration. As was illustrated in Figure 3-3 in
Chapter 3, “Good practices for requirements engineering,” requirements might be developed in small
portions throughout the entire project, even up until shortly before the product is released. However,
it’s important to learn about nonfunctional requirements early on so the system’s architecture can be
designed to achieve critical performance, usability, availability, and other quality goals.

388 PART III Requirements for specific project classes

FIGURE 20-1 Standard requirements activities occur within each agile iteration.

Epics, user stories, and features, oh my!
As described in Chapter 8, “Understanding user requirements,” a user story is a concise statement
that articulates something a user needs and serves as a starting point for conversations to flesh out
the details. User stories were created specifically to address the needs of agile developers. You might
 prefer to employ use case names, features, or process flows when exploring user requirements. The
form you choose to describe these sorts of requirements is not important; this chapter primarily refers
to them as user stories because they are so commonly used on agile projects.

User stories are sized so as to be fully implementable in a single iteration. Mike Cohn (2010)
defines an epic as being a user story that is too large to fully implement in a single iteration. Because
epics span iterations, they must be split into sets of smaller stories. Sometimes epics are large enough
that they must be subdivided into multiple epics, each of which is then split into multiple stories
until each resulting story can be reliably estimated and then implemented and tested within a single
iteration (see Figure 20-2). Breaking epics down into smaller epics and then into user stories is often
referred to as story decomposition (IIBA 2013).

FIGURE 20-2 Epics can be subdivided into smaller epics and then into user stories.

 CHAPTER 20 Agile projects 389

A feature is a grouping of system capabilities that provides value to a user. In the context of an
 agile project, features could encompass an individual user story, multiple user stories, an individual
epic, or multiple epics. For example, a zoom feature on a phone’s camera might be developed to
 enable execution of the following two unrelated user stories:

 ■ As a mother, I want to take recognizable pictures of my daughter during school performances
so that I can share them with her grandparents.

 ■ As a birdwatcher, I want to be able to take clear photographs of birds from a distance so that I
can identify them.

Identifying the lowest level of stories that still aligns with the business requirements allows you
to determine the smallest set of functionality that the team can deliver that provides value to the
 customer. This concept is often called a minimum (or minimal, or minimally) marketable feature
(MMF), as described by Mark Denne and Jane Cleland-Huang (2003).

Important When you develop requirements on agile projects, worry less about whether
the thing is called a story, an epic, or a feature, and focus more on developing high-quality
requirements that will guide the developer’s ability to satisfy customer needs.

Expect change
Organizations know that change will happen on projects. Even business objectives can change. The
 biggest adaptation that BAs need to make when a requirement change arises on an agile project is to
say not, “Wait, that’s out of scope” or “We need to go through a formal process to incorporate that
change,” but rather, “Okay, let’s talk about the change.” This encourages customer collaboration to
 create or change user stories and prioritize each change request against everything else that’s already
in the backlog. As with all projects, agile project teams need to manage changes thoughtfully to reduce
their negative impact, but they anticipate and even embrace the reality of change. See Chapter 28,
“Change happens,” for more information about managing requirements change on agile projects.

Knowing that you can handle changes doesn’t mean you should blindly ignore the future and pay
attention only to what’s known now. It is still important to look ahead and see what might be coming
farther down the road. The developers might not design for every possible future requirement. Given
some glimpse of the future, though, they can create a more expandable and robust architecture or
design hooks to make it easy to add new functionality.

Change also includes removing items from scope. Items can be removed from an iteration’s scope
for various reasons, including the following:

 ■ Implementation issues prevent an item from being completed within the current time frame.

 ■ Issues discovered by product owners or during testing make the implementation of a
 particular story unacceptable.

 ■ Higher-priority items need to replace less important ones that were planned for an iteration.

390 PART III Requirements for specific project classes

Adapting requirements practices to agile projects

Most of the practices described throughout this book can easily be adapted to agile projects, perhaps
by altering the timing when they’re used, the degree to which they are applied, or who performs each
practice. The International Institute of Business Analysis (IIBA) provides detailed suggestions regarding
business analysis techniques to apply to agile projects (IIBA 2013). Many other chapters in this book
address how to adapt the practices described in the chapter to suit an agile project. Table 20-1
 provides a road map to the specific chapters that address agile projects directly.

TABLE 20-1 A road map to chapters that address agile development topics

Chapter Topic

Chapter 2, “Requirements from the customer’s
 perspective”

Reaching agreement on requirements

Chapter 4, “The business analyst” The BA’s role on agile projects and who is responsible for the
requirements artifacts created

Chapter 5, “Establishing the business requirements” Setting and managing the vision and scope

Chapter 6, “Finding the voice of the user” User representation

Chapter 8, “Understanding user requirements” User stories

Chapter 10, “Documenting the requirements” Specifying requirements for agile development

Chapter 12, “A picture is worth 1024 words” Modeling on agile projects

Chapter 14, “Beyond functionality” Identifying quality attributes, especially those needed up
front for architecture and design

Chapter 15, “Risk reduction through prototyping” Agile projects and evolutionary prototyping

Chapter 16, “First things first: Setting requirement
priorities”

Prioritization on agile projects

Chapter 17, “Validating the requirements” Acceptance criteria and acceptance tests

Chapter 27, “Requirements management practices” Managing requirements on agile projects through backlogs
and burndown charts

Chapter 28, “Change happens” Managing change on agile projects

Transitioning to agile: Now what?

If you’re a business analyst who is new to agile development methods, don’t worry: most of the
 practices you already use will still apply. After all, both agile and traditional project teams need to
understand the requirements for the solutions they build. Following are a few suggestions to help you
make the conversion to an agile approach:

 ■ Determine what your role is on the team. As described in Chapter 4, some agile projects
have a dedicated BA, whereas others have people with different titles who perform business
analysis activities. Encourage all team members to focus on the goals of the project, not their
individual roles or titles (Gorman and Gottesdiener 2011).

 CHAPTER 20 Agile projects 391

 ■ Read a book on the agile product owner role so you understand user stories, acceptance tests,
backlog prioritization, and why the agile BA is never “finished” until the end of the project or
release. One suggested book is Agile Product Management with Scrum (Pichler 2010).

 ■ Identify suggested agile practices that will work best in your organization. Consider what
has worked well already with other development approaches in your organization, and carry
on those practices. Collaborate with the people currently performing other team roles to
 determine how their practices will work in an agile environment.

 ■ Implement a small project first as a pilot for agile methods, or implement only a few agile
practices on your next project.

 ■ If you decide to implement a hybrid model that adopts some agile practices but not others,
select a few low-risk practices that can work well in any methodology to start. If you are
new to agile, bring in an experienced coach for three or four iterations to help you avoid the
 temptation to revert to the historical practices with which you are comfortable.

 ■ Don’t be an agile purist just for the sake of being a purist.

Be agile when adopting agile practices
One organization I worked with decided to move from a traditional approach to agile
 development. The entire organization jumped in feet first, dogmatically trying to adapt agile
practices across the entire organization at once. Many of the developers tried to be agile
 purists, writing story cards and incorrectly insisting that no other documentation was allowed.

This attempted implementation of agile approaches failed miserably. Not all of the
 stakeholders bought into the effort. Some of the practices the developers insisted on didn’t
scale up to their large projects. The customers didn’t know how their role would be different
on an agile project. The new projects failed so badly that the IT executive mandated that agile
 development must stop immediately. All projects would follow a waterfall model from that
point forward. “Agile” became a bad word. This was like trying to fix one poor decision with
another!

Something interesting happened in the IT organization. The development teams knew this
mandate was also going to lead to disaster, so they adopted a hybrid development approach.
They used backlogs to prioritize requirements, they developed in three-week iterations, and
they specified detailed requirements just-in-time for each iteration. When the teams described
their approach to their management, they just said they were using “standard waterfall
 approaches” in their development so they wouldn’t get in trouble. Most of the agile practices
actually worked well in their organization when they learned how to execute them properly.
This organization initially tried to adopt agile methods in a way that didn’t work in their
 organization and ended up giving agile an undeserved bad name.

 393

C H A P T E R 2 1

Enhancement and replacement
projects

Most of this book describes requirements development as though you are beginning a new software
or system development project, sometimes called a green-field project. However, many organizations
devote much of their effort to enhancing or replacing existing information systems or building
new releases of established commercial products. Most of the practices described in this book are
 appropriate for enhancement and replacement projects. This chapter provides specific suggestions as
to which practices are most relevant and how to use them.

An enhancement project is one in which new capabilities are added to an existing system.
 Enhancement projects might also involve correcting defects, adding new reports, and modifying
functionality to comply with revised business rules or needs.

A replacement (or reengineering) project replaces an existing application with a new custom-built
system, a commercial off-the-shelf (COTS) system, or a hybrid of those. Replacement projects are
most commonly implemented to improve performance, cut costs (such as maintenance costs or
 license fees), take advantage of modern technologies, or meet regulatory requirements. If your
replacement project will involve a COTS solution, the guidance presented in Chapter 22, “Packaged
solution projects,” will also be helpful.

Replacement and enhancement projects face some particular requirements issues. The original
 developers who held all the critical information in their heads might be long gone. It’s tempting to
claim that a small enhancement doesn’t warrant writing any requirements. Developers might believe
that they don’t need detailed requirements if they are replacing an existing system’s functionality.
The approaches described in this chapter can help you to deal with the challenges of enhancing or
 replacing an existing system to improve its ability to meet the organization’s current business needs.

The case of the missing spec
The requirements specification for the next release of a mature system often says, essentially,
“The new system should do everything the old system does, except add these new features
and fix those bugs.” A business analyst once received just such a specification for version 5 of
a major product. To find out exactly what the current release did, she looked at the SRS for
version 4. Unfortunately, it also said, in essence, “Version 4 should do everything that version 3
does, except add these new features and fix those bugs.” She followed the trail back, but every

394 PART III Requirements for specific project classes

SRS described just the differences that the new version should exhibit compared to the previous
version. Nowhere was there a description of the original system. Consequently, everyone had a
different understanding of the current system’s capabilities. If you’re in this situation, document
the requirements for your project more thoroughly so that all the stakeholders—both present
and future—understand what the system does.

Expected challenges

The presence of an existing system leads to common challenges that both enhancement and
 replacement projects will face, including the following:

 ■ The changes made could degrade the performance to which users are accustomed.

 ■ Little or no requirements documentation might be available for the existing system.

 ■ Users who are familiar with how the system works today might not like the changes they are
about to encounter.

 ■ You might unknowingly break or omit functionality that is vital to some stakeholder group.

 ■ Stakeholders might take this opportunity to request new functionality that seems like a good
idea but isn’t really needed to meet the business objectives.

Even if there is existing documentation, it might not prove useful. For enhancement projects,
the documentation might not be up to date. If the documentation doesn’t match the existing
 application’s reality, it is of limited use. For replacement systems, you also need to be wary of carrying
forward all of the requirements, because some of the old functionality probably should not be
 migrated.

One of the major issues in replacement projects is validating that the reasons for the replacement
are sound. There need to be justifiable business objectives for the change. When existing systems
are being completely replaced, organizational processes might also have to change, which makes it
harder for people to accept a new system. The change in business processes, change in the software
system, and learning curve of a new system can disrupt current operations.

Requirements techniques when there is an existing system

Table 21-1 describes the most important requirements development techniques to consider when
working on enhancement and replacement projects.

 CHAPTER 21 Enhancement and replacement projects 395

TABLE 21-1 Valuable requirements techniques for enhancement and replacement projects

Technique Why it’s relevant

Create a feature tree to show
changes

 ■ Show features being added.
 ■ Identify features from the existing system that won’t be in the new system.

Identify user classes ■ Assess who is affected by the changes.
 ■ Identify new user classes whose needs must be met.

Understand business
 processes

 ■ Understand how the current system is intertwined with stakeholders’ daily
jobs and the impacts of it changing.

 ■ Define new business processes that might need to be created to align with
new features or a replacement system.

Document business rules ■ Record business rules that are currently embedded in code.
 ■ Look for new business rules that need to be honored.
 ■ Redesign the system to better handle volatile business rules that were expen-

sive to maintain.

Create use cases or user
stories

 ■ Understand what users must be able to do with the system.
 ■ Understand how users expect new features to work.
 ■ Prioritize functionality for the new system.

Create a context diagram ■ Identify and document external entities.
 ■ Extend existing interfaces to support new features.
 ■ Identify current interfaces that might need to be changed.

Create an ecosystem map ■ Look for other affected systems.
 ■ Look for new, modified, and obsolete interfaces between systems.

Create a dialog map ■ See how new screens fit into the existing user interface.
 ■ Show how the workflow screen navigation will change.

Create data models ■ Verify that the existing data model is sufficient or extend it for new features.
 ■ Verify that all of the data entities and attributes are still needed.
 ■ Consider what data has to be migrated, converted, corrected, archived, or

 discarded.

Specify quality attributes ■ Ensure that the new system is designed to fulfill quality expectations.
 ■ Improve satisfaction of quality attributes over the existing system.

Create report tables ■ Convert existing reports that are still needed.
 ■ Define new reports that aren’t in the old system.

Build prototypes ■ Engage users in the redevelopment process.
 ■ Prototype major enhancements if there are uncertainties.

Inspect requirements
 specifications

 ■ Identify broken links in the traceability chain.
 ■ Determine if any previous requirements are obsolete or unnecessary in the

replacement system.

Enhancement projects provide an opportunity to try new requirements methods in a small-scale
and low-risk way. The pressure to get the next release out might make you think that you don’t
have time to experiment with requirements techniques, but enhancement projects let you tackle
the learning curve in bite-sized chunks. When the next big project comes along, you’ll have some
 experience and confidence in better requirements practices.

Suppose that a customer requests that a new feature be added to a mature product. If you haven’t
worked with user stories before, explore the new feature from the user-story perspective, discussing
with the requester the tasks that users will perform with that feature. Practicing on this project
 reduces the risk compared to applying user stories for the first time on a green-field project, when
your skill might mean the difference between success and high-profile failure.

396 PART III Requirements for specific project classes

Prioritizing by using business objectives

Enhancement projects are undertaken to add new capabilities to an existing application. It’s easy
to get caught up in the excitement and start adding unnecessary capabilities. To combat this risk
of gold-plating, trace requirements back to business objectives to ensure that the new features are
needed and to select the highest-impact features to implement first. You also might need to prioritize
enhancement requests against the correction of defects that had been reported against the old
system.

Also be wary of letting unnecessary new functionality slip into replacement projects. The main
focus of replacement projects is to migrate existing functionality. However, customers might imagine
that if you are developing a new system anyway, it is easy to add lots of new capabilities right away.
Many replacement projects have collapsed because of the weight of uncontrolled scope growth.
You’re usually better off building a stable first release and adding more features through subsequent
enhancement projects, provided the first release allows users to do their jobs.

Replacement projects often originate when stakeholders want to add functionality to an existing
system that is too inflexible to support the growth or has technology limitations. However, there needs
to be a clear business objective to justify implementing an expensive new system (Devine 2008). Use
the anticipated cost savings from a new system (such as through reduced maintenance of an old,
clunky system) plus the value of the new desired functionality to justify a system replacement project.

Also look for existing functionality that doesn’t need to be retained in a replacement system. Don’t
replicate the existing system’s shortcomings or miss an opportunity to update a system to suit new
business needs and processes. For example, the BA might ask users, “Do you use <a particular menu
option>?” If you consistently hear “I never do that,” then maybe it isn’t needed in the replacement
system. Look for usage data that shows what screens, functions, or data entities are rarely accessed
in the current system. Even the existing functionality has to map to current and anticipated business
objectives to warrant re-implementing it in the new system.

Trap Don’t let stakeholders get away with saying “I have it today, so I need it in the new
system” as a default method of justifying requirements.

Mind the gap
A gap analysis is a comparison of functionality between an existing system and a desired new system.
A gap analysis can be expressed in different ways, including use cases, user stories, or features. When
enhancing an existing system, perform a gap analysis to make sure you understand why it isn’t
 currently meeting your business objectives.

Gap analysis for a replacement project entails understanding existing functionality and discovering
the desired new functionality (see Figure 21-1). Identify user requirements for the existing system that
stakeholders want to have re-implemented in the new system. Also, elicit new user requirements that
the existing system does not address. Consider any change requests that were never implemented

 CHAPTER 21 Enhancement and replacement projects 397

in the existing system. Prioritize the existing user requirements and the new ones together. Prioritize
closing the gaps using business objectives as described in the previous section or the other
 prioritization techniques presented in Chapter 16, “First things first: Setting requirement priorities.”

FIGURE 21-1 When you are replacing an existing system, some requirements will be implemented unchanged,
some will be modified, some will be discarded, and some new requirements might be added.

Maintaining performance levels
Existing systems set user expectations for performance and throughput. Stakeholders almost
 always have key performance indicators (KPIs) for existing processes that they will want to maintain
in the new system. A key performance indicator model (KPIM) can help you identify and specify
these metrics for their corresponding business processes (Beatty and Chen 2012). The KPIM helps
 stakeholders see that even if the new system will be different, their business outcomes will be at least
as good as before.

Unless you explicitly plan to maintain them, performance levels can be compromised as systems
are enhanced. Stuffing new functionality into an existing system might slow it down. One data
 synchronization tool had a requirement to update a master data set from the day’s transactions.
It needed to run every 24 hours. In the initial release of the tool, the synchronization started at
 midnight and took about one hour to execute. After some enhancements to include additional
 attributes, merging, and synchronicity checks, the synchronization took 20 hours to execute. This was
a problem, because users expected to have fully synchronized data from the night before available
when they started their workday at 8:00 A.M. The maximum time to complete the synchronization
was never explicitly specified, but the stakeholders assumed it could be done overnight in less than
eight hours.

For replacement systems, prioritize the KPIs that are most important to maintain. Look for the
business processes that trace to the most important KPIs and the requirements that enable those
business processes; these are the requirements to implement first. For instance, if you’re replacing a
loan application system in which loan processors can enter 10 loans per day, it might be important
to maintain at least that same throughput in the new system. The functionality that allows loan
 processers to enter loans should be some of the earliest implemented in the new system, so the loan
processors can maintain their productivity.

398 PART III Requirements for specific project classes

When old requirements don’t exist

Most older systems do not have documented—let alone accurate—requirements. In the absence of
reliable documentation, teams might reverse-engineer an understanding of what the system does
from the user interfaces, code, and database. We think of this as “software archaeology.” To maximize
the benefit from reverse engineering, the archaeology expedition should record what it learns in
the form of requirements and design descriptions. Accumulating accurate information about certain
 portions of the current system positions the team to enhance a system with low risk, to replace a
 system without missing critical functionality, and to perform future enhancements efficiently. It halts
the knowledge drain, so future maintainers better understand the changes that were just made.

If updating the requirements is overly burdensome, it will fall by the wayside as busy people rush
on to the next change request. Obsolete requirements aren’t helpful for future enhancements. There’s
a widespread fear in the software industry that writing documentation will consume too much time;
the knee-jerk reaction is to neglect all opportunities to update requirements documentation. But
what’s the cost if you don’t update the requirements and a future maintainer (perhaps you!) has to
regenerate that information? The answer to this question will let you make a thoughtful business
 decision concerning whether to revise the requirements documentation when you change or
 re-create the software.

When the team performs additional enhancements and maintenance over time, it can extend
these fractional knowledge representations, steadily improving the system documentation. The
 incremental cost of recording this newly found knowledge is small compared with the cost of
 someone having to rediscover it later on. Implementing enhancements almost always necessitates
further requirements development, so add those new requirements to an existing requirements
repository, if there is one. If you’re replacing an old system, you have an opportunity to document
the requirements for the new one and to keep the requirements up to date with what you learn
 throughout the project. Try to leave the requirements in better shape than you found them.

Which requirements should you specify?
It’s not always worth taking the time to generate a complete set of requirements for an entire
 production system. Many options lie between the two extremes of continuing forever with no
 requirements documentation and reconstructing a perfect requirements set. Knowing why you’d like
to have written requirements available lets you judge whether the cost of rebuilding all—or even
part—of the specification is a sound investment.

Perhaps your current system is a shapeless mass of history and mystery like the one in Figure 21-2.
Imagine that you’ve been asked to implement some new functionality in region A in this figure.
Begin by recording the new requirements in a structured SRS or in a requirements management tool.
When you add the new functionality, you’ll have to figure out how it interfaces to or fits in with the
 existing system. The bridges in Figure 21-2 between region A and your current system represent these
 interfaces. This analysis provides insight into the white portion of the current system, region B. In
 addition to the requirements for region A, this insight is the new knowledge you need to capture.

 CHAPTER 21 Enhancement and replacement projects 399

FIGURE 21-2 Adding enhancement A to an ill-documented existing system provides some visibility into the
B area.

Rarely do you need to document the entire existing system. Focus detailed requirements efforts
on the changes needed to meet the business objectives. If you’re replacing a system, start by
 documenting the areas prioritized as most important to achieve the business objectives or those that
pose the highest implementation risk. Any new requirements identified during the gap analysis will
need to be specified at the same level of precision and using the same techniques as you would for a
new system.

Level of detail
One of the biggest challenges is determining the appropriate level of detail at which to document
requirements gleaned from the existing system. For enhancements, defining requirements for the
new functionality alone might be sufficient. However, you will usually benefit from documenting all of
the functionality that closely relates to the enhancement, to ensure that the change fits in seamlessly
(region B in Figure 21-2). You might want to create business processes, user requirements, and/or
functional requirements for those related areas. For example, let’s say you are adding a discount code
feature to an existing shopping cart function, but you don’t have any documented requirements for
the shopping cart. You might be tempted to write just a single user story: “As a customer, I need to be
able to enter a discount code so I can get the cheapest price for the product.” However, this user story
alone lacks context, so consider capturing other user stories about shopping cart operations. That
information could be valuable the next time you need to modify the shopping cart function.

I worked with one team that was just beginning to develop the requirements for version 2 of
a major product with embedded software. They hadn’t done a good job on the requirements for
 version 1, which was currently being implemented. The lead BA wondered, “Is it worth going back
to improve the SRS for version 1?” The company anticipated that this product line would be a major
revenue generator for at least 10 years. They also planned to reuse some of the core requirements
in several spin-off products. In this case, it made sense to improve the requirements documentation
for version 1 because it was the foundation for all subsequent development work in this product line.
Had they been working on version 5.3 of a well-worn system that they expected to retire within a
year, reconstructing a comprehensive set of requirements wouldn’t have been a wise investment.

400 PART III Requirements for specific project classes

Trace Data
Requirements trace data for existing systems will help the enhancement developer determine
which components she might have to modify because of a change in a specific requirement. In an
ideal world, when you’re replacing a system, the existing system would have a full set of functional
 requirements such that you could establish traceability between the old and new systems to
avoid overlooking any requirements. However, a poorly documented old system won’t have trace
 information available, and establishing rigorous traceability for both existing and new systems is time
consuming.

As with any new development, it’s a good practice to create a traceability matrix to link the new
or changed requirements to the corresponding design elements, code, and test cases. Accumulating
trace links as you perform the development work takes little effort, whereas it’s a great deal of work
to regenerate the links from a completed system. For replacement systems, perform requirements
tracing at a high level: make a list of features and user stories for the existing system and prioritize
to determine which of those will be implemented in the new system. See Chapter 29, “Links in the
 requirements chain,” for more information on tracing requirements.

How to discover the requirements of an existing system
In enhancement and replacement projects, even if you don’t have existing documentation, you do
have a system to work from to discover the relevant requirements. During enhancement projects,
consider drawing a dialog map for the new screens you have to add, showing the navigation
 connections to and from existing display elements. You might write use cases or user stories that span
the new and existing functionality.

In replacement system projects, you need to understand all of the desired functionality, just as
you do on any new development project. Study the user interface of the existing system to identify
 candidate functionality for the new system. Examine existing system interfaces to determine what
data is exchanged between systems today. Understand how users use the current system. If no one
understands the functionality and business rules behind the user interface, someone will need to look
at the code or database to understand what’s going on. Analyze any documentation that does
exist—design documents, help screens, user manuals, training materials—to identify requirements.

You might not need to specify functional requirements for the existing system at all, instead
 creating models to fill the information void. Swimlane diagrams can describe how users do their jobs
with the system today. Context diagrams, data flow diagrams, and entity-relationship diagrams are
also useful. You might create user requirements, specifying them only at a high level without filling
in all of the details. Another way to begin closing the information gap is to create data dictionary
entries when you add new data elements to the system and modify existing definitions. The test suite
might be useful as an initial source of information to recover the software requirements, because tests
 represent an alternative view of requirements.

 CHAPTER 21 Enhancement and replacement projects 401

Sometimes “good enough” is enough
A third-party assessment of current business analysis practices in one organization revealed
that their teams did a fairly good job of writing requirements for new projects, but they failed
to update the requirements as the products evolved through a series of enhancement releases.
The BAs did create requirements for each enhancement project. However, they did not merge
all of those revisions back into the requirements baseline. The organization’s manager couldn’t
think of a measurable benefit from keeping the existing documentation 100 percent updated
to reflect the implemented systems. He assumed that his requirements always reflected only
80 to 90 percent of the working software anyway, so there was little value in trying to perfect
the requirements for an enhancement. This meant that future enhancement project teams
would have to work with some uncertainty and close the gaps when needed, but that price was
deemed acceptable.

Encouraging new system adoption

You’re bound to run into resistance when changing or replacing an existing system. People are
 naturally reluctant to change. Introducing a new feature that will make users’ jobs easier is a good
thing. But users are accustomed to how the system works today, and you plan to modify that, which
is not so good from the user’s point of view. The issue is even bigger when you’re replacing a system,
because now you’re changing more than just a bit of functionality. You’re potentially changing the
entire application’s look and feel, its menus, the operating environment, and possibly the user’s
whole job. If you're a business analyst, project manager, or project sponsor, you have to anticipate the
 resistance and plan how you will overcome it, so the users will accept the new features or system.

An existing, established system is probably stable, fully integrated with surrounding systems, and
well understood by users. A new system with all the same functionality might be none of these upon
its initial release. Users might fear that the new system will disrupt their normal operations while
they learn how to use it. Even worse, it might not support their current operations. Users might even
be afraid of losing their jobs if the system automates tasks they perform manually today. It’s not
 uncommon to hear users say that they will accept the new system only if it does everything the old
system does—even if they don’t personally use all of that functionality at present.

To mitigate the risk of user resistance, you first need to understand the business objectives and
the user requirements. If either of these misses the mark, you will lose the users’ trust quickly. During
 elicitation, focus on the benefits the new system or each feature will provide to the users. Help them
 understand the value of the proposed change to the organization as a whole. Keep in mind—even
with enhancements—that just because something is new doesn’t mean it will make the user’s job
easier. A poorly designed user interface can even make the system harder to use because the old
features are harder to find, lost amidst a clutter of new options, or more cumbersome to access.

402 PART III Requirements for specific project classes

Our organization recently upgraded our document-repository tool to a new version to give
us access to additional features and a more stable operating environment. During beta testing, I
 discovered that simple, common tasks such as checking out and downloading a file are now harder. In
the previous version, you could check out a file in two clicks, but now it takes three or four, depending
on the navigation path you choose. If our executive stakeholders thought these user interface
changes were a big risk to user acceptance, they could invest in developing custom functionality to
mimic the old system. Showing prototypes to users can help them get used to the new system or new
features and reveal likely adoption issues early in the project.

One caveat with system replacements is that the key performance indicators for certain groups
might be negatively affected, even if the system replacement provides a benefit for the organization
as a whole. Let users know as soon as possible about features they might be losing or quality
 attributes that might degrade, so they can start to prepare for it. System adoption can involve as
much emotion as logic, so expectation management is critical to lay the foundation for a successful
rollout.

When you are migrating from an existing system, transition requirements are also important.
Transition requirements describe the capabilities that the whole solution—not just the software
 application—must have to enable moving from the existing system to the new system (IIBA 2009).
They can encompass data conversions, user training, organizational and business process changes,
and the need to run both old and new systems in parallel for a period of time. Think about everything
that will be required for stakeholders to comfortably and efficiently transition to the new way
of working. Understanding transition requirements is part of assessing readiness and managing
 organizational change (IIBA 2009).

Can we iterate?

Enhancement projects are incremental by definition. Project teams can often adopt agile methods
readily, by prioritizing enhancements using a product backlog as described in Chapter 20, “Agile
 projects.” However, replacement projects do not always lend themselves to incremental delivery
because you need a critical mass of functionality in the new application before users can begin
 using it to do their jobs. It’s not practical for them to use the new system to do a small portion of
their job and then have to go back to the old system to perform other functions. However, big-bang
 migrations are also challenging and unrealistic. It’s difficult to replace in a single step an established
system that has matured over many years and numerous releases.

One approach to implementing a replacement system incrementally is to identify functionality
that can be isolated and begin by building just those pieces. We once helped a customer team to
replace their current fulfillment system with a new custom-developed system. Inventory manage-
ment represented about 10 percent of the total functionality of the entire fulfillment system. For the
most part, the people who managed inventory were separate from the people who managed other
parts of the fulfillment process. The initial strategy was to move just the inventory management

 CHAPTER 21 Enhancement and replacement projects 403

 functionality to a new system of its own. This was ideal functionality to isolate for the first release
because it affected just a subset of users, who then would primarily work only in the new system. The
one downside side to the approach is that a new software interface had to be developed so that the
new inventory system could pass data to and from the existing fulfillment system.

We had no requirements documentation for the existing system. But retaining the original system
and turning off its inventory management piece provided a clear boundary for the requirements
 effort. We primarily wrote use cases and functional requirements for the new inventory system,
based on the most important functions of the existing system. We created an entity-relationship
diagram and a data dictionary. We drew a context diagram for the entire existing fulfillment system
to understand integration points that might be relevant when we split inventory out of it. Then we
 created a new context diagram to show how inventory management would exist as an external
 system that interacts with the truncated fulfillment system.

Not all enhancement or replacement projects will be this clean. Most of them will struggle
to overcome the two biggest challenges: a lack of documentation for the existing system, and a
 potential battle to get users to adopt the new system or features. However, using the techniques
described in this chapter can help you actively mitigate these risks.

 405

C H A P T E R 2 2

Packaged solution projects

Some organizations acquire and adapt purchased packaged solutions (also called commercial off-the-
shelf, or COTS, products) to meet their software needs, instead of building new systems from scratch.
Software as a service (SaaS), or cloud, solutions are becoming increasingly available to meet software
needs as well. Whether you’re purchasing a package as part or all of the solution for a new project
or implementing a solution in the cloud, you still need requirements. Requirements let you evaluate
solution candidates so that you can select the most appropriate package, and then they let you adapt
the package to meet your needs.

As Figure 22-1 shows, COTS packages typically need to be configured, integrated, and extended
to work in the target environment. Some COTS products can be deployed out of the box with no
additional work needed to make them usable. Most, though, require some customization. This could
take the form of configuring the default product, creating integrations to other systems, and/or
 developing extensions to provide additional functionality that is not included in the COTS package.
These activities all demand requirements.

FIGURE 22-1 COTS packages can be configured, integrated into the existing application environment, and/or
 extended with new functionality.

406 PART III Requirements for specific project classes

This chapter discusses requirements for selecting and implementing packaged solutions. We do
not distinguish between COTS and SaaS projects due to the similarity of the requirements activities
involved. The decision to implement a packaged solution instead of custom developing a system is
a matter of evaluating the cost-effectiveness of the two options and lies outside the scope of this
book. If you’re building a packaged solution to sell, the other chapters in the book are more relevant
because those projects involve custom software development.

This chapter describes several ways to approach requirements definition when you plan to
 acquire a commercial package to meet your needs. We also provide suggestions for how to develop
 requirements to implement the packaged solution in your operating environment.

Requirements for selecting packaged solutions

COTS packages offer the acquiring organization less flexibility to meet requirements than custom
(sometimes called bespoke) development does. You need to know which requested capabilities
aren’t negotiable and which you can adjust to fit within the package’s constraints. The only way to
choose the right packaged solution is to understand the business activities the package must let the
 users perform. Selecting packaged solutions entails identifying your requirements for the software,
at least at a high level. The level of detail and effort you should put into specifying requirements
for COTS selection depends on the expected package costs, the evaluation timeline, and the
 number of candidate solutions. Compare buying personal finance management software to buying
a multimillion-dollar financial application for a 5,000-person company. You might only name the
most important use cases in the first scenario, but write full use cases and develop data and quality
 requirements for a more extensive evaluation in the second.

One team needed to select packaged software to run a law office. They identified 20 tasks that
 users needed to perform using the software, which led to 10 features to be assessed while evaluating
4 candidate packages. The law partners knew they would have to create more detailed requirements
to configure the software after they chose a package. However, a lightweight evaluation was
 appropriate for the package selection. In contrast, a team of 50 people worked together to
 develop detailed requirements for software to run a new semiconductor plant. There were only
three candidate solutions to evaluate, but given the expected cost of the COTS software and its
 implementation, the company was willing to invest a lot in the selection process. They spent six
months on the package selection alone.

Developing user requirements
Any package you choose must let users accomplish their task objectives, although different packaged
solutions will do so in different ways. The majority of your requirements efforts for COTS acquisition
should be focused at the user requirements level. Use cases and user stories work well for this
 purpose. Process models can also be used and might already exist in the organization. There’s little
point in specifying detailed functional requirements or designing a user interface, because the vendor
(presumably) already did that.

 CHAPTER 22 Packaged Solution Projects 407

It can also be helpful to list the features you need from the packaged solution. Identify the
 desired product features from an understanding of what users need to achieve with the solution and
the business processes the package must enable. Suppose you have the following user story: “As a
 Research Manager, I need to review and approve new experiments before they are performed so that
we don’t waste time and supplies on poorly designed experiments.” This user story helps identify the
need for an approval workflow feature.

No packaged solution is likely to accommodate every use case you identify, so prioritize the user
requirements or features. Trace them back to business requirements so you don’t waste time on
 unnecessary evaluation criteria. Distinguish capabilities that must be available on day one from those
that can wait for future extensions and those that your users can live without, perhaps forever.

Considering business rules
Your requirements exploration should identify pertinent business rules to which the COTS product
must conform. Can you configure the package to comply with your corporate policies, industry
 standards, and relevant regulations? How easily can you modify the configured package when these
rules change? Focus on the most important business rules, because it can be time consuming to
evaluate the implementation of all of the pertinent rules.

Some packages incorporate widely applicable business rules, such as income tax withholding
 computations or printed tax forms. Do you trust that these are implemented correctly? Will the
 package vendor provide you with timely software updates when those rules and computations
change? Will they charge you for the updates? Will the vendor supply a list of the business rules the
package implements? If the product implements any intrinsic business rules that don’t apply to you,
can you disable, modify, or work around them? Does the vendor accept enhancement requests? If so,
how are they prioritized?

Identifying data needs
You might need to define the data structures required to satisfy your user requirements and business
rules, particularly if the new solution must be integrated into an ecosystem of existing applications.
Look for major disconnects between your data model and the package vendor’s data model. Do not
be distracted by data entities and attributes that are simply named differently in the COTS solution.
Instead, recognize where entities or their attributes don’t exist in the packaged solution or have
 significantly different definitions from what you need, and then determine whether those entities can
be handled in a different way for the solution to work.

Specify the reports that the COTS product must generate. Does it generate mandated reports in
the correct formats? To what extent will the product let you customize its standard reports? Can you
design new reports of your own to integrate with those that the vendor supplied?

408 PART III Requirements for specific project classes

Defining quality requirements
The quality attributes discussed in Chapter 14, “Beyond functionality,” are another vital aspect of user
requirements that feeds into packaged solution selection. Explore at least the following attributes:

 ■ Performance What maximum response times are acceptable for specific operations? Can
the package handle the anticipated load of concurrent users and transaction throughput?

 ■ Usability Does the package conform to any established user interface conventions? Is the
interface similar to what the users experience in other applications already? How easily can
your users learn to use the new package? Is training provided by the vendor included as part
of the package’s cost?

 ■ Modifiability How hard will it be for your developers to modify or extend the package to
meet your specific needs? Does the package provide appropriate “hooks” (connection and
extension points) and application programming interfaces for adding extensions? Will all those
extensions stay in place when you install a new version of the package?

 ■ Interoperability How easily can you integrate the package with your other enterprise
 applications? Does it use standard data interchange formats? Will it force you to upgrade
any other third-party tools or infrastructure components because it doesn’t handle backward
compatibility?

 ■ Integrity Does the package safeguard data from loss, corruption, or unauthorized access?

 ■ Security Does the package permit control over which users are allowed to access the system
or use specific functions? Can you define the necessary user privilege levels? Particularly for
SaaS solutions, evaluate the service level agreements very carefully against your requirements.

Evaluating solutions
Many commercial packages purport to provide canned solutions for some portion of your enterprise
information-processing needs. Do some initial market research to determine which packages are
 viable candidates deserving further consideration. Then you can use the requirements you identified
as evaluation criteria in an informed COTS software selection process.

One evaluation approach includes the following sequence of activities (Lawlis et al. 2001):

1. Weight your requirements on a scale of 1 to 10 to distinguish their importance.

2. Rate each candidate package as to how well it satisfies each requirement. Use a rating of 1 for
full satisfaction, 0.5 for partial satisfaction, and 0 for no coverage. You can find the information
to make this assessment from product literature, a vendor’s response to a request for proposal
(RFP), or direct examination of the product. Keep in mind that an RFP is an invitation to bid on
a project and might not provide information that reflects how you intend to use the product.
Direct examination is necessary for high-priority requirements.

3. Calculate the score for each candidate based on the weight you gave each factor, to see which
products appear to best fit your needs.

 CHAPTER 22 Packaged Solution Projects 409

4. Evaluate product cost, vendor experience and viability, vendor support for the product,
 external interfaces that will enable extension and integration, and compliance with any
 technology requirements or constraints for your environment. Cost will be a selection factor,
but evaluate the candidates initially without considering their cost.

You might consider which requirements are not met by any of the candidate packages and will
require you to develop extensions. These can add significant costs to the COTS implementation and
should be considered in the evaluation process.

Recently, my organization wanted to select a requirements management tool that—among other
capabilities—allowed users to work offline and synchronize to the master version of the requirements
when the users went back online (Beatty and Ferrari 2011). We suspected that no tools on the market
would offer a good solution for this. We included this capability in our evaluation to ensure that we
uncovered any solutions that did offer it. If we didn’t find one, we would know that it was a capability
we’d have to implement as an extension to the selected package. Alternatively, we’d need to change
our process for editing requirements.

Another evaluation approach is to determine whether—and how well—the package will let the
users perform their tasks by deriving tests from the high-priority use cases. Include tests that explore
how the system handles significant exception conditions that might arise. Walk through those tests to
see how the candidate packages handle them. A similar approach is to run the COTS product through
a suite of scenarios that represent the expected usage patterns, which is called an operational profile
(Musa 1999).

Trap If you don’t have at least one person whose involvement spans all of the evaluations,
there is no assurance that comparable interpretations of the features and scores were used.

The output of the evaluation process is typically an evaluation matrix with the selection
 requirements in the rows and various solutions’ scores for each of those requirements in the columns.
Figure 22-2 shows part of a sample evaluation matrix for a requirements management tool.

410 PART III Requirements for specific project classes

FIGURE 22-2 A sample of a packaged solution evaluation matrix for a requirements management tool.

Multi-stage evaluation
When I wrote the requirements for selecting a requirements management tool for our own
consulting teams to use, I worked with the teams to identify the user classes and use cases for
the tool. Although the primary users were business analysts, there were also a few use cases
for managers, developers, and customers. I defined use cases by name and used my familiarity
with the use cases to identify desired features. I created a traceability matrix to minimize the
 likelihood that any use cases or features would be missed.

We started with 200 features and 60 vendor choices, which were far too many for our
 evaluation timeline. We did a first-pass evaluation to eliminate most of the candidate tools.
Our first pass considered only 30 features that we deemed the most important or most
likely to distinguish tools from one another. This initial evaluation narrowed our search to
16 tool choices. Then we evaluated those 16 against the full set of 200 features. This detailed
 second-level evaluation resulted in a list of five closely ranked tools, all of which would clearly
meet our needs.

In addition to an objective analysis, it's a good idea to evaluate candidate packages by using
a real project, not just the tutorial project that comes with the product. We ended up adding
a third level of evaluation to actually try each of those five tools on real projects so we could
see which one most closely reflected the evaluation scores in practice. The third phase of the
 evaluation allowed us to select our favorite tool from the high-scoring ones.

 CHAPTER 22 Packaged Solution Projects 411

Requirements for implementing packaged solutions

After you decide to implement a selected packaged solution, there is still more requirements work
to do. Figure 22-3 shows that the spectrum of effort required to make a packaged solution useful
ranges from using the package as is, right out of the box, to performing considerable requirements
 specification and software development for extensions. Table 22-1 describes these four types of COTS
package implementations, which are not mutually exclusive. Any of these implementations might also
require making infrastructure changes in the operating environment, such as upgrading operating
systems or other software components that interact with the package.

FIGURE 22-3 A spectrum of implementation effort for packaged solutions.

TABLE 22-1 COTS package implementation approaches

Type of COTS implementation Description

Out-of-the-box Install the software and use it as is.

Configured Adjust settings in the software to suit your needs without writing new code.

Integrated Connect the package to existing systems in your application ecosystem;
 usually requires some custom code.

Extended Develop additional functionality with custom code to enhance the package’s
capabilities to close needs gaps.

One advantage of purchasing a COTS solution is that it might provide useful capabilities that you
hadn’t originally sought. You typically select the package based on what you know you need. However,
during implementation, you might discover valuable features that you hadn’t even thought of. This can
change the amount of work needed to install the package to exploit the additional features.

Configuration requirements
Sometimes you can use a package just as it comes from the vendor. More often, you’ll need to
adjust various configuration parameters in the package to better meet your needs. Configuration
 requirements are essential to most successful COTS implementations. One approach is to define
 configuration requirements for one process flow, use case, or user story at a time. Walk through user
manuals for the purchased system to learn how to execute a specific task, looking for settings that
need to be configured to suit your environment. Consider the full set of business rules when you are
configuring the system, not just those you examined during the selection process. It might be helpful
to create decision tables and decision trees to model these requirements. Many COTS solutions come
with predefined mechanisms to specify roles and permissions. Use a roles and permissions matrix,
such as the one shown in Figure 9-2 in Chapter 9, “Playing by the rules,” to define which roles to
 create and what permissions those roles should have.

412 PART III Requirements for specific project classes

Integration requirements
Unless the packaged solution is used in a standalone mode, you’ll need to integrate it into your
 application environment. This integration involves understanding the external interfaces the package
will present to each of the other applications with which it must interact. Precisely specify the
 requirements for interchanging data and services between the package and other components in
your environment. You will likely have to create some custom code to make all the parts fit together.
This code could take the form of:

 ■ Adapters that modify interfaces or add missing functionality.

 ■ Firewalls that isolate the COTS software from other parts of the enterprise.

 ■ Wrappers that intercept inputs to and outputs from the package and modify the data as
 necessary to be used on the other side of the interface (NASA 2009).

Extension requirements
One common goal of COTS implementations is to minimize customizations to the solution. Otherwise,
you should just custom build the application yourself. In most COTS projects, though, there will
be gaps between what the organization needs and what the package delivers. For each such gap,
decide whether to ignore it (remove the requirement and just live with the tool); change how you
do something outside the solution (modify the business process); or build something to bridge the
gap (extend the solution). If you are extending the COTS solution, you’ll need to fully specify the
 requirements for those new capabilities just as you would for any new product development. If
you are implementing a COTS solution to replace an older system, look at the practices related to
 replacing a system that were discussed in Chapter 21, “Enhancement and replacement projects.”
While analyzing the requirements for any components to be added, assess whether they could
 negatively affect any existing elements or workflows in the package.

Data requirements
Begin with the data requirements used in the selection process. Map data entities and attributes from
your existing data dictionary to the COTS entities and attributes. There will likely be areas where the
solution doesn’t handle some of your existing data entities or attributes. As with functional gaps,
you’ll need to decide how to handle data gaps, typically by adding attributes or repurposing an
 existing data structure in the COTS solution. Otherwise, when you convert data from any existing
systems into the COTS solution, you will likely lose any data that was not properly mapped. Use report
tables to specify requirements for deploying existing or new reports, as described in Chapter 13,
“Specifying data requirements.” Many COTS packages will provide some standard report templates to
start with.

 CHAPTER 22 Packaged Solution Projects 413

Business process changes
COTS packages are usually selected because implementing and maintaining them is expected to
be less expensive than building custom software. Organizations need to be prepared to adapt their
 business processes to the package’s workflow capabilities and limitations. This is different from most
development projects where the software is designed specifically to accommodate existing or planned
processes. In fact, a COTS solution that can be fully configured to meet your existing processes is
likely to be expensive and complex. The more buttons and knobs you can adjust, the harder it is to
 configure. You need to strike a balance between implementing all of the desired user functionality and
only what the COTS product offers out of the box (Chung, Hooper, and Huynh 2001).

Start with the user requirements identified during the selection process. Develop use cases or
swimlane diagrams to understand how the tasks will change when users execute their tasks in the
COTS solution. Users might resist the new packaged solution because it looks or behaves differently
than their existing systems, so involve them early in this process. Users are more willing to accept the
new solution if they contributed to shaping the necessary changes in their business processes.

My team implemented a packaged solution for an insurance company to let them meet new
compliance requirements. We started by modeling the as-is business processes. Then we studied
the package’s manuals to learn basic information about how to use the product. Based on the as-is
 models, we created to-be business processes to reflect how the users would complete their tasks
 using the COTS solution. We also created a data dictionary for their existing system and added a
column to reflect the mapped field in the COTS solution. The users helped develop all of these work
products, so they weren’t surprised by the new system when it was deployed.

Common challenges with packaged solutions

The following are common challenges that you might encounter when selecting or implementing a
packaged solution:

 ■ Too many candidates There might be many solutions on the market that meet your needs
at first glance. Select a short list of criteria to narrow the candidate list to a few top choices for
a more refined evaluation.

 ■ Too many evaluation criteria It might be hard to focus the evaluation criteria to only
the most important ones without doing in-depth requirements specification. Use business
 objectives to help select the most important requirements as criteria. If you narrow the
 candidate package choices down to only a few, you can evaluate them against a long list of
criteria.

 ■ Vendor misrepresents package capabilities In the typical packaged software purchasing
process, the vendor sales staff sells their solution to the customer organization’s decision
 makers, and then engages a technical implementation team to provide in-depth knowledge
about the product. That in-depth knowledge might prove to conflict somewhat with the
customer’s understanding of the product’s capabilities based on the sales pitch. It’s a good

414 PART III Requirements for specific project classes

idea to ask to have a vendor technical specialist participate during the sales cycle. Determine
whether you can have a healthy relationship with the vendor that enables both parties to
be successful. The vendor is your business partner, so make sure they can play that role
 constructively.

 ■ Incorrect solution expectations Sometimes a solution looks great during vendor demos,
but it doesn’t work like you expect after installation. To avoid this, during the selection
 process, have the vendor walk through your actual use cases so you can see how well the
 solution matches your expectations.

 ■ Users reject the solution Just because an organization bought the software, there is no
guarantee that the users will be receptive to it. As with all software development projects,
engage users in the selection process or early in the implementation to make sure their needs
are clearly understood and addressed to the extent possible. Expectation management is an
important part of successful packaged solution implementation.

Buying, configuring, and extending a commercial software package often is a sensible business
 alternative to building a custom solution. Packages can provide a lot of flexibility, but at the same
time they come with built-in limitations and constraints. You don’t want to have to pay for a lot
of features that your organization doesn’t need. Nor do you want to build a fragile structure of
 extensions and integrations that might break with the next release of the package from the vendor.
A careful package selection and implementation process will help you find the optimum balance of
capability, usability, extensibility, and maintainability in a commercial packaged software solution.

 415

C H A P T E R 2 3

Outsourced projects

Rather than building systems by using their own staff, many organizations outsource their
 development efforts to contract development companies. They might outsource the work to take
advantage of development skills they do not have available in-house, to augment their internal staff
resources, to save money, or to accelerate development. The outsourced development supplier could
be located physically nearby, on the other side of the world, or anywhere in between. Outsourced
teams in other countries are typically referred to as being offshore. Offshoring is sometimes called
nearshoring if the supplier’s country is close by or shares a language and/or culture with the acquirer’s
country.

All outsourced projects involve distributed teams, with people working in two or more locations.
The role of a business analyst is even more important on these projects than on a co-located
 project. Often, the BA’s job is harder. If the team members are all in one location, developers can
walk down the hall to ask the BA a question or to demonstrate newly developed functionality.
This close collaboration can’t happen in the same way with outsourced development, although
 modern communication tools certainly help. Compared to in-house development, outsourced—and
 particularly offshore—projects face requirements-related challenges such as the following:

 ■ It’s harder to get developer input on requirements and to pass along user feedback on
 delivered software to developers.

 ■ A formal contractual definition of requirements is necessary, which can lead to contention if
differences of interpretation are discovered late in the project.

 ■ There might be a bigger gap between what the customers ultimately need and the product
they get based on the initial requirements, because there are fewer opportunities to adjust the
project’s direction along the way.

 ■ It might take longer to resolve requirements issues because of large time zone differences.

 ■ Communicating the requirements is more difficult because of language and cultural barriers.

 ■ Limited written requirements that might be adequate for in-house projects are insufficient
for outsourced projects, because users and BAs are not readily available to answer developer
questions, clarify ambiguities, and close gaps.

 ■ Remote developers lack the organizational and business knowledge that in-house developers
acquire with experience.

416 PART III Requirements for specific project classes

Although the original arguments for offshoring included anticipated cost savings based on hourly
staff costs, many offshore projects actually experience a net increase in cost. Contributing factors
 include the additional effort required for more precise requirements, likely additional development
iterations to close gaps because of unstated implied and assumed requirements, the additional
 overhead of the contractual arrangements, initial costs in developing effective norms of team
 behavior between the groups, and the costs of increased project communications and oversight
throughout.

Software development work is the most common type of activity that is outsourced, but
 testing can also be outsourced. Outsourced testing presents the same challenges as outsourced
 development. Both types of activities rely on a solid foundation of clear requirements for success.

This chapter suggests techniques that are most important to enable successful requirements
 development and management on outsourced projects. This chapter does not discuss the decision
process that leads to outsourcing the development or the process to select a vendor for the work.

Appropriate levels of requirements detail

Outsourcing product development to a separate company demands high-quality written
 requirements, because your direct interactions with the development team are likely to be minimal.
As shown in Figure 23-1, you’ll be sending the supplier a request for proposal (RFP), a requirements
specification, and product acceptance criteria. Early on, both parties will engage in a review and
will reach agreement, perhaps with negotiation and adjustments, before the supplier initiates
 development. The supplier will deliver the finished software product and supporting documentation.

FIGURE 23-1 Requirements are the cornerstone of an outsourced project.

With outsourcing, you won’t have the opportunities for day-to-day clarifications, decision making,
and changes that you enjoy when developers and customers work in close proximity. Particularly with
offshore development, you should anticipate that the supplier will build exactly what you ask them
to build. You will get no more and no less, sometimes with no questions asked. The supplier won’t
implement the implicit and assumed requirements you thought were too obvious to write down. As a
result, poorly defined and managed requirements are a common cause of outsourced project failure.

 CHAPTER 23 Outsourced projects 417

If you distribute an RFP, suppliers need to know exactly what you’re requesting before they can
produce realistic responses and estimates (Porter-Roth 2002). Because of the information that has to
go into the RFP, you might have to develop more detailed requirements earlier in the project than on
in-house development projects (Morgan 2009). At a minimum, specify a rich set of user requirements
and nonfunctional requirements for the RFP. After the project is under way, you will likely need to
specify all of the requirements with more precision than if an in-house team were building the same
system, particularly if the outsourced team is offshore. If you are ever inclined to err on the side
of overspecifying requirements, outsourced projects are the place to do so. It’s the requirements
author’s responsibility to express the acquirer’s expectations clearly. If certain deliverables must be
produced for the acquirer to maintain a process certification or for compliance reasons, be sure to
include those particulars as part of the RFP as well.

As with in-house development, visual requirements models augment functional and nonfunctional
requirements for outsourced teams. Creating multiple representations of requirements increases
the bandwidth of communication, so you might find it beneficial to create more models than if an
in-house team were developing the software. Using representations like visual models to supplement
written specifications is even more valuable if you are working across cultures and native languages,
because it gives developers something to check their interpretations against. However, be sure the
developers can understand the models you send them. If they aren’t familiar with the models, that
only raises the potential for confusion. One development manager was concerned that a written
 requirements specification plus mock-ups would not provide enough information for his offshore
team to correctly implement a complex user interface (Beatty and Chen 2012). The display-action-
response model described in Chapter 19, “Beyond requirements development,” was developed
 specifically to meet the needs of this outsourced project.

Prototypes can also help clarify expectations for the supplier team. Similarly, the supplier can
 create prototypes to demonstrate to the acquirer their interpretation of the requirements and how
they plan to respond to them. This is a way to create more customer-development interaction points
to make course adjustments early in the project rather than late. Chapter 15, “Risk reduction through
prototyping,” has more information about creating and using prototypes.

Watch out for the ambiguous terms from Table 11-2 in Chapter 11, “Writing excellent
 requirements,” that cause so much confusion. I once read an SRS intended for outsourcing that
contained the word “support” in many places. The business analyst who wrote the SRS acknowledged
that a contractor who was going to implement the software wouldn’t know just what “support”
meant in each case. A glossary is valuable when dealing with people who don’t share the tacit
knowledge held by those who are familiar with the acquiring company’s environment. The structured
 keyword notation called Planguage (see Chapter 14, “Beyond functionality”) can be used to describe
 requirements very explicitly for outsourced development (Gilb 2007).

418 PART III Requirements for specific project classes

Acquirer-supplier interactions

In the absence of real-time, face-to-face communication, you need other mechanisms to stay on
top of what the supplier is doing, so arrange formal touch points between the acquirer and the
 supplier. In some outsourced projects, the supplier helps to write the functional requirements
 (Morgan 2009). This increases the initial costs associated with the outsourcing, but it also reduces
the risk of misunderstandings.

Plan time for multiple review cycles of the requirements. Use collaboration tools to facilitate peer
reviews with participants in multiple locations (Wiegers 2002). Be aware, though, that members
of certain cultures find it difficult to offer even constructive criticism of another person’s work.
 Authors in such a culture whose work is being reviewed could take review comments personally
(Van Veenendaal 1999). The result is that the reviewers might sit politely during the peer review,
 saying nothing because they don’t want to offend the author. This is courteous and considerate, but
it does not contribute to a shared goal of discovering requirements defects as early as possible to
make development cheaper and faster. Discover whether this cultural characteristic applies to your
 outsource partners so you can determine realistic expectations and strategies for your peer reviews.

The project schedule for one failed offshore project included a one-week task named
“Hold requirements workshops,” followed immediately by tasks to implement several subsystems
 (Wiegers 2003). The supplier forgot to include vital intermediate tasks to document, review,
and revise the requirements specifications. The iterative and communication-intensive nature of
 requirements development dictates that you must allow sufficient time for these review cycles. The
acquirer and the supplier on this project were in different countries, at opposite ends of the same
continent. They experienced slow turnaround on the myriad questions that arose as the SRS cycled
back and forth. Failure to resolve requirements issues in a timely way derailed the schedule and
 contributed to eventually sending the two parties into litigation.

Peer reviews and prototypes provide insight into how the supplier is interpreting the requirements.
Incremental development is another risk-management technique that permits course corrections
when a misunderstanding sends the supplier’s developers in the wrong direction. If the supplier raises
questions, document them and integrate the answers into the requirements (Gilb 2007). Monitor the
resolution of the questions in an issue-tracking tool to which both supplier and acquirer teams have
access, as described in Chapter 27, “Requirements management practices.”

Contract development companies that work on many types of projects might lack the specific
domain or company knowledge that is critical to making the right decisions. Consider delivering
some training to the contractor staff about the project and application domain prior to requirements
review, to try to bridge this knowledge gap.

Outsourced projects often involve teams with disparate company cultures and attitudes. Some
suppliers will be so eager to please that they agree to outcomes they cannot deliver. When an error
is brought to their attention, they might strive to save face by not fully accepting responsibility for
the problems. Additional cultural differences arise with offshore suppliers. Some developers might
hesitate to ask for help or clarification. They might be reluctant to say “no” or “I don’t understand.”
This can lead to misinterpretations, unresolved issues, and unachievable commitments. To avoid these

 CHAPTER 23 Outsourced projects 419

issues, employ elicitation and facilitation techniques such as reading between the lines for what isn’t
said and asking open-ended questions to gain accurate visibility into issues and status. Consider
 establishing ground rules with your team members, both local and remote, to expressly define how
the team members should interact when they work together.

Developers whose first language is different than the language in which the requirements are
 written are likely to interpret requirements literally, not picking up nuances or fully appreciating
the implications. They might make user interface design choices that you wouldn’t expect. Things
as diverse as date formats, systems of measurement (such as United States customary units, SI units,
or imperial units), the symbolism of colors, and the order of people’s given and family names can
vary between countries. When interacting with people who have a different native language from
yours, make your intentions and desires as clear as possible in simple language. Avoid the use of
 colloquialisms, jargon, idioms, and references to pop culture that could be misconstrued.

One offshore team took a customer’s requirements very literally. It was as though the developers
translated each requirement from English into their own language, coded it, moved on to the next
 requirement, and continued until they reached the end of the list. The product that was delivered
to the customer technically met the requirements, but it fell far short of meeting expectations.
The developers weren’t trying to be difficult. They just didn’t understand the language of the
 requirements very well. Consequently, they never fully grasped the essence of what they were
 building. The customer brought most of the development work back in-house and effectively had to
pay twice to have the software developed correctly.

Trap Don’t assume that suppliers will interpret ambiguous and incomplete requirements
the same way that you do. The burden is on the acquirer to communicate all necessary
 information to the supplier, using frequent conversations to resolve requirements
 questions. But the burden is on the supplier to proactively ask clarifying questions instead
of making assumptions that could be incorrect.

Change management

At the beginning of the project, establish a mutually acceptable change control process that all
participants can use, no matter where they’re located. Using a common set of web-based tools for
handling change requests and tracking open issues is essential. Change always has a price, so using
change management practices to control scope creep is vital in a contract-development situation.
Identify the decision makers for proposed changes and the communication mechanisms you’ll use to
make sure the right people are kept informed. Most outsourced work has contractual agreements in
place to describe exactly what the development team must deliver. The contract should specify who
will pay for various kinds of changes, such as newly requested functionality or corrections made in the
original requirements, and the process for incorporating the changes into the product. When there
is misalignment between requirements and delivery, the arguments that ensue are consequently also
contractual in nature. Unfortunately, often both parties lose (McConnell 1997).

420 PART III Requirements for specific project classes

Acceptance criteria

In keeping with Stephen Covey’s recommendation to “begin with the end in mind” (Covey 2004),
define in advance how you’ll assess whether the contracted product is acceptable to you and your
customers. How will you judge whether to make the final payment to the supplier? If the acceptance
criteria are not fully satisfied, who is responsible for making corrections, and who pays for those?
Include acceptance criteria in the RFP so the supplier knows up front what to expect. Validate the
 requirements before you give them to the outsourced team, to help ensure that the delivered
 product will be on target. Chapter 17, “Validating the requirements,” suggested some approaches to
defining acceptance criteria, as well as methods for reviewing and testing requirements.

Properly handled, outsourcing the development work can be an effective strategy to build
your software system. Building collaborative relationships with outsourced development suppliers
is challenging because of distance, language and cultural differences, and potentially competing
 interests. Suppliers might not be motivated to correct any requirement errors or ambiguities
 discovered along the way if they will be paid more to fix the problems following delivery of a
 release candidate. An essential starting point on a journey to a successful outsourced development
 experience is a set of high-quality, complete, and explicitly clear requirements. If the requirements
you provide to the supplier are incomplete or misunderstood, failure of the project is probably at
least as much your fault as theirs.

 421

C H A P T E R 2 4

Business process automation
projects

Organizations often choose to fully or partially replace manual business processes with software to
lower operational costs. In fact, most corporate IT projects involve some amount of business process
automation, including the Chemical Tracking System and other projects we have mentioned in this
book. Processes can be automated by building a new software system, extending an existing system,
or buying a COTS package. If you’re working on a business process automation project, there are
several requirements techniques to consider using to mesh the new systems and updated business
processes.

Because business process automation is so prevalent in software projects, many of the techniques
described elsewhere in this book are relevant. This chapter presents a structure to help you tackle
these sorts of projects and points out the techniques from the rest of the book that are most
 applicable. It also presents some additional techniques that aren’t covered elsewhere in the book.

Here’s an illustration of how business process automation projects sometimes go. One customer
of ours had a spreadsheet that used approximately 300 inputs from different sources to calculate a
risk profile for loans. The business stakeholders wanted software that would gather the data inputs
and run the risk profile calculation, because it took a long time for their risk managers to execute
this frequently repeated process. We analyzed where their users spent the bulk of their time on this
process and quickly determined that assembling the data that fed into the spreadsheet took the
most time. The calculations the spreadsheet performed were nearly instantaneous. The development
team already had access to most of the data sources to populate the spreadsheet, so a manageable
first phase of the project was to automatically pull that data into the spreadsheet. The business
users would continue to manually assemble the rest of the inputs for awhile. In the second phase,
 development would automate the rest of the data inputs. The team decided they would not build
software to replicate the spreadsheet calculations because the calculations were fast enough already.

This case study illustrates a typical business process automation project. The business identified a
time-consuming, repetitive activity that they thought could be accelerated with the help of suitable
software. Some analysis revealed the bottlenecks and identified possible efficiencies. This led to
requirements and project plans for a partial solution that would save the business considerable time,
reduce costs, and reduce data input errors.

422 PART III Requirements for specific project classes

Modeling business processes

Eliciting requirements to automate business processes begins by modeling those processes. By
 identifying tasks that users need to accomplish with the system, the business analyst can derive the
necessary functional requirements that will let users perform those tasks. The processes that describe
how the business currently works are called the as-is processes. Those that describe the envisioned
future state of how the business will operate are called the to-be processes.

Business process acronyms galore
Extensive resources are available on business process analysis (BPA), business process
 reengineering (BPR), business process improvement (BPI), business process management (BPM),
and business process model and notation (BPMN). This chapter is not a comprehensive resource
on those topics. The following list provides some basic definitions of these concepts and their
purposes, though you will find significant overlap in these definitions:

 ■ Business process analysis (BPA) involves understanding the processes as a basis for
 improving them. It is similar to process modeling, as described in the Business Analysis
Body of Knowledge (IIBA 2009).

 ■ Business process reengineering (BPR) consists of analyzing and redesigning business
processes for greater efficiency and effectiveness. BPR could target specific process areas,
or it could involve a complete overhaul of an organization’s processes from the ground up
(Hammer and Champy 2006).

 ■ Business process improvement (BPI) involves measuring and looking for opportunities
for incremental process improvement (Harrington 1991). Tools from Six Sigma and lean
 management practices are often used for BPI efforts (Schonberger 2008).

 ■ Business process management (BPM) encompasses understanding all of the enterprise’s
business processes, analyzing them to make them more efficient and effective, and
working with organizations to make changes to the processes (Harmon 2007; Sharp and
McDermott 2008). A BPM initiative might involve some combination of BPA, BPR, and BPI.

 ■ Business process model and notation (BPMN) is a graphical notation for modeling business
processes (OMG 2011). BPMN can be applied in any of these approaches to business
 process modeling. It is a robust language of symbols that can be useful when the basic
syntax of a swimlane diagram doesn’t suffice.

A variety of methods and tools implement BPA, BPR, BPI, and BPM, which are appropriate
to employ if your project is undergoing major business process redesign. All four techniques
are established approaches for understanding the business challenges and opportunities. After
an organization decides that a software component is part of the solution for improving their
business processes, the requirements engineering techniques described in this book become
valuable.

 CHAPTER 24 Business process automation projects 423

Using current processes to derive requirements
The following steps will help you model a set of business processes and elicit requirements for an
 application that automates some or all of them. The sequence of these steps is not always the same,
and you might not need all of them on every project. In some cases, the to-be process flows can
come earlier in the sequence as a way of driving a gap analysis or to help ensure that the new system
is more just than the old system dressed up in a new outfit. In general, though, consider following
these steps:

1. As always with software development, start by understanding the business objectives, so you
can link each objective to one or more processes.

2. Use organization charts to find all of the affected organizations and potential user classes for
a future software solution.

3. Identify all of the relevant business processes involving participation of those user classes.

4. Document the as-is business processes by using flow charts, activity diagrams, or swimlane
diagrams. Any of the three models is a practical choice for representing users’ tasks. Users can
quickly read them and point out any missing or incorrect steps, roles, or decision logic
(Beatty and Chen 2012). You’ll need to judge how far down into the as-is modeling you need
to drill to get the necessary information to perform the remaining steps in this list.

5. Analyze the as-is processes to determine the biggest opportunities for improvement from
automation. If this is not obvious, you will need to gather some data about how long it takes
to execute individual steps or full processes. You can model these measures by using the key
performance indicator model (KPIM) described later in this chapter. This step helps identify
opportunities and, if a software solution is deemed appropriate, set the scope of the software
development part of the project. Make sure you are addressing true bottlenecks in the
 process, so that accelerating them will speed up the overall process.

6. For the processes that are in scope for automation, walk through each as-is process flow with
the appropriate stakeholders to elicit software requirements to support each step in the flow.
The techniques described in Chapter 7, “Requirements elicitation,” will be valuable during
this activity. If applicable, you might also look for industry standards for the process you are
 modeling, to help you set improvement goals.

7. Trace the requirements to the process flow steps so that it is obvious if you are missing
 requirements for any specific steps. If you have process steps without requirements traced to
them, confirm that those steps are not being automated as part of the project.

8. Document to-be process flows to help the business prepare for the new system and to identify
any gaps that the new system might leave in their process. You might also create use cases
to provide more detail about how users will interact with the new system. This information
helps developers ensure that they create a system to meet the business’s expectations and
helps users understand what they are getting. The to-be process flows and use cases can be
used to develop training materials for the new system and to identify any other transition

424 PART III Requirements for specific project classes

 requirements. This step helps stakeholders to understand not only what is coming, but what
manual activities and automated systems need to be unplugged.

When software isn’t the solution
Sometimes you don’t need to automate anything to improve business processes. One company
had an internal website where it stored the names of people who worked on specific client
projects: sales representative, implementation consultant, and so on. The sales representative
data was nearly always accurate, but the implementation consultant data was wrong more than
half the time. This resulted in people having to chase down who to contact. When you multiply
the 2 or 3 minutes that each of the 200 people in the business unit spent on this activity at least
once a week for a year’s time, the cost ended up being enormous. The problem: there was no
process in place between the sales and implementation teams to update the implementation
project data after the project started. The solution: figure out who in sales would serve as the
contact for gathering and manually updating contact information for the implementation team
for each client. New software wouldn’t have helped with this process shortcoming.

Designing future processes first
There is a chicken-and-egg problem with information systems and business processes. In some cases,
people expect that building a new system will drive improvements or changes in the processes.
However, the way the application is used in practice might not enable the desired business process
changes. Process changes involve culture changes and user education that a software system cannot
deliver. Some customers believe that the development team is responsible for a successful application
rollout and for guiding the implementation of associated business processes. Users won’t embrace a
new system just because a developer says to, though.

In many cases, it’s better to devise the new business processes first and then assess the needed
changes in your information systems architecture. Properly supporting a new business process might
involve changing multiple systems. Thinking about which users will use the system and how they will
use it to do their jobs will help you define the correct user requirements, which in turn will maximize
user adoption of the new system. Concurrent development of new processes and new applications
helps ensure that the two merge nicely.

Modeling business performance metrics

It’s important to understand which business performance metrics are most important to address
with business process automation so that the development work can be prioritized. You might
have success metrics to use as a starting point from the vision and scope document (see the “1.4
 Success metrics” section in Chapter 5, “Establishing the business requirements”). If not, the business
 performance metrics developed here will help complete the vision and scope. For the spreadsheet

 CHAPTER 24 Business process automation projects 425

example earlier in the chapter, you might care about how long it takes to populate the spreadsheet
manually and how fast you need it to be in the automated solution.

KPIMs associate business processes with their important performance metrics. KPIMs are drawn as
flowcharts, swimlane diagrams, or activity diagrams with key performance indicators (KPIs) overlaid
on the related steps. Figure 24-1 shows an example KPIM (drawn as a flowchart) for the spreadsheet
project to automate a risk profile calculation spreadsheet.

FIGURE 24-1 Example KPIM for a loan risk profile calculation process.

The most important processes to automate are those that have the most important metrics to
maintain or improve. Determine a current baseline value for each metric, so that when you automate
the process, you can tell if they are improving as desired. Keep in mind that you might degrade
certain business performance metrics to improve others. Chapter 14, “Beyond functionality,” discusses
making trade-offs between quality attributes. The same concept applies here, but in this case the
trade-offs are to favor one performance metric over another, perhaps in different parts of the
 business. Tracing requirements to the process flow steps, which in turn are mapped to KPIs, allows you
to prioritize the requirements to be implemented.

You might need to build functionality into the system to periodically measure the relevant KPIs
to evaluate the effectiveness of the newly automated solution, raising a warning flag if a KPI falls
out of tolerance. In the spreadsheet example, the system could measure how much time it takes to
 aggregate data inputs to determine if the system is achieving the two-minute goal. If not, further
changes might be needed.

Business users often think it’s always best to automate a manual process if you can. However,
there are costs associated with all development projects. Business analysis helps you determine
which processes are worth automating and which are not. As an example, Seilevel (Joy’s company)
uses a COTS solution for managing the sales pipeline and another for managing human resource
 allocations. We run a report from the sales pipeline tool and manually input the upcoming projects
into the resource allocation tool to forecast resource needs. Our consulting manager has to do this at
least once a week. It takes him approximately 30 minutes each week to run the sales pipeline report,
decide which projects from sales should be transferred, when those projects will start, and how
many resources each one needs. We evaluated whether we should enable the integration feature to

426 PART III Requirements for specific project classes

automatically transfer the data from one tool to the other. Although integrating the tools is as simple
as enabling a feature, it would require custom development to automate the decision process our
consulting manager goes through. Specifying and automating that decision logic would require more
effort than we can justify.

Good practices for business process automation projects

Many of the practices from the rest of this book are important to business process automation
 projects. Table 24-1 lists the most important practices, describes how they apply to such projects, and
indicates where to find more information in other chapters.

TABLE 24-1 A road map to chapters that address useful business process automation techniques

Technique Chapter

Identify user classes that have processes that might need to be
automated.

Chapter 6, “Finding the voice of the user”

Create or extend data models for information that is being
handled manually.

Chapter 13, “Specifying data requirements”

Create a roles and permissions matrix to capture security
 requirements that previously were enforced manually.

Chapter 9, “Playing by the rules”

Identify business rules that must be automated when processes
they affect are automated.

Chapter 9, “Playing by the rules”

Create flowcharts, swimlane diagrams, activity diagrams, or use
cases to show how users currently perform tasks and how they
will perform them after automation.

Chapter 8, “Understanding user requirements” and
Chapter 12, “A picture is worth 1024 words”

Use data flow diagrams (DFDs) to identify processes that
could be automated, and create new DFDs to show how newly
 automated processes interact with existing parts of the system.

Chapter 12, “A picture is worth 1024 words”

Adapt business processes to permit use of a COTS solution. Chapter 22, “Packaged solution projects”

Create trace matrices to map process steps to requirements. Chapter 29, “Links in the requirements chain”

You will likely apply the concepts from this chapter on almost every information systems
 project you work on. When you encounter part or all of a business process to be automated, use
the framework in this chapter to ensure that you fully understand the goals of automating the
 process and the requirements to support it. This will help everyone understand user expectations so
 development can deliver a successful solution that yields the desired business benefits.

 427

C H A P T E R 2 5

Business analytics projects

Most normal people don’t look at data sets just for fun. They study views of the data to make
 decisions about what to do, be it a decision to take some specific action or a decision to do nothing
at all. In some cases, software systems automate the decision-making processes by interpreting data
and taking actions based on predefined algorithms and rules. The main purpose of business analytics
(also called business intelligence or reporting) projects is to develop systems that turn large and often
highly complex data sets into meaningful information from which decisions can be made. Many other
classes of projects might have business analytics components; the concepts presented in this chapter
apply to those projects as well.

The decisions that people make using business analytics systems can be strategic, operational, or
 tactical. An executive might look at his sales team’s global performance dashboard to decide who to
promote (tactical), which products need different marketing strategies (operational), or which products to
target by markets (strategic). Generally speaking, all software systems that include an analytics component
should enable users to make decisions that improve organizational performance in some dimension.

There are many software applications commercially available to implement business analytics
 solutions. The business analyst who wants to use one of those applications might need to perform
 requirements activities for tool selection and implementation, using the process described in Chapter 22,
“Packaged solution projects.”

This chapter is meant only as an introduction to issues to consider when developing software
requirements for business analytics projects. Bert Brijs (2013) authored an extensive resource for
performing business analysis on these types of projects. He provides many definitions of the core
concepts, specific domain examples, questions to ask, and issues you might encounter.

Overview of business analytics projects
For most information systems, reports represent a small portion of the functionality implemented.
However, on business analytics projects, complex reports and the ability to manipulate their contents
constitute the core functionality. Often, the output of analysis is embedded in applications that
 automate decision making. Business analytics projects have multiple layers, all of which might need
to have software requirements defined for them. These projects must deal with understanding
what data is required, the operations performed on the data, and the formatting and distribution of
the data for use (Figure 25-1). There is no rigid sequence to these activities. A user might work with

428 PART III Requirements for specific project classes

the data, then realize she needs different analysis performed on the data, and perhaps even different
data sources.

FIGURE 25-1 The components of a simple business analytics framework.

In the past, organizations that deployed analytics projects primarily focused on what the
 International Institute for Analytics (2013) calls “descriptive analytics.” This includes looking at reports
that tell stakeholders what is happening—or has happened—in their organization. Recent trends
indicate a shift toward more organizations using “predictive analytics.” Users organize, manipulate,
and analyze information to predict what might happen in the future, as opposed to interpreting the
past. Figure 25-2 shows where various applications of analytics fit on a spectrum ranging from more
descriptive to more predictive.

FIGURE 25-2 A spectrum of types of analytics (Patel and Taylor 2010; Davenport 2013).

 CHAPTER 25 Business analytics projects 429

As organizations embark on analytics projects, business analysts will find themselves tasked
with eliciting and specifying requirements for these projects, but perhaps not knowing where to
start. The strategic possibilities, the new analytics technologies, and the rapidly growing quantity of
 collected data can be intimidating. The end products of requirements development for a business
 analytics project will be similar to those for any other project: a set of business, user, functional, and
 nonfunctional requirements. However, many of the requirements practices described in this book
are not sufficient to elicit and specify requirements for these types of projects. Process flows, use
cases, and user stories can reveal that someone needs to generate analytics results, and performance
 requirements describe how quickly they need results, but none of these uncovers the complex
 knowledge required to implement the system.

If an organization is new to analytics, it should pilot a few small projects to demonstrate the value
of analytics and to learn from the experience (Grochow 2012). Analytics projects are good candidates
for incremental development if the team can identify the most important or most time-critical
 decisions that can be implemented in the next development iteration.

Another reason to consider incremental development is that business stakeholders sometimes
have a hard time articulating and prioritizing the business problems they want to solve with an
 analytics project, particularly if it’s their first. Some stakeholders might have had little practice
 thinking strategically. Others might find it hard to envision the possibilities that analytics technologies
offer beyond their familiar spreadsheets. Users might get so excited about new analytics capabilities
that they overwhelm the development team with features that sound potentially valuable. Elicitation
might need to begin with some education about what new capabilities a business analytics solution
can provide over traditional data reporting tools (Imhoff 2005). Developing the analytics solution in
small chunks will give the users an opportunity to explore the initial capabilities and clarify their ideas
of what they really need.

Requirements development for business analytics projects

As with other software projects, business analytics projects first need to have business objectives
 defined to establish and prioritize the scope of work. If stakeholders request an analytics project,
they’ve already decided on that as a solution and might not have thought through their objectives
carefully. Exploring the underlying business objectives might reveal that business analytics are not
the right solution at all. To help stakeholders state their actual business objectives, you might ask the
following questions:

 ■ Why do you think an analytics solution will help you achieve the desired business outcomes?

 ■ What do you want to accomplish by implementing analytics reporting?

 ■ How do you expect to use analytics to improve your business outcomes?

 ■ How are you hoping to use improved reporting capabilities or prediction results?

430 PART III Requirements for specific project classes

An effective subsequent elicitation strategy is to drive requirements specification based on the
 decisions that stakeholders need to make to achieve their business objectives. Try the following
thought process (Taylor 2013):

1. Describe the business decisions that will be made using outputs of the system.

2. Link those decisions to the project’s business objectives.

3. Decompose the decisions to discover the questions that need to be answered, the hierarchy of
precursor questions that need to be answered to feed the main questions, and what role the
analytics information plays in producing the answers to those questions.

4. Determine how analytics could be applied to assist in making these decisions.

Figure 25-3 outlines an approach to elicit and specify requirements for analytics projects. User
requirements should be defined to describe how the analytics information will be used and what
decisions will be made from it. Understanding the expected usage modes allows you to specify how
the generated information should be distributed to end users and what information they need to see.
This knowledge in turn allows you to define requirements for the data itself and for the analyses to be
performed. The rest of the chapter describes each of these steps in more detail.

FIGURE 25-3 The process to define requirements for business analytics projects.

Prioritizing work by using decisions
On most types of projects, features can be prioritized by considering how they contribute to
 satisfying the business objectives. The same consideration is valid on analytics projects, except that
there aren’t discrete “features” to prioritize. Instead, you use the business objectives to prioritize the
business decisions that the solution will enable, based on how much they contribute to achieving
the objectives. For example, deciding which products to sell will have a greater impact on increasing
 revenue than making decisions about a sales team’s vacation time. Therefore, you would likely
 implement the analytics and reports to determine which products to sell first.

Decisions should be stated as unambiguously as requirements. An example of a good decision
statement is, “The vice president of marketing needs to decide each quarter how much marketing
budget to allocate to each region based on current and targeted sales by region.” As with
 requirements elicitation on other software projects, it’s important to understand the underlying
stakeholder need instead of just focusing on a presented solution. If stakeholders request certain data
or reports, ask questions such as “Why do you need that information?” and “How will the recipient
use that report?” Then work backward to identify their decisions and objectives.

Decision management techniques are available to help stakeholders identify the decisions they
could or should make (Taylor 2012). A decision model that maps information (data) and knowledge

 CHAPTER 25 Business analytics projects 431

(policies or regulations that constrain decisions) to related decisions can help organize the decisions
to permit prioritization (Taylor 2013).

Defining how information will be used
The results of complex analytics must be delivered in a usable form to the stakeholders or systems
that need to act on the information. The BA must also determine how smart the system is—that
is, how much of the decision making is done by a human user and how much is automated in the
 system. This distinction will drive the type of elicitation questions the business analyst will ask.

In one organization, the executive sales team wanted to see a dashboard report every morning
showing multiple views of the data. This report had to include the previous day’s sales by product
line, quarterly sales by product line, total sales compared to competitors’ sales, and sales volume
by price band. They wanted 10 different filters (such as timeframe, increment, and region) that they
could modify to see immediate changes in the reports. For example, if a user noticed a sales issue
within a specific price band, she could change the filter to see a more precise view of the price band
data by region. She could further drill down to look at another layer of detail that shows price band
by region and by product line. This sort of flexibility is a common capability needed by business
 analytics systems.

Information usage by people
After you understand the decisions that users will need to make with the outputs of the analytics
system, you can determine the best ways to deliver the information to them. The business analyst will
need to consider the following three aspects of information delivery:

 ■ Delivery mechanism How is information physically made available to the end user? What
tools can the user employ to view it: email applications, portals, mobile devices, others?

 ■ Format In what format is the information delivered: reports, dashboards, raw data, other?

 ■ Flexibility To what extent must the user be able to manipulate the information following
delivery?

The spectrum of information delivery ranges from having each user create his personal view of the
data (a local copy of a spreadsheet), to distributing a central aggregation of the data to users (emailed
spreadsheets with standard dashboard views), to exposing data for users to manipulate on their own
(a portal that permits ad hoc querying of a set of data).

As with requirements for other types of software systems, information usage on an analytics project
is most commonly captured in the form of user requirements and report specifications. Techniques
 described elsewhere in the book—such as process flows, use cases, and user stories— apply for
 identifying how users plan to use the information in their daily tasks. Rather than focusing on specifying
the data fields in the reports, though, use the decisions to be made to determine how users should
receive the analytics output, how it should look, and how they need to be able to manipulate it.

432 PART III Requirements for specific project classes

Report tables, as described in Chapter 13, “Specifying data requirements,” are useful on most
 analytics projects. You might have to extend these models for more complex options by using
layers in the report specifications (Beatty and Chen 2012). Users of analytics data often like to see
 information presented in a dashboard view, with multiple charts and reports laid out in a single
display. The “Dashboard reporting” section in Chapter 13 will help you specify such dashboard
 requirements. Some reports give the user the ability to manipulate views of the reports in predefined
ways, such as with filters (Franks 2012). The display-action-response model described in Chapter 19,
“Beyond requirements development,” is valuable for specifying more comprehensive requirements
for manipulating data in reports, when a simple report table structure won’t suffice. These models
capture complex interactive user interface elements on reports, such as filters or changes in display
from drill-downs.

Beyond user requirements and reporting requirements, understanding information usage might
also reveal new processes and security requirements that need to be defined. For example, the
 president of a small company might receive a weekly profit-and-loss report. If it looks correct, he will
share it with his executive team—but only with his executive team, which implies the need for access
controls. Security requirements, as described in Chapter 14, “Beyond functionality,” might also be
needed for data attributes, report views, or portal access. Perhaps regional sales vice presidents can
see sales data for their region only, but a global vice president can view it for the entire organization.
These sorts of quality attribute requirements apply to business analytics projects just as they do to
any other software project.

Information usage in systems
It’s important to note that the information from analytics projects might be used directly within
 software systems instead of being delivered to human users. The analytics might be embedded in
the application as part of its daily operations. For example, some retail organizations use a customer’s
purchasing history to determine what products to apply personalized discounts to, in hopes of
 getting that customer to buy more from them. One retail chain determined that I was pregnant within
a month of my knowing it, and they started sending email advertisements to me for baby products
(this is obviously Joy’s story!). Other examples include a system that prints coupons for a grocery
shopper based on his current or prior purchases, customized ads displayed to website visitors, and call
center applications that determine what offers to make to a particular customer who just called.

In these situations, the information delivery mechanism and format might be specified through
external interface requirements. However, it is still important to understand how the information will
be used so that the correct data is transformed as needed and delivered to the interfacing system in a
usable form.

Specifying data needs
Data forms the core of all business analytics solutions. Many organizations employ data experts
to develop and maintain their data solutions for these projects. BAs can define requirements for
data sources, storage, management, and extraction mechanisms, although they might engage data
specialists early in the requirements efforts to help. BAs can help explore what types of data need

 CHAPTER 25 Business analytics projects 433

to be collected and analyzed, the total quantity of data the organization will be dealing with, and
how much data they will accumulate over time. However, the data experts will be more familiar with
what data is available, where it’s located, what challenges it might present, and how it can best be
 exploited.

Because analytics projects often aim to discover new strategies for companies, these projects
might involve identifying new data sources to analyze. It’s important to fully understand the data
requirements so technical teams can design the often complex infrastructures needed to support
analytics. For example, architects might have to completely redesign an existing data storage solution
to meet your project’s needs.

Big data
The term big data typically describes a collection of data that is characterized as large volume (much
data exists), high velocity (data flows rapidly into an organization), and/or highly complex (the data is
diverse) (Franks 2012). Managing big data entails discovering, collecting, storing, and processing large
quantities of data quickly and effectively. Jill Dyché (2012) provides a summary of what big data entails
from the perspective of management and governance.

To really conceptualize big data, think about your personal data-based interactions from a single
day: social media, email messages, videos, digital images, and electronic transactions. Consider that a
commercial aircraft generates 10 terabytes of data during a 30-minute flight (Scalable Systems 2008).
The nature of businesses today is that the data available to them is undergoing explosive growth.
Applications that help users glean valuable knowledge from the mountains of data are therefore
increasingly important.

The data models described in Chapter 13 are best suited to representing relational data stores.
If the data objects relate to one another in some logical way, the BA can model those objects by using
entity-relationship diagrams (ERDs). If the data attributes are known and consistent, data dictionaries
also can be useful. Unfortunately, big data is often only semi-structured or even unstructured.

Unstructured data, exemplified by voice mails and text messages, doesn’t lend itself to representation
in traditional rows and columns. The challenge with unstructured data is that you have no idea where or
how to begin looking for the information you seek (Davenport, Harris, and Morrison 2010). For instance,
software operated by a security-related government agency might scan Internet traffic for instances of
a word such as “bomb,” but they need to see it in context to know the meaning of the word of interest.
“Bomb” could indicate a terrorist threat, refer to an article on aerial combat in World War II, or describe a
bad play’s opening night.

The good news is that most data does possess some structure in the form of accompanying metadata,
or data about the data (Franks 2012). Semi-structured data sources include email messages, image files,
and video files. Because semi-structured data has associated metadata that provides some information
about the data’s structure and contents, you might be able to create entity-relationship diagrams and
data dictionaries to represent what you do know about the data.

434 PART III Requirements for specific project classes

Data-based (not “database”) requirements
Many of the data requirements that need to be specified for analytics projects are similar to those
for other information systems projects. Although the nature of those requirements might not be
the same, the questions you ask to elicit them are often similar. Keep in mind that most big data is
generated by automated systems and usually represents a new data source for an organization, which
means that it will take more work to determine the data requirements (Franks 2012). You can derive
many data requirements from the decision-management criteria that you elicit from appropriate
stakeholders. For example, decisions that need to be made hourly will likely have different underlying
data needs from those that are made just once per calendar quarter. They might differ in terms of
how frequently the source data is refreshed, when the data is extracted from the source, and how
long the data must be retained.

Brijs (2013) provides a checklist of common expectations that stakeholders might have about
 business analytics and types of questions that can elicit those expectations. Following are some
 examples of questions a BA can ask to elicit data-related requirements:

Data sources

 ■ What data objects and/or attributes do you need? From what sources will you get that data?

 ■ Do you already have each of those data sources available? If not, where is the data? Do you
need to develop requirements to populate those sources with the necessary data?

 ■ What external or internal systems are providing data?

 ■ How likely are these sources to change over time?

 ■ Is there a need for an initial migration of historical data from an old to a new repository?

Data storage

 ■ How much data is there today?

 ■ How much is the data volume expected to grow and over what period of time?

 ■ What types of data do you need to store?

 ■ How long do you need to store the data? How securely must it be stored?

Data management and governance

 ■ What are the structural characteristics of the data?

 ■ How do you expect the data structure or values to change over time?

 ■ What data transformations need to occur before the raw data is stored or analyzed?

 ■ What transformations are needed to standardize the data from disparate systems?

 ■ Under what conditions can old data be deleted? Does old data need to be archived? Destroyed?

 CHAPTER 25 Business analytics projects 435

 ■ What integrity requirements apply to protecting the data from unauthorized access, loss, or
corruption?

Data extraction

 ■ How fast do users expect queries to return results?

 ■ Do you need real-time or batched data? If not real-time, then at what frequency do you need
it to be batched?

As with all requirements, ensure that the data-related requirements do not constrain developers
with unnecessary design.

Defining analyses that transform the data
Analysis is the computational engine of the projects described in this chapter; it transforms the data
and leads to answers to the questions posed (Franks 2012). A user defines a problem, receives data
that he hopes will contain an answer, analyzes the data to find the answer, and decides on a solution
to the problem. Or maybe the system analyzes the data to find the answer and then takes an action
 accordingly.

All of this is great, if you know what you are looking for. However, one challenging aspect of many
business analytics projects is that the decision maker might not know just what he’s looking for in the
data. He might want to have certain data objects and attributes exposed in tools that allow him to
explore, running different queries to ask what-if questions about the data. He literally doesn’t know
what he doesn’t know, but he’s hoping that by studying the data he’ll glean something useful to act
on. This is why it’s important to start by understanding what decisions the stakeholders are trying to
make. Even if he doesn’t know exactly what he’s looking for yet, a stakeholder should be able to define
the type of problem he’s trying to solve. Defining the necessary data analysis involves big-picture
thinking (Davenport, Harris, and Morrison 2010). A BA with good creative-thinking skills can work with
 stakeholders to determine what new ideas might be explored with the analysis results.

As Figure 25-2 showed, analytics results lead to decision-making capabilities ranging from
 descriptive to predictive. To elicit the data analysis requirements, you might ask questions such as the
following (Davenport, Harris, and Morrison 2010):

 ■ What time frame are you trying to analyze: past, present, or future?

 ■ If past, what kinds of insights about the past are you looking for?

 ■ If present, what do you need to understand about the current situation so that you can take
immediate actions?

 ■ If future, what kinds of predictions or decisions do you want to make?

These questions will help you define functional requirements that specify the analyses the system
must perform. Because analytics is a completely new capability for many organizations, you might do
some research to discover how other organizations are using similar data to improve decision making.

436 PART III Requirements for specific project classes

A business analyst has the opportunity—perhaps even the responsibility—to help the stakeholders
learn how analytics could be used in ways they hadn’t previously envisioned.

Some analysis requires sophisticated algorithms to process, filter, and organize the data (Patel
and Taylor 2010). Suppose a retail store wants to play targeted video ads when a customer walks in
the store. A camera might scan her, perhaps by using facial recognition software, and the system will
combine what it can learn about the customer (gender, age, attire, where she is looking) with logic
built into the system to decide which ad to play. This type of decision logic can often be represented
by using decision tables or decision trees, as described in Chapter 12, “A picture is worth 1024 words.”

It is important to understand the implications of automated decision making and be explicitly
clear when defining the desired decision-logic system behaviors. A cautionary example is provided
by systems that can scan social media and make stock trade movements accordingly. In 2013, a
false piece of social media news reported that the president of the United States was injured in
an explosion. The algorithms built into certain automated systems triggered them to start selling
stocks, which led other systems to also sell stocks when they detected the market’s decline, all within
moments of the news release. Fortunately, the hoax was discovered quickly, and human decisions
reversed the sudden sharp stock market drop caused by the automated trading systems. Perhaps the
systems behaved exactly as intended, but maybe there was decision logic missing that could have
limited the impact.

One of the most valuable aspects of business analytics systems is that they can enable future-state
strategic analysis, such as exploring what-if scenarios. Consider questions such as, “If we offered our
product on a new platform, what would we expect our future sales numbers to be?” or “If we offered
our customers products targeted to their gender, how much more would they buy?” The system can
run models and algorithms to enable these types of data extrapolations or predictions. Those models
and algorithms need to be specified in the software requirements. If they are highly complex, a BA
might enlist the help of data experts, statisticians, and mathematical modelers to help define them.

The analyses might require statistical or other computations to transform the data prior to it being
presented to the user or delivered to a system for action. Either business rules in the organization or
other industry standards could define these calculations. For instance, if analysis includes reporting
gross profit margins by region, you need to specify exactly how that margin is calculated in your
organization. The calculation formula requirement pattern described by Stephen Withall (2007) can
be used to specify literally any calculation that is needed to transform the data. A specified formula
should include a description of the value to be calculated, the formula itself, the variables used, and
where their values come from. Also, specify any response time requirements for those calculations.

The evolutionary nature of analytics

Figure 25-1 illustrated the back-and-forth interactions between data, its analysis, and its usage
(Franks 2012). Occasionally, the user receives a report and makes a decision, and then she’s done.
More commonly with business analytics applications, the user starts with a question and requests
a report containing information relevant to the decision she must make. Someone extracts the

 CHAPTER 25 Business analytics projects 437

 requested data from available repositories, applies the relevant analytics processing, and delivers the
report to the user. But after she sees the information, the user will think of new questions that require
further analysis, which leads to requests for new reports and yet more analyses.

The key to defining requirements for analytics projects, therefore, is to start somewhere. Because
the requirements might change over time, begin with what the stakeholders already know they want
to learn from the available information, and plan for their questions to evolve. Also, understand
how much the users expect their needs to evolve. For example, if they believe their needs from the
 business analytics solution will change significantly over time, they might require a solution that is
easily adaptable and requires minimal additional development work.

An analytics solution should take into consideration the forms and conditions the data is in at the
times it is extracted from a source, analyzed, and viewed by a user. For example, do users want certain
raw data to be delivered to them so they can generate reports manually to examine? Or do they
want a software application to organize that data for them and deliver it in a predefined, structured
 format? Do the users have a set of questions to which they want the answers every week for the next
year? Or do they want to be able to ask new questions every day, rapidly developing new forms of
data analysis and presentation to keep pace with rapidly changing business needs? The answers to
these types of questions will tell your development team whether to make sets of data available for
 users to manipulate themselves or whether an analytics team will have to generate and format new
 information for those users to view (Franks 2012).

Your job as a BA on a business analytics project is to work with the project’s stakeholders to
 understand their decision processes. Use those decisions to elicit the requirements that will access
the necessary data, specify the analyses to be performed, and define the data presentation. You
should understand what results stakeholders expect from an analytics solution, the decisions they
hope the data will help them make, and how they want to dynamically modify the analyses or their
 presentation. Look for opportunities to help users be more successful by envisioning solutions that
they might not have imagined were even possible.

 439

C H A P T E R 2 6

Embedded and other real-time
systems projects

Most of the requirements examples and discussions in the book so far have dealt with business
information systems. The world is also full of products that use software to control hardware devices,
broadly called embedded systems. Among countless examples are cell phones, television remote
controls, kiosks of all sorts, Internet routers, and robot cars. We’ve often used the term system
in this book as a colloquial synonym for product, application, or solution, to refer to whatever
 software-containing thing you’re building. In this chapter, though, system refers to a product that
contains multiple, integrated software and hardware subsystems. The software that controls a
 real-time system can be embedded in the device in the form of a dedicated computer, or it can reside
in a host computer separate from the hardware it controls. Embedded and other real-time systems
have sensors, controllers, motors, power supplies, integrated circuits, and other mechanical, electrical,
and electronic components that operate under software control.

Real-time systems can be classified as hard or soft. Hard real-time systems have rigid time
 constraints. The operations that the system performs must execute within specified deadlines or bad
things happen. Life-critical and safety-critical control systems, such as air traffic control systems,
are hard real-time systems. An operation that doesn’t complete on time could result in a collision
because of an undetected obstacle. Soft real-time systems also are subject to time constraints, but the
 consequences of missing the timing deadline during some operations are less severe. An ATM is a soft
real-time system. If communication between the ATM and the bank doesn’t complete in the allocated
time interval, no one will die if the ATM has to try again or even if the operation terminates.

More than on most software development projects, it’s important to have a good understanding
of requirements before getting too far into development on embedded systems projects. Because
software is more malleable than hardware, excessive requirements churn that dictates hardware
changes is more expensive than comparable volatility on software-only projects. It’s also essential
to know about constraints that both hardware and software engineers must respect: physical object
sizes; electrical components, connections, and voltages; standard communication protocols; the
sequence in which certain operations must take place; and the like. Hardware components that have
already been selected for the design impose constraints on those yet to be chosen.

The requirements elicitation techniques described elsewhere in this book are certainly applicable
on real-time projects. The same modeling techniques can be used, with some refinements. This
chapter addresses some of the special requirements considerations of embedded and other real-time
systems.

440 PART III Requirements for specific project classes

System requirements, architecture, and allocation

When specifying a complex system, many teams first create a system requirements specification,
abbreviated SyRS (ISO/IEC/IEEE 2011). The SyRS describes the capabilities of the system as a whole,
including capabilities that could be provided by hardware components, software components,
and/or humans. It also describes all of the inputs and outputs associated with the system. In
 addition to functionality, the SyRS should specify the critical performance, safety, and other quality
 requirements for the product. All this information feeds into the preliminary design analysis that will
guide the team when it is choosing architectural components and allocating capabilities to them. The
SyRS could be a separate deliverable from the software requirements specification, or the SRS could
be embedded within the SyRS, particularly if most of the system complexity lies within the software.

Requirements analysis of a complex system is tightly intertwined with the system’s architecture.
Requirements thinking and design thinking become more commingled in real-time systems than in
other types of software projects. The architecture represents the top level of design, often depicted
by using simple box-and-arrow diagrams, although numerous other architecture modeling notations
exist. A system’s architecture consists of three elements:

 ■ Components of the system, where a component could be a software object or module, a
physical device, or a person

 ■ Externally visible properties of the components

 ■ Connections (interfaces) between the system components

The architecture is developed in a top-down, iterative fashion (Nelsen 1990; Hooks and
Farry 2001). The person who takes the lead role in this type of analysis typically is a system analyst,
 requirements engineer, system engineer, or system architect with a strong technical background. The
analyst partitions the system into appropriate software and hardware subsystems and components
that will accommodate all of the inputs and produce all of the outputs. Certain system requirements
might turn directly into software requirements if software is deemed to be the correct medium
for providing a certain capability. In other cases, the analyst will decompose individual system
r equirements into numerous derived software, hardware, and/or manual requirements to be
 performed by humans (Figure 26-1). Deriving software requirements from system requirements can
expand the volume of requirements several-fold, partly because that derivation generates interface
requirements between the components. The analyst allocates the individual requirements to the
most appropriate components, iteratively refining the architectural partitioning and the requirement
 allocations. The ultimate outcome is a set of requirements for each of the software, hardware, and
 human components that will collaborate to provide the necessary system services.

 CHAPTER 26 Embedded and other real-time systems projects 441

FIGURE 26-1 System requirements are decomposed into software, hardware, and manual requirements, then
 allocated to appropriate components.

It’s a good idea to establish requirements trace links between system requirements, derived
 software and hardware requirements, and the architectural components to which they were allocated.
Chapter 29, “Links in the requirements chain,” discusses requirements traceability.

Poor allocation decisions can result in:

 ■ The software being expected to perform functions that would have been easier or cheaper for
hardware to perform (or the reverse).

 ■ A person being expected to perform functions that would have been easier or cheaper for
hardware or software to perform (or the reverse).

 ■ Inadequate performance.

 ■ The inability to easily upgrade or replace components.

For example, performing a certain function in software could require a faster processor than if a
specialized piece of hardware were to perform that function. There are always trade-offs. Although
software is easier to change than hardware, engineers shouldn’t use that flexibility as a reason to
skimp on hardware design. The people who perform the requirements allocation must understand
the capabilities and limitations of the software and hardware components, as well as the costs and
risks of implementing the functionality in each.

Modeling real-time systems

As with business information systems, visual modeling is a powerful analysis technique for specifying
real-time systems. State-transition diagrams or their more sophisticated variants, such as state chart
diagrams (Lavi and Kudish 2005) and UML state machine diagrams (Ambler 2005), are particularly
relevant. Bruce Powel Douglass (2001) gives examples of how to employ use cases and other UML
models to represent requirements for real-time systems.

442 PART III Requirements for specific project classes

Most real-time systems can exist in multiple states with defined conditions and events that
permit transitions from one state to another. State tables and decision tables can be used to
 supplement or replace state-transition diagrams, often revealing errors in the diagrams. The context
 diagram (described in Chapter 5, “Establishing the business requirements”) is also useful to show
the environment in which the system operates and the boundaries between the system and the
 external entities with which it interfaces. Architecture diagrams show the partitioning of the system
into subsystems with interfaces between them. This section shows some sample models (somewhat
 simplified, as usual) from an embedded system with which you might have personal experience: an
exercise treadmill.

Context diagram
Figure 26-2 illustrates the context diagram for my home treadmill. This notation is slightly different
from that used in Figure 5-6, shown earlier in Chapter 5, but the intent and the types of information
displayed are the same (Lavi and Kudish 2005). Using the large square instead of a small circle to
 represent the system makes it easier to show multiple input and output flows between the system and
a single external entity, such as the Exerciser (the person using the treadmill). The other two external
entities are the website of the treadmill’s manufacturer, from which the Exerciser can download
 various workout programs, and a sensor that measures the Exerciser’s pulse rate. As usual with context
diagrams, this model shows nothing of the treadmill’s internals.

FIGURE 26-2 Context diagram for an exercise treadmill.

State-transition diagram
Figure 26-3 shows a state-transition diagram (STD) for the treadmill. Recall from Chapter 12, “A picture
is worth 1024 words,” that the boxes in an STD represent various states that the treadmill could be in,
and the arrows represent allowed transitions from one state to another. The labels on the transition
arrows indicate the conditions or events that trigger each state change. This diagram shows us more
about how the treadmill functions. It also begins to provide some information about the user interface
controls needed, such as controls labeled Speed, Incline, Start, Pause, and Stop. Figure 26-3 refers to

 CHAPTER 26 Embedded and other real-time systems projects 443

“pressing” some control, but of course, those controls could be implemented in a variety of ways. Jonah
Lavi and Joseph Kudish (2005) describe more sophisticated statechart diagrams for representing this
kind of information in a richer way.

FIGURE 26-3 Partial state-transition diagram for an exercise treadmill.

Event-response table
Event-response analysis provides another way to think about the behavior of a real-time system
and hence its functional requirements (Wiley 2000). As was described in Chapter 12, a system could
 respond to business events that trigger execution of a use case, signal events such as input from a
sensor, and temporal events that cause something to happen after a specified time interval or at
a specific point in time. Table 26-1 lists several events and their corresponding responses for the
 treadmill.

444 PART III Requirements for specific project classes

TABLE 26-1 Partial event-response table for an exercise treadmill

Event Treadmill state Response

Exerciser presses Incline Up button Below maximum incline Increase incline by 0.5 degree

Exerciser presses Incline Up button At maximum incline Generate “at limit” audio signal

Exerciser presses Speed Down button Above minimum speed Decrease speed by 0.1 mph

Exerciser presses Speed Down button At minimum speed Stop treadmill belt

Exerciser removes safety key Running Stop treadmill belt and turn power off

Exerciser removes safety key Idle Turn power off

Exerciser presses Pause button Running Stop treadmill belt; initiate timer

Exerciser presses Pause button Paused or idle Generate “error” audio signal

Timer for paused condition reaches
 timeout limit

Paused Go to idle state

Exerciser presses Start button Running Generate “error” audio signal

Exerciser presses Start button Paused Start treadmill belt on current speed
setting

Exerciser presses Start button Idle Start treadmill belt at lowest speed

This event list provides detailed requirements for the treadmill’s functionality that flesh out the
high-level view shown in the STD in Figure 26-3. It’s also a great aid for conceiving tests. Even a
complete event-response table still leaves plenty of design thinking to be done, such as how many
degrees per minute the incline motor will change the belt’s incline, and how quickly the treadmill belt
will change from stopped to the set speed. Safety considerations will influence these decisions, too. It
would be dangerous for the Exerciser if the belt started, accelerated, or stopped too abruptly.

Embedded systems must manage a combination of event-based functions (as shown in Table 26-1)
and periodic control functions. Periodic functions are executed repeatedly while the system is in a
particular state, rather than just once upon state entry. An example is monitoring the Exerciser’s pulse
rate once every second and adjusting the belt speed in response to maintain a preset pulse rate, if
such an exercise program was being used.

Drawing models like this is an excellent way to find missing requirements. I once reviewed a
 requirements specification for an embedded system that included a long table describing the various
machine states, the functionality associated with each state, and possible navigation destinations
from each state. I drew a state-transition diagram to represent that information at a higher level of
 abstraction. In the process of drawing the STD, I discovered two missing requirements. There was no
requirement that allowed the machine to be turned off, and there was no provision for the possibility
of entering an error state while the machine was running. As you’ve seen before, this example
 illustrates the value of creating multiple representations of requirements knowledge and verifying
them against each other.

 CHAPTER 26 Embedded and other real-time systems projects 445

Architecture diagram
Another type of model that’s useful for these types of systems is an architecture diagram, which is
generally part of the high-level design. Figure 26-4 shows a portion of a simple architecture diagram
for the treadmill. It identifies the major subsystems that will provide all of the treadmill’s functions, as
well as the data and control interfaces between them, at a high level of abstraction. Richer architecture
description languages are available, and the Unified Modeling Language (UML) also works well for
modeling architectures (Rozanski and Woods 2005). The subsystems shown in Figure 26-4 can be
further elaborated into specific hardware components (motors and sensors) and software components
as architectural analysis proceeds. A preliminary architecture analysis can reveal and refine functional,
interface, and quality requirements that might not have been evident from other elicitation activities.

FIGURE 26-4 Partial architecture diagram for an exercise treadmill.

446 PART III Requirements for specific project classes

Drawing architecture models during requirements analysis is clearly taking a step into design. It’s a
necessary step. Iterating on the architectural partitioning and the allocation of system capabilities to
subsystems and components is how an architect devises the most appropriate and effective solution.
Further requirements elicitation is needed, though. Functional requirements such as the following
will guide the developers in both choosing appropriate hardware components and designing user
interface controls:

Incline.Angle.Range The Exerciser shall be able to increase and decrease the
incline angle of the treadmill from 0 degrees through 10 degrees, inclusive, in 0.5-
degree increments.

Incline.Angle.Limits The treadmill shall stop changing its angle and provide
audible feedback when it has reached the minimum or maximum limit of its incline
range.

In addition to the functionality represented by the architecture, the treadmill designers must know
about the business rules that provide necessary algorithms. An example is calculating the number of
calories the Exerciser has burned from the combination of his weight and the workout program, which
is a series of segments of specified duration, incline angle, and belt speed. It might seem peculiar
to speak of “business rules” in conjunction with an embedded system. However, virtually all of the
requirements practices discussed elsewhere in this book apply to embedded and other real-time
systems, just as they do to business information systems.

Prototyping
Prototyping and simulation are other powerful techniques for eliciting and validating the
 requirements for embedded systems. Because of the costs and time needed to build hardware
(and perhaps to rebuild it if you discover requirement or design errors), you can use prototypes
to test operational concepts and to explore both requirements and design options for the device.
 Simulations can help you better understand user interface displays and controls, network interactions,
and hardware-software interfaces (Engblom 2007). Keep in mind, though, that the simulation will
 differ from the real product in numerous respects.

Interfaces

Interfaces are a critical aspect of embedded and other real-time systems. As you saw in Chapter 10,
“Documenting the requirements,” the SRS should address four classes of external interface requirements:
user, software, hardware, and communications interfaces. In addition, the partitioning of complex
systems into multiple subsystems creates numerous internal interfaces between components. Because
embedded systems can be incorporated into other embedded systems as part of a larger product (such
as a cell phone integrated into a motor vehicle’s communication system), the interface issues become
even more complex. Requirements analysis should concentrate on the external interface issues, leaving
the internal interface specifications for architecture design.

 CHAPTER 26 Embedded and other real-time systems projects 447

If your external interfaces are relatively simple, you can specify them as described in section 5 of
the SRS template illustrated in Figure 10-2, shown earlier in Chapter 10. Projects that are building
complex systems often create a separate interface specification to document these critical aspects.
Figure 26-5 suggests a template for an interface specification document that can accommodate both
external and internal interfaces.

FIGURE 26-5 Proposed template for an interface specification.

Timing requirements

Timing requirements lie at the heart of real-time control systems (Koopman 2010). Undesirable
 outcomes can result if signals are not received from sensors as scheduled, if the software cannot
send control signals to the hardware when anticipated, or if the physical devices do not perform their
 actions on time. Timing requirements involve multiple dimensions:

 ■ Execution time The execution time for a specific task is the elapsed time from when it is
 initiated to when it completes. This can be measured as the duration between two specific
events that bound the task’s execution.

 ■ Latency Latency is the time lag between when a trigger event occurs and when the system
begins to respond to it. Excessive latency poses a problem in, for example, music recording
and production software, in which multiple prerecorded and live audio tracks must be
 precisely synchronized.

448 PART III Requirements for specific project classes

 ■ Predictability Predictability refers to the repeated, consistent timing of a recurring event.
Even if the timing is not especially “fast,” events often have to be performed at precise
 intervals, as when sampling an incoming signal. Digitizing an audio waveform often is
 performed at 44,100 cycles per second. The sampling frequency must be predictable to avoid
constructing a distorted digital representation of the analog waveform.

Some issues to explore regarding the timing and scheduling requirements for a system’s real-time
tasks are:

 ■ Periodicity (frequency) of execution of the tasks and their tolerances.

 ■ Deadlines and tolerances for execution of each task.

 ■ Typical and worst-case execution time for each task.

 ■ Consequences of missing a deadline.

 ■ The minimum, average, and maximum arrival rate of data in each relevant component state.

 ■ The maximum time before the first input or output is expected after a task initiates.

 ■ What to do if data is not received within the maximum time before the expected first input
(timeout).

 ■ The sequence in which tasks must run.

 ■ Tasks that must begin or end execution prior to other tasks beginning.

 ■ Task prioritization, so you know which tasks can interrupt or preempt others, and on what
basis.

 ■ Functions that depend on what mode the system is in (normal mode versus firefighter service
mode for an elevator, for example).

When specifying timing requirements, indicate any constraints and the acceptable timing
 tolerances. Understand the distinction between soft and hard real-time demands for your system
so you don’t specify overly stringent timing requirements. Those can lead to over-engineering
the product at excessive cost and effort. If the timing tolerances are broader, you might be able
to get away with using less expensive hardware. As Philip Koopman (2010) points out, “Real-time
 performance is seldom about being as fast as absolutely possible. Rather, it is about being just as fast
as you need to be, and minimizing overall cost.”

Specifying the timing requirements for the system involves understanding the deadlines for
time-critical functions. It entails scheduling both sequential and concurrent functions to achieve the
necessary performance within the constraints of processor capacity, input/output rates, and network
communication rates. One team used a project-scheduling tool to model the timing requirements for
an embedded product, working at the millisecond time scale rather than in the more traditional days
and weeks. This creative and unconventional use of a modeling tool worked very well. In some cases,
the timing and scheduling algorithms to be used might be imposed through requirements in the form

 CHAPTER 26 Embedded and other real-time systems projects 449

of design constraints, but more frequently these will be design choices. Krishna Kavi, Robert Akl, and
Ali Hurson (2009) offer a valuable overview of scheduling issues for real-time systems.

Quality attributes for embedded systems

Quality attribute requirements are especially critical for embedded and real-time systems. They can
be vastly more complex and intertwined than those for other software applications. Business software
is generally used in an office where there is not much variance in the environment. In contrast, the
operating environment for embedded systems could involve temperature extremes, vibration, shock,
and other factors that dictate specific quality considerations. Quality categories that are likely to be
particularly important include performance, efficiency, reliability, robustness, safety, security, and
 usability. This section discusses some of the particular aspects of these quality attributes that you
need to explore carefully during elicitation of requirements for such systems.

In addition to the software quality attributes that were discussed in Chapter 14, “Beyond
 functionality,” embedded systems are subject to quality attributes and constraints that apply only to
physical systems. These include size, shape, weight, materials, flammability, connectors, durability,
cost, noise levels, and strength. All of these can dramatically increase the cost and effort needed to
validate the requirements adequately. There could be business and political reasons to avoid using
materials whose supply might be threatened by conflict or boycott, causing prices to skyrocket. Other
materials are best avoided because of their environmental impacts. Avoiding the use of optimal
 materials could lead to trade-offs in performance, weight, cost, or other attributes.

It can be difficult and expensive to build in desired quality characteristics after the hardware
design is complete, so address these requirements early during elicitation. Because quality
 characteristics often have a profound impact on a complex product’s architecture, it’s essential to
perform the attribute prioritization and trade-off analysis before getting into design. Koopman
(2010) presents a good discussion of nonfunctional requirements that are especially important for
 embedded systems development. Chapter 14 presented many examples of these and other quality
attribute requirements.

Performance The essence of a real-time system is that its performance must satisfy the timing
needs and constraints of the operating environment. Therefore, all processing deadlines for specific
operations must be included in the requirements. However, performance goes beyond operational
response times. It includes startup and reset times, power consumption, battery life, battery recharge
time (as with electric automobiles), and heat dissipation. Energy management alone has multiple
dimensions. How should the system behave if the voltage drops momentarily, or under a particularly
high current load during startup, or if external power is lost and the device must switch to battery
backup power? And, unlike software, many of these components can degrade over time. What are the
requirements for how long a battery maintains a given profile of power over time before it needs to
be replaced?

450 PART III Requirements for specific project classes

Efficiency Efficiency is the internal quality counterpart to the externally observable attribute of
performance. Efficiency aspects of embedded systems focus on the consumption (and hence the
remaining availability at any moment) of resources including processor capacity, memory, disk space,
communication channels, electrical power, and network bandwidth. When you are dealing with these
matters, requirements, architecture, and design become tightly coupled. For instance, if the total
power demand of the device could exceed the power available, can the device be designed to cut
power to components that don’t need it all the time, thereby making more power available to other
components or services?

The requirements should specify the maximum anticipated consumption of various system
 resources so designers can provide sufficient slack resources for future growth and unexpected
 operating conditions. This is one of those situations for which concurrent hardware and software
design is vital. If the software is consuming too much of the available resources, the developers must
resort to clever tricks to work around those limitations. Choosing more capable hardware up front
 offers a much less costly solution than fine-tuning the software components (Koopman 2010).

Reliability Embedded and other real-time systems often have stringent reliability and availability
requirements. Life-critical systems such as medical devices and airplane avionics offer little room for
failure. An artificial cardiac pacemaker that’s implanted into a patient’s body must be expected to
work reliably for years. If the product fails or the battery goes dead prematurely, the patient can die
too. When you are specifying reliability requirements, realistically assess the likelihood and impact of
failure so you don’t over-engineer a product whose true reliability requirements aren’t as demanding
as you might think. Increasing reliability and availability comes at a price. Sometimes you need to pay
that price; sometimes you do not.

An open-door policy
A door on a light-rail train car in a major American city recently failed to close when the train
left the station. Sensors apparently failed to notify the train’s driver of the malfunction. The
train whizzed down the tracks at 55 miles an hour with an open door, a scary experience and
an obvious safety hazard. The developers of the train software might have had a reliability or
safety requirement stating that such an event could happen no more often than once every
100 million operating hours. You can’t run a railway system for a few hundred million hours
before you release it to test whether this requirement was satisfied. Instead, you need to design
systems in such a way that the probability of experiencing a safety-critical failure is sufficiently
low to meet the requirement. But things can still fail. In complex systems like this, it is usually
the combinations of failures you didn’t think of—corrosion on two switches, in this case—that
cause such rare problems.

Robustness Robustness has to do with how well the system responds to unexpected operating
conditions. There are several aspects to robustness. One is survivability, which is often considered
to apply to devices in use by the military but has everyday applications as well. A good example of
 embedded systems designed for high survivability are the aircraft “black boxes,” electronic recording
devices that are designed to survive the horrific trauma of an airplane crash. Actually bright orange

 CHAPTER 26 Embedded and other real-time systems projects 451

and technically called the flight data recorder and the cockpit voice recorder, these devices are
built to withstand an impact of 3,400 times the force of gravity, fires, immersion in water, and other
 hazards. Not only must the physical container retain its integrity under such extreme conditions, but
the data recording devices inside must still be intact and readable.

Other aspects of robustness have to do with how the system deals with faults, or exceptions, that
occur during execution and can lead to system failures. Both hardware and software faults can lead
to failures. I once attempted to withdraw $140 from an ATM. The ATM gave me a receipt for $140,
all right, but it only gave me $80 in cash. I waited 15 minutes while a bank employee rooted around
in the back of the ATM; then she handed me my $60. Apparently there was a mechanical failure:
several bills were stuck together and jammed the exit slot. Besides the fact that I wasted some time,
I was concerned because the ATM thought the transaction had gone just fine—it never detected the
problem.

There are four aspects to how systems handle faults (Koopman 2010):

 ■ Fault prevention Ideally, the system will prevent many potential fault conditions before they
can cause a failure. That’s the idea behind having software systems test preconditions before
initiating the execution of a use case.

 ■ Fault detection The next-best course of action is to detect a fault as soon as it occurs. This is
why requirements elicitation must explore exception conditions, so developers can anticipate
possible errors and devise ways to look for them.

 ■ Fault recovery If the system detects an anticipated fault, it should have mechanisms defined
for responding to it. Requirements development should not only identify potential faults but
also specify how they should be handled. Sometimes the system can retry an operation, as
with an intermittent communication interruption or a timeout that might work fine the next
time. Systems are sometimes designed with failover mechanisms. If a fault causes the system
to fail, a backup system takes over the operation. In other cases, the system must terminate
the operation, perhaps shutting down or restarting in some way that minimizes the negative
impact on the user. As an example, if your car’s antilock brake system (ABS) detects a faulty
sensor, it might shut down the ABS, illuminate a warning light on the dashboard, and log that
information in the car’s computer for future diagnosis and repair. Which leads us to. . .

 ■ Fault logging The system should retain a history of faults that it detects and what happened
as a consequence. This information is useful for diagnosing what’s wrong and can help a
 maintenance person detect patterns that lead to problems. For instance, a fault history might
indicate a defective hardware component that should be replaced. Modern automobiles
contain an on-board diagnostics system. A technician can plug a cable into this system and
retrieve a history of events in the form of standardized codes that report what malfunctions
occurred.

The designers of my treadmill recognized that under certain conditions the treadmill can be
jammed in a position in which the incline angle cannot be lowered to zero. The user manual describes
a (rather tricky) manual operation I can perform to reset the treadmill so it again has the full range
of incline angles available. It would have been even better had the manufacturer designed the

452 PART III Requirements for specific project classes

 treadmill so that it was impossible for this jam to take place, if feasible. Sometimes, though, providing
a workaround for a low-probability and low-impact failure is cheaper than designing the system to
completely prevent the failure.

Safety Any system that contains moving parts or uses electricity has the potential to cause injury
or death to a human being. Safety requirements are vastly more significant for real-time systems
than for information systems. Numerous books have been written on software and system safety
 engineering, so we will not attempt to recap all of that vital information here. Good sources are
Nancy Leveson (1995), Debra Herrmann (1999), Philip Koopman (2010), and Terry Hardy (2011).

Begin your investigation of safety requirements by performing a hazard analysis (Ericson 2005;
Ericson 2012). This will help you discover the potential risks that your product could present. You can
rate them by their probability of occurrence and the severity of occurrence, so that you can focus on the
most serious threats. (Chapter 32, “Software requirements and risk management,” discusses risk analysis
further.) A fault tree analysis is a graphical, root-cause analysis technique for thinking about safety
threats and what factors could lead to them (Ericson 2011). This allows you to focus on how to avoid
specific combinations of risk factors materializing when your product is in use. Safety requirements
should address the risks and state what the system must do—or must not do—to avoid them.

Hardware devices often include some kind of emergency stop button or dead man’s switch that
will quickly turn the device off. The exercise treadmill had a safety requirement something like the
following:

Stop.Emergency The treadmill shall have an emergency stop mechanism that
brings the belt to a halt within 1 second when activated.

This requirement led to the design of a flat plastic key that must be inserted in the front of the
 treadmill before the treadmill can be powered up. Removing the key cuts the treadmill power,
 stopping the belt motion quickly. A lanyard attached to the key can be clipped to the Exerciser’s
clothing to pull out the key if the Exerciser slips or falls off the treadmill. It works!

Security The security of embedded systems is under much discussion these days because of
 concerns about cyberattacks that could take over, disrupt, or disable power plants, railroad control
systems, electrical distribution grids, and other critical infrastructure. Theft of intellectual property
from the memory of embedded systems is also a risk. An attacker could potentially reverse engineer
code to learn how the system works, either to copy it or to attack it. Protecting embedded systems
 involves some of the same security measures that host-based information systems need. These
 include the following (Koopman 2010):

 ■ Secrecy, primarily through encryption

 ■ Authentication, to ensure that only authorized users can access the system, typically provided
through passwords (with all the human failings that involves)

 ■ Data integrity checks, to try to discover whether the system has been tampered with

 ■ Privacy of data, such as protecting against unauthorized tracking of users through their
 handheld GPS devices

 CHAPTER 26 Embedded and other real-time systems projects 453

In addition, though, embedded systems are subject to other types of specific attacks.
These include attempts by users to take over control of the system; interception of electronic
 communications, particularly wireless communications; and the insertion of malicious software
 updates, sometimes through social engineering of gullible users (many of us fall for that trick from
time to time). The full scope of security considerations for embedded systems is large, and it is a very
serious concern (Anderson 2008). Koopman (2010) and David and Mike Kleidermacher (2012) offer
many suggestions for how to make your embedded products more secure.

Usability Many embedded systems include some kind of human-computer interface. The general
principles of software usability apply, but other aspects of usability might be important when
a person is using a physical device in the field as opposed to a keyboard in the office. Recently,
I switched from using a mouse designed for right-handed users to a symmetrical one. I keep
 inadvertently hitting the right mouse button with the ring finger on my right hand. This wastes my
time and can lead to undesired system responses.

Display screens on products to be used outdoors must accommodate different lighting situations.
I once had an account at a bank whose drive-up ATM was located such that the LCD screen was
completely unreadable when sunlight hit it at certain angles. As another example, I cannot read the
display on my digital wristwatch when I’m wearing polarized sunglasses unless I rotate my wrist to just
the right angle, because LCD displays are themselves polarized.

Some usability constraints are imposed by legislation such as the Americans with Disabilities Act,
which requires certain systems to provide accessibility aids for people who have physical limitations.
Embedded systems must accommodate users having different degrees of:

 ■ Audio acuity and frequency response (consider when designing audio feedback and prompts).

 ■ Visual acuity and color vision (consider the use of color and text size in visual displays).

 ■ Handedness and manual dexterity (affects the user’s ability to press small buttons accurately
or to navigate using a touch screen).

 ■ Body size and reach (keep the user profile in mind when establishing the physical positioning
of controls, displays, and equipment).

 ■ Native languages (important for devices controlled by speech recognition).

The challenges of embedded systems

Embedded and other real-time control systems offer a unique set of challenges that software-only
applications do not. The basic principles and practices of requirements elicitation, analysis,
 specification, and validation apply to both classes of products. Embedded systems require taking
a systems engineering approach so that developers do not optimize either software or hardware
 components at the expense of the other and to avoid ugly integration problems. Architecture and
design choices are more tightly linked with requirements analysis than in software-only systems,
partly because it is so much more expensive to change hardware after it has been designed or

454 PART III Requirements for specific project classes

 manufactured. Embedded systems present a different emphasis of constraints and quality attributes
than do software-only systems, and often they are more interwoven with operating system
 considerations as well. Careful specification of system requirements, software requirements, hardware
requirements, and interface requirements will go a long way toward making your embedded and
other real-time development projects successful.

 455

PART IV

Requirements
management

Chapter 27 Requirements management practices457

Chapter 28 Change happens .471

Chapter 29 Links in the requirements chain491

Chapter 30 Tools for requirements engineering503

 457

C H A P T E R 2 7

Requirements management
practices

“I finally finished implementing the multivendor catalog query feature,” Shari reported at the Chemical
Tracking System’s weekly project status meeting. “Man, that was a lot of work!”

“Oh, the customers canceled that feature two weeks ago,” the project manager, Dave, replied. “Didn’t
you get the revised SRS?”

Shari was confused. “What do you mean, it was canceled? Those requirements are at the top of
page 6 of my latest SRS.”

Dave said, “Hmmm, they’re not in my copy. I’ve got version 1.5 of the SRS. What version are you
looking at?”

“Mine says version 1.5 also,” said Shari in disgust. “These documents should be identical, but
 obviously they’re not. So, is this feature still needed, or did I just waste 30 hours of my life?”

If you’ve ever heard a conversation like this one, you know how frustrating it is when people waste
time working from obsolete or inconsistent requirements specifications. Having great requirements
gets you only partway to a solution; they also have to be well managed and effectively communicated
among the project participants. Version control of individual requirements and sets of requirements is
one of the core activities of requirements management.

Chapter 1, “The essential software requirement,” divided the domain of software requirements
 engineering into requirements development and requirements management. (Some people refer
to the entire domain as “requirements management,” but we favor a narrower definition of that
term.) This chapter addresses some principles and practices of requirements management. The
other chapters in Part IV describe certain requirements management practices in more detail,
 including change control (Chapter 28, “Change happens”), change impact analysis (also Chapter 28),
and requirements tracing (Chapter 29, “Links in the requirements chain”). Part IV concludes with a
 discussion of commercial tools that can help a project team develop and manage its requirements
(Chapter 30, “Tools for requirements engineering”). Note that a project might be managing certain
sets of agreed-upon requirements while concurrently performing requirements development
 activities on other portions of the product’s requirements.

458 PART IV Requirements management

Requirements management process

Requirements management includes all activities that maintain the integrity, accuracy, and currency
of requirements agreements throughout the project. Figure 27-1 shows the core activities of
 requirements management in four major categories: version control, change control, requirements
status tracking, and requirements tracing.

FIGURE 27-1 Major requirements management activities.

Your organization should define the activities that project teams are expected to perform
to manage their requirements. Documenting these activities and training practitioners in their
 performance enables the members of the organization to conduct them consistently and effectively.
Consider addressing the following topics:

 ■ Tools, techniques, and conventions for distinguishing versions of individual requirements and
of requirements sets

 ■ The way that sets of requirements are approved and baselined (see Chapter 2, “Requirements
from the customer’s perspective”)

 ■ The ways that new requirements and changes to existing ones are proposed, evaluated,
 negotiated, and communicated

 ■ How to assess the impact of a proposed change

 ■ Requirement attributes and requirements status-tracking procedures, including the
 requirement statuses that you will use and who can change them

 ■ Who is responsible for updating requirements trace information and when

 CHAPTER 27 Requirements management practices 459

 ■ How to track and resolve requirements issues

 ■ How the project’s plans and commitments will reflect requirements changes

 ■ How to use the requirements management (RM) tool effectively

You can include all this information in a single requirements management process description.
Alternatively, you might prefer to write separate version control, change control, impact analysis, and
status tracking procedures. These procedures should apply across your organization because they
represent common functions that every project team ought to perform. Chapter 31, “Improving your
requirements processes,” describes several useful process assets for requirements management.

Your process descriptions should identify the team role that owns each of the requirements
 management activities. The project’s business analyst typically has the lead responsibility for
 requirements management. The BA will set up the requirements storage mechanisms, define
 requirement attributes, coordinate requirement status and trace data updates, and monitor change
activity as needed. The process description should also indicate who has authority to modify the
requirements management process, how exceptions should be handled, and the escalation path for
impediments encountered.

Trap If no one on the project has responsibility for performing requirements management
activities, don’t expect them to get done. Similarly, if “everyone” has the responsibility,
each person might expect that someone else is covering the necessary activities, so they
can easily be overlooked.

The requirements baseline

Requirements development involves activities to elicit, analyze, specify, and validate a software
project’s requirements. Requirements development deliverables include business requirements, user
requirements, functional and nonfunctional requirements, a data dictionary, and various analysis
models. After they are reviewed and approved, any defined subset of these items constitutes a
 requirements baseline. As was described in Chapter 2, a requirements baseline is a set of requirements
that stakeholders have agreed to, often defining the contents of a specific planned release or
 development iteration. The project might have additional agreements regarding deliverables,
 constraints, schedules, budgets, transition requirements, and contracts; those lie beyond the scope of
this book.

At the time a set of requirements is baselined—typically following review and approval—the
requirements are placed under configuration (or change) management. Subsequent changes can
be made only through the project’s defined change control procedure. Prior to baselining, the
 requirements are still evolving, so there’s no point in imposing unnecessary process overhead on
those modifications. A baseline could consist of some or all the requirements in a particular SRS
(whether for an entire product or a single release), or a designated set of requirements stored in an
RM tool, or an agreed-on set of user stories for a single iteration on an agile project.

460 PART IV Requirements management

If the scope of a release changes, update the requirements baseline accordingly. Distinguish the
requirements in a particular baseline from others that were proposed but not accepted, are allocated
to a different baseline, or remain unallocated in the product backlog. If the requirements are specified
in the form of a document such as an SRS, clearly identify it as a baseline version to distinguish it from
prior drafts. Storing requirements in an RM tool facilitates the identification of those that belong to a
specific baseline and the management of changes to that baseline.

A development team that accepts proposed requirement changes or additions might not be able
to fulfill its existing schedule and quality commitments. The project manager must negotiate changes
to those commitments with affected managers, customers, and other stakeholders. The project can
accommodate new or changed requirements in various ways:

 ■ By deferring lower-priority requirements to later iterations or cutting them completely

 ■ By obtaining additional staff or outsourcing some of the work

 ■ By extending the delivery schedule or adding iterations to an agile project

 ■ By sacrificing quality to ship by the original date

No single approach is universally correct, because projects differ in their flexibility of features,
staff, budget, schedule, and quality (Wiegers 1996). The choice should be based on the project’s
business objectives and the priorities the key stakeholders established during project initiation. No
matter how you respond to changing requirements, accept the reality of adjusting expectations and
commitments when necessary. This is better than imagining that somehow all the new features will be
incorporated by the original delivery date without budget overruns, team member burnout, or quality
compromises.

Requirements version control

Version control—uniquely identifying different versions of an item—applies at the level of both
 individual requirements and requirements sets, most commonly represented in the form of
 documents. Begin version control as soon as you draft a requirement or a document so you can retain
a history of changes made.

Every version of the requirements must be uniquely identified. Every team member must be
able to access the current version of the requirements. Changes must be clearly documented
and communicated to everyone affected. To minimize confusion and miscommunication, permit
only designated individuals to update the requirements, and make sure that the version identifier
changes whenever an update is made. Each circulated version of a requirements document or each
 requirement in a tool should include a revision history that identifies the changes made, the date of
each change, the individual who made the change, and the reason for each change.

 CHAPTER 27 Requirements management practices 461

It’s not a bug; it’s a feature!
A contract development team received a flood of bug reports from the testers of the latest
 release they had just delivered to a customer. The contract team was perplexed—the system
had passed all their own tests. After considerable investigation, it turned out that the customer
was testing the new software against an obsolete version of the SRS. What the testers were
 reporting as bugs truly were features. Normally, this is just a little joke that software people
like to make. The testers spent considerable time rewriting the tests against the correct
 version of the SRS and retesting the application, all because of a version control problem.
Another colleague who once experienced the same kind of testing confusion because of
an uncommunicated change said, “We probably wasted four to six hours of effort that our
 department had to absorb and couldn’t spend on actual billable hours. I think software
 professionals would be shocked if they multiplied out these wasted hours times their bill rate to
see what the loss in revenue is.”

Similar confusion can arise when multiple BAs are working on a project. One BA begins to
edit version 1.2 of the requirements specification. A few days later, another BA starts to work on
some requirements and also labels his version 1.2, not knowing about the conflict. Pretty soon
changes are lost, requirements are no longer up to date, work is overwritten, and confusion
ensues.

The most robust approach to version control is to store the requirements in a requirements
management tool, as described in Chapter 30. RM tools track the history of changes made to every
requirement, which is valuable when you need to revert to an earlier version. Such a tool allows for
comments describing the rationale behind a decision to add, modify, or delete a requirement. These
comments are helpful if the requirement becomes a topic for discussion again in the future.

If you’re storing requirements in documents, you can track changes by using the word processor’s
revision marks feature. This feature visually highlights changes made in the text with notations
such as strikethrough highlighting for deletions and underscores for additions. When you baseline
a document, first archive a marked-up version, then accept all the revisions, and then store the
now clean version as the new baseline, ready for the next round of changes. Store requirements
 documents in a version control tool, such as the one your organization uses for controlling source
code through check-out and check-in procedures. This will let you revert to earlier versions if
 necessary and to know who changed each document, when, and why. (Incidentally, this describes
exactly how we wrote this book. We wrote the chapters in Microsoft Word, using revision marks as we
iterated on the chapters. We had to refer back to previous versions on several occasions.)

I know of one project that stored several hundred use case documents written in Microsoft Word
in a version control tool. The tool let the team members access all previous versions of every use case,
and it logged the history of changes made to each one. The project’s BA and her backup person had
read-write access to the documents stored in the tool; the other team members had read-only access.
This approach worked well for this team.

462 PART IV Requirements management

The simplest version control mechanism is to manually label each revision of a document
 according to a standard convention. Schemes that try to differentiate document versions based on
dates are prone to confusion. I use a convention that labels the first version of any new document
with its title and “Version 1.0 draft 1.” The next draft keeps the same title but is identified as “
Version 1.0 draft 2.” The author increments the draft number with each iteration until the document
is approved and baselined. At that time, the version identifier is changed to “Version 1.0 approved,”
again keeping the same document title. The next version is either “Version 1.1 draft 1” for a minor
revision or “Version 2.0 draft 1” for a major change. (Of course, “major” and “minor” are subjective
and depend on the context.) This scheme clearly distinguishes between draft and baselined document
versions, but it does require manual discipline on the part of those who modify the documents.

Requirement attributes

Think of each requirement as an object with properties that distinguish it from other requirements.
In addition to its textual description, each requirement should have supporting pieces of information
or attributes associated with it. These attributes establish a context and background for each
 requirement. You can store attribute values in a document, a spreadsheet, a database, or—most
effectively—a requirements management tool. It’s cumbersome to use more than a couple of
 requirements attributes with documents.

RM tools typically provide several system-generated attributes in addition to letting you define
others, some of which can be automatically populated. The tools let you query the database to
view selected subsets of requirements based on their attribute values. For instance, you could list all
 high-priority requirements that were assigned to Shari for implementation in release 2.3 and have a
status of Approved. Following is a list of potential requirement attributes to consider:

 ■ Date the requirement was created

 ■ Current version number of the requirement

 ■ Author who wrote the requirement

 ■ Priority

 ■ Status

 ■ Origin or source of the requirement

 ■ Rationale behind the requirement

 ■ Release number or iteration to which the requirement is allocated

 ■ Stakeholder to contact with questions or to make decisions about proposed changes

 ■ Validation method to be used or acceptance criteria

 CHAPTER 27 Requirements management practices 463

Wherefore this requirement?
The product manager at a company that makes electronic measurement devices wanted to
track which requirements the team included simply because a competitor’s product had the
same capability. A good way to note such features is with a Rationale attribute, which indicates
why a specific requirement is included in the product. Suppose you included some requirement
because it meets the need of a particular user group. Later on, your marketing department
decides they don’t care about that user group any more. Having the justification present as a
requirement attribute would help people decide whether that requirement could be omitted.

Another BA described his quandary with requirements that had no obvious justification. He
said, “In my experience, many requirements exist without a real need behind them. They are
 introduced because the customer lacks an understanding of the technology, or because some
key stakeholders get excited about the technology and want to show off, or because our sales
team intentionally or unintentionally has misled the customer.” If you can’t provide a convincing
rationale for a requirement and trace it back to a business need, the BA should question
whether there’s a real reason to devote effort to it.

Trap Selecting too many requirements attributes can overwhelm a team. They won’t
 supply all attribute values for all requirements and won’t use the attribute information
 effectively. Start with perhaps three or four key attributes. Add others only when you know
how they will add value.

The requirements planned for a release will change as new requirements are added and existing
ones are deleted or deferred. The team might be juggling separate requirements documents for
multiple releases or iterations. Leaving obsolete requirements in the SRS can confuse readers as to
whether those requirements are included in that baseline. A solution is to store the requirements
in an RM tool and define a Release Number attribute. Deferring a requirement means changing
its planned release, so simply updating the release number shifts the requirement into a different
 baseline. Handle deleted and rejected requirements by using a status attribute, as described in the
next section.

Defining and updating these attribute values is part of the cost of requirements management, but
that investment can yield a significant payback. One company periodically generated a requirements
report that showed which of the 750 requirements from 3 related specifications were assigned to each
designer. One designer discovered several requirements that she didn’t realize were her responsibility.
She estimated that she saved one to two months of engineering design rework that would have been
required had she not found out about those requirements until later in the project. The larger the
project, the easier it is to experience time-wasting miscommunications.

464 PART IV Requirements management

Tracking requirements status

“How are you coming on implementing that subsystem, Yvette?” asked the project manager, Dave.

“Pretty good, Dave. I’m about 90 percent done.”

Dave was puzzled. “Didn’t you say you were 90 percent done a couple of weeks ago?” he asked.

Yvette replied, “Yes, I thought I was, but now I’m really 90 percent done.”

Like nearly everyone, software developers are sometimes overly optimistic when they report how
much of a task is complete. The common “90 percent done” syndrome doesn’t tell Dave much
about how close Yvette really is to finishing the subsystem. But suppose Yvette had replied, “Pretty
good, Dave. Of the 84 requirements for the subsystem, 61 are implemented and verified, 14 are
 implemented but not yet verified, and I haven’t implemented the other 9 yet.” Tracking the status
of each functional requirement throughout development provides a more precise gauge of project
progress.

Status was one of the requirement attributes proposed in the previous section. Tracking
 status means comparing where you really are at a particular time against the expectation of what
 “complete” means for this development cycle. You might have planned to implement only certain
flows of a use case in the current release, leaving full implementation for a future release. Monitor
the status of just those functional requirements that were committed for the current release, because
that’s the set that’s supposed to be 100 percent done before you declare success and ship the release.

Trap There’s an old joke that the first half of a software project consumes the first
90 percent of the resources and the second half consumes the other 90 percent of the
 resources. Overoptimistic estimation and overgenerous status tracking constitute a reliable
formula for project overruns.

Table 27-1 lists several possible requirement statuses. Some practitioners add others, such as
Designed (the design elements that address the functional requirement have been created and
 reviewed) and Delivered (the software containing the requirement is in the hands of the users, as for
acceptance or beta testing). It’s valuable to keep a record of rejected requirements and the reasons
they were rejected. Rejected requirements have a way of resurfacing later during development or
on a future project. The Rejected status lets you keep a proposed requirement available for possible
future reference without cluttering up a specific release’s set of committed requirements. You don’t
need to monitor all of the possible statuses in Table 27-1; choose the ones that add value to your
 requirements activities.

 CHAPTER 27 Requirements management practices 465

TABLE 27-1 Suggested requirement statuses

Status Definition

Proposed The requirement has been requested by an authorized source.

In Progress A business analyst is actively working on crafting the requirement.

Drafted The initial version of the requirement has been written.

Approved The requirement has been analyzed, its impact on the project has been estimated, and it has been
allocated to the baseline for a specific release. The key stakeholders have agreed to incorporate the
requirement, and the software development group has committed to implement it.

Implemented The code that implements the requirement has been designed, written, and unit tested. The
 requirement has been traced to the pertinent design and code elements. The software that
implemented the requirement is now ready for testing, review, or other verification.

Verified The requirement has satisfied its acceptance criteria, meaning that the correct functioning of the
implemented requirement has been confirmed. The requirement has been traced to pertinent
tests. It is now considered complete.

Deferred An approved requirement is now planned for implementation in a later release.

Deleted An approved requirement has been removed from the baseline. Include an explanation of why
and by whom the decision was made to delete it.

Rejected The requirement was proposed but was never approved and is not planned for implementation
in any upcoming release. Include an explanation of why and by whom the decision was made to
reject it.

Classifying requirements into several status categories is more meaningful than trying to
 monitor the percent completion of each requirement or of the complete release baseline. Update a
 requirement’s status only when specified transition conditions are satisfied. Certain status changes
also require updates to the requirements trace data to indicate which design, code, and test elements
addressed the requirement, as illustrated in Table 29-1 in Chapter 29.

Figure 27-2 illustrates how you can visually monitor the status of a set of requirements throughout
a hypothetical 10-month project. It shows the percentage of all the system’s requirements having
each status value at the end of each month. Tracking the distribution by percentages doesn’t
show whether the number of requirements in the baseline is changing over time. The number of
 requirements increases as scope is added and decreases when functionality is removed from the
baseline. The curves illustrate how the project is approaching its goal of complete verification of all
approved requirements. A body of work is done when all requirements allocated to it have a status of
Verified, Deleted, or Deferred.

466 PART IV Requirements management

FIGURE 27-2 Tracking the distribution of requirements status throughout a project’s development cycle.

Resolving requirements issues

Numerous questions, decisions, and issues related to requirements will arise during the course of a
project. Potential issues include items flagged as TBD, pending decisions, information that is needed,
and conflicts awaiting resolution. It’s easy to lose sight of these open issues. Record issues in an issue-
tracking tool so all affected stakeholders have access to them. Keep the issue-tracking and resolution
process simple to ensure that nothing slips through the cracks. Some of the benefits of using an issue-
tracking tool are:

 ■ Issues from multiple requirements reviews are collected so that no issue ever gets lost.

 ■ The project manager can easily see the current status of all issues.

 ■ A single owner can be assigned to each issue.

 ■ The history of discussion around an issue can be retained.

 ■ The team can begin development earlier with a known set of open issues rather than having to
wait until the SRS is complete.

Resolve requirements issues so they don’t impede the timely baselining of a high-quality
 requirements set for your next release or iteration. A burndown chart that shows remaining issues
and the rate at which they are being closed can help predict when all of the issues will be closed
so you can accelerate issue resolution if necessary. (See “Managing requirements on agile projects”
later in this chapter for a sample burndown chart.) Categorizing issues will help you determine which
sections of requirements still need work. Few open issues on a section could mean either that the
 requirements haven’t been reviewed yet or that the open issues are mostly resolved.

 CHAPTER 27 Requirements management practices 467

Nearly all of the defects logged early in a project are related to issues in the requirements, such as
asking for clarification on a requirement, scope decisions, questions about development feasibility,
and to-do items on the requirements themselves. All stakeholders can log questions as they review
the requirements. Table 27-2 lists several common types of requirements issues that can arise.

TABLE 27-2 Common types of requirements issues

Issue type Description

Requirement question Something isn’t understood or decided about a requirement.

Missing requirement Developers uncovered a missed requirement during design or implementation.

Incorrect requirement A requirement was wrong. It should be corrected or removed.

Implementation question As developers implement requirements, they have questions about how something
should work or about design alternatives.

Duplicate requirement Two or more equivalent requirements are discovered. Delete all but one of them.

Unneeded requirement A requirement simply isn’t needed anymore.

Bad things can happen if you don’t have an organized process for handling your requirements
 issues. On one project, a stakeholder mentioned very early on that we would handle something in
“the portal.” This was the first I had heard of a portal as part of the solution, so I asked about it. The
stakeholder assured me that the COTS package being acquired included a portal component that
simply had to be configured properly. We hadn’t included any time for portal requirements in our
plan, so I thought we might have a gap. I asked a teammate to record an issue about the portal so we
wouldn’t overlook that need. I left the project a few weeks later.

As it turned out, my teammate jotted the portal issue on a whiteboard that was later erased; she
didn’t record it in our issue-tracking tool. Six months into the project, our executive stakeholder came
to me absolutely furious that no one had elicited requirements for the portal. I had to find out why
we hadn’t developed portal requirements: we simply forgot about it. Recording the issue in a tracking
tool would have kept us from scrambling at the last minute and avoided upsetting the customer.

Measuring requirements effort

As with requirements development, your project plan should include tasks and resources for the
 requirements management activities described in this chapter. If you track how much effort you
spend on requirements development and management activities, you can evaluate whether it was
too little, about right, or too much, and adjust your future planning accordingly. Karl Wiegers (2006)
discusses measuring various other aspects of the requirements work on a project.

Measuring effort requires a culture change and the individual discipline to record daily work
activities (Wiegers 1996). Effort tracking isn’t as time-consuming as people sometimes fear. Team
members gain valuable insight from knowing how they actually spent their time, compared to how
they thought they spent their time, compared to how they were supposed to spend their time. Effort
tracking also indicates whether the team is performing the intended requirements-related activities.

468 PART IV Requirements management

Note that work effort is not the same as elapsed calendar time. Tasks can be interrupted; they
might require interactions with other people that lead to delays. The total effort for a task, in units of
labor hours, might not change because of such factors (although frequent interruptions do reduce an
individual’s productivity), but the calendar duration increases.

When tracking requirements development effort, you might find it valuable to separate the
time spent by people in the BA role from time spent by other project participants. Tracking the BA’s
time will help you plan how much BA effort is needed on future projects (see Chapter 19, “Beyond
 requirements development,” for more about estimating BA time). Measuring the total effort spent on
requirements activities by all stakeholders gives you a sense of the total cost of requirements activities
on a project. Record the number of hours spent on requirements development activities such as the
following:

 ■ Planning requirements-related activities for the project

 ■ Holding workshops and interviews, analyzing documents, and performing other elicitation
activities

 ■ Writing requirements specifications, creating analysis models, and prioritizing requirements

 ■ Creating and evaluating prototypes intended to assist with requirements development

 ■ Reviewing requirements and performing other validation activities

Count the effort devoted to the following activities as requirements management effort:

 ■ Configuring a requirements management tool for your project

 ■ Submitting requirements changes and proposing new requirements

 ■ Evaluating proposed changes, including performing impact analysis and making decisions

 ■ Updating the requirements repository

 ■ Communicating requirements changes to affected stakeholders

 ■ Tracking and reporting requirements status

 ■ Creating requirements trace information

Remember, the time you spend on these requirements-related activities is an investment in project
success, not just a cost. To justify the activities, compare this time investment with the time the team
spends dealing with issues that arose because these things were not done—the cost of poor quality.

Managing requirements on agile projects

Agile projects accommodate change by building the product through a series of development
iterations and managing a dynamic product backlog of work remaining to be done. As described
in Chapter 2, the stakeholders reach agreement on the stories to be implemented in each iteration.
New stories that customers add while an iteration is under way are prioritized against the remaining

 CHAPTER 27 Requirements management practices 469

backlog contents and allocated to future iterations. New stories might displace lower-priority stories
if the team wants to keep the original delivery schedule. The goal—as it should be for all projects—is
to always be working on the highest-priority stories to deliver the maximum value to customers as
quickly as possible. See Chapter 28 for more information about handling requirement changes on
agile projects.

Some agile teams, particularly large or distributed teams, use an agile project management tool
to track the status of an iteration and the stories allocated to it. The stories and their associated
 acceptance criteria and acceptance tests might all be placed in a product backlog or user
story– management tool. Story status can be monitored by using statuses analogous to those
 described earlier in Table 27-1 (Leffingwell 2011):

 ■ In backlog (the story is not yet allocated to an iteration)

 ■ Defined (details of the story were discussed and understood, and acceptance tests were
 written)

 ■ In progress (the story is being implemented)

 ■ Completed (the story is fully implemented)

 ■ Accepted (acceptance tests were passed)

 ■ Blocked (the developer is unable to proceed until something else is resolved)

Agile projects typically monitor their progress with an iteration burndown chart (Cohn 2004;
Cohn 2005). The team estimates the total amount of work to do on the project, often sized in units
of story points, which are derived from an understanding of the user stories in the product backlog
(Cohn 2005; Leffingwell 2011). The story point total is thus proportional to the amount of effort the
team must expend to implement the requirements. The team allocates certain user stories to each
iteration based on their priority and their estimated size in story points. The team’s past or average
velocity dictates the number of story points the team plans to deliver in an iteration of a particular
calendar duration.

The team charts the story points remaining in the product backlog at the end of each iteration.
This total will change as work is completed, as current stories are better understood and re-estimated,
as new stories are added, and as customers remove pending work from the backlog. That is, rather
than monitoring the count and status of individual functional requirements or features (which can
come in a variety of sizes), the burndown chart shows the total work remaining to be done at a
 specific time.

Figure 27-3 illustrates a burndown chart for a hypothetical project. Notice that the scope
 remaining, as measured in story points, actually increased in iterations 2, 3, and 5. This indicates
that more new functionality was added to the backlog than was completed or removed during the
course of the iteration. The burndown chart helps the team avoid the “90 percent done” syndrome
by making visible the amount of work remaining, as opposed to the amount of work completed,
which doesn’t reflect the inevitable scope increases. The slope of the burndown chart also reveals the
 projected end date for the project, the point at which no work remains in the backlog.

470 PART IV Requirements management

FIGURE 27-3 Sample iteration burndown chart for monitoring the product backlog on an agile project.

Why manage requirements?

Whether your project is following a sequential development life cycle, one of the various agile life
cycles, or any other approach, managing the requirements is an essential activity. Requirements
 management helps to ensure that the effort you invest in requirements development isn’t
 squandered. Effective requirements management reduces the expectation gap by keeping all project
stakeholders informed about the current state of the requirements throughout the development
process. It lets you know where you’re headed, how the trip is going, and when you’ve arrived at your
destination.

Next steps
 ■ Document the processes your organization will follow to manage the requirements on

each project. Engage several business analysts to draft, review, pilot, and approve the
process activities and deliverables. The process steps you define must be practical and
realistic, and they must add value to each affected project.

 ■ If you’re not using a requirements management tool, define a version labeling scheme to
identify your requirements documents. Educate the BAs about this scheme.

 ■ Select the statuses that you want to use to describe the life cycle of your functional
requirements or user stories. Draw a state-transition diagram to show the conditions or
events that trigger a change from one status to another.

 ■ Define the current status for each requirement in your baseline. Keep the status current as
development progresses.

 471

C H A P T E R 2 8

Change happens

“How’s your development work coming, Glenn?” asked Dave, the Chemical Tracking System’s project
manager, during a status meeting.

“I’m not as far along as I’d planned to be,” Glenn admitted. “I’m adding a new catalog query function
for Harumi, and it’s taking a lot longer than I expected.”

Dave was puzzled. “I don’t remember hearing about a new catalog query function. Did Harumi
 submit that request through the change process?”

“No, she approached me directly with the suggestion,” said Glenn. “It seemed pretty simple, so I told
her I’d work it in. It turned out not to be simple at all! Every time I think I’m done, I realize I missed a
change needed in another file, so I have to fix that, rebuild the component, and test it again. I thought
this would take about six hours, but I’ve spent almost three days on it so far. I know I’m holding up the
next build. Should I finish adding this query function or go back to what I was working on before?”

Most developers have encountered an apparently simple change that turned out to be far more
complicated than expected. Developers sometimes don’t—or can’t—produce realistic estimates of
the cost and other ramifications of a proposed software change. Additionally, when developers who
want to be accommodating agree to add enhancements that users request, requirements changes
slip in through the back door instead of being approved by the right stakeholders. Such uncontrolled
change is a common source of project chaos, schedule slips, quality problems, and hard feelings. This
chapter describes both formal change control practices and how agile projects incorporate changes.

Why manage changes?

Software change isn’t a bad thing; in fact, it’s necessary. It’s virtually impossible to define all of
a product’s requirements up front. The world changes as development progresses: new market
 opportunities arise, regulations and policies change, and business needs evolve. An effective software
team can nimbly respond to necessary changes so that the product they build provides timely
 customer value. An organization that’s serious about managing its software projects must ensure that:

 ■ Proposed requirements changes are thoughtfully evaluated before being committed to.

 ■ Appropriate individuals make informed business decisions about requested changes.

472 PART IV Requirements management

 ■ Change activity is made visible to affected stakeholders.

 ■ Approved changes are communicated to all affected participants.

 ■ The project incorporates requirements changes in a consistent and effective fashion.

But change always has a price. Revising a simple webpage might be quick and easy; making a
change in an integrated circuit design can cost tens of thousands of dollars. Even a rejected change
request consumes the time needed to submit, evaluate, and decide to reject it. Unless project
 stakeholders manage changes during development, they won’t really know what will be delivered,
which ultimately leads to an expectation gap.

Problems can also arise if a developer implements a requirement change directly in the code
 without communicating with other team members. The documented requirements then become an
inaccurate representation of what the product does. The code can become brittle if changes are made
without respecting the architecture and design structure. On one project, developers introduced new
and modified functionality that the rest of the team didn’t discover until system testing. They didn’t
expect that functionality, and they didn’t know how to test it. This required unplanned rework of test
procedures and user documentation. Consistent change control practices help prevent such problems
and the associated frustration, rework, and wasted time.

Beware subversive changes
A vendor and a customer once caused havoc when they bypassed the change process on
a contracted project. The vendor (vetted by the IT department, but hired by the business
area) was to develop a new mobile workstation application. Requirements were elicited
 collaboratively with 10 subject matter experts. Then the lead customer from the business area
decided that she wanted more requirements changes. Not trusting that the revisions would be
funded, she colluded with the vendor’s developers to subvert the agreed-upon requirements.
They rented a hotel room and worked in secret, making changes to the code on the fly. When
testers found that the deliverable didn’t match the requirements, the whole story came out.
Backtracking the changes and expected outcomes cost the organization considerable time and
effort.

By a strange twist of fate, that lead customer later became a business analyst. She took
the time to apologize, because only then did she come to understand how her actions had
 undermined the rest of the team.

Managing scope creep

In an ideal world, you would document all of a new system’s requirements before beginning
 construction, and they’d remain stable throughout the development effort. This is the premise behind
the pure waterfall development model, but it doesn’t work well in practice. At some point, you

 CHAPTER 28 Change happens 473

must freeze the requirements for a specific release or development iteration or you’ll never finish it.
 However, stifling change prematurely ignores the realities that customers aren’t always sure what they
need, business needs change, and developers want to respond to those changes.

Requirements growth includes new functionality and significant modifications that are presented
after a set of requirements has been baselined (see Chapter 2, “Requirements from the customer’s
perspective”). The longer a project goes on, the more growth it experiences. The requirements
for software systems typically grow between 1 percent and 3 percent per calendar month (Jones
2006). Some requirements evolution is legitimate, unavoidable, and even advantageous. Scope
creep, though, in which the project continuously incorporates more functionality without adjusting
 resources, schedules, or quality goals, is insidious. The problem is not that requirements change but
that late changes can have a big impact on work already performed. If every proposed change is
approved, it might appear to stakeholders that the software will never be delivered—and indeed, it
might not.

The first step in managing scope creep is to document the business objectives, product vision,
project scope, and limitations of the new system, as described in Chapter 5, “Establishing the
 business requirements.” Evaluate every proposed requirement or feature against the business
 requirements. Engaging customers in elicitation reduces the number of requirements that are
overlooked. Prototyping helps to control scope creep by helping developers and users share a clear
 understanding of user needs and prospective solutions. Using short development cycles to release a
system incrementally provides frequent opportunities for adjustments.

The most effective technique for controlling scope creep is the ability to say “no“ (Weinberg 1995).
People don’t like to say “no,“ and development teams can receive intense pressure to always say “yes.“
Philosophies such as “the customer is always right” or “we will achieve total customer satisfaction” are
fine in the abstract, but you pay a price for them. Ignoring the price doesn’t alter the fact that change
is not free. The president of one software tool vendor is accustomed to hearing the development
manager say “not now” when he suggests a new feature. “Not now” is more palatable than a simple
rejection. It holds the promise of including the feature in a subsequent release.

Trap Freezing the requirements for a new system too soon after initial elicitation activities
is unwise and unrealistic. Instead, establish a baseline when you think a set of requirements
is well enough defined for construction to begin, and then manage changes to minimize
their adverse impact on the project.

474 PART IV Requirements management

Change control policy

Management should communicate a policy that states its expectations of how project teams will
handle proposed changes in requirements and all other significant project artifacts. Policies are
meaningful only if they are realistic, add value, and are enforced. The following change control policy
statements can be helpful:

 ■ All changes must follow the process. If a change request is not submitted in accordance with
this process, it will not be considered.

 ■ No design or implementation work other than feasibility exploration will be performed on
unapproved changes.

 ■ Simply requesting a change does not guarantee that it will be made. The project’s change
control board (CCB) will decide which changes to implement.

 ■ The contents of the change database must be visible to all project stakeholders.

 ■ Impact analysis must be performed for every change.

 ■ Every incorporated change must be traceable to an approved change request.

 ■ The rationale behind every approval or rejection of a change request must be recorded.

Of course, tiny changes will hardly affect the project, and big changes will have a significant
 impact. In practice, you might decide to leave certain requirements decisions to the developers’
 discretion, but no change affecting more than one individual’s work should bypass your process.
Include a “fast path” to expedite low-risk, low-investment change requests in a compressed decision
cycle.

Basic concepts of the change control process

When performing a software process assessment, I asked a project team how they handled
 requirements changes. After an awkward silence, one person said, “Whenever the marketing
 representative wants to make a change, he asks Bruce or Robin because they always say ‘yes.’ The rest
of us push back about changes.” This didn’t strike me as a great change process.

A sensible change control process lets the project’s leaders make informed business decisions that
will provide the greatest customer and business value while controlling the product’s life-cycle cost
and the project’s schedule. The process lets you track the status of all proposed changes, and it helps
ensure that suggested changes aren’t lost or overlooked. After you’ve baselined a set of requirements,
you should follow this process for all proposed changes to that baseline.

Stakeholders sometimes balk at being asked to follow a new process, but a change control process
is not an obstacle to making necessary modifications. It’s a funneling and filtering mechanism to

 CHAPTER 28 Change happens 475

 ensure that the project expeditiously incorporates the most appropriate changes. If a proposed
change isn’t important enough for a stakeholder to take just a couple of minutes to submit it through
a standard, simple channel, then it’s not worth considering for inclusion. Your change process should
be well documented, as simple as possible, and—above all—effective.

Trap If you ask your stakeholders to follow a new change control process that’s ineffective,
cumbersome, or too complicated, people will find ways to bypass the process—and they
should.

Managing requirements changes is similar to the process for collecting and making decisions
about defect reports. The same tools can support both activities. Remember, though: a tool is not
a substitute for a documented process, and neither one is a substitute for appropriate discussions
between stakeholders. Regard both a tool and a written process as ways to support these critical
conversations.

When you need to incorporate a change, start at the highest level of abstraction that the change
touches and cascade the change through affected system components. For example, a proposed
change might affect a user requirement but not any business requirements. Modifying a high-level
system requirement could affect numerous software and hardware requirements in multiple
 subsystems. Some changes pertain only to system internals, such as the way a communication service
is implemented. These aren’t user-visible requirements changes, but rather design or code changes.

A change control process description

Figure 28-1 illustrates a template for a change control process description to handle requirements
modifications. A sample change control process description is available for downloading from this
book’s companion content website. If this template is too elaborate for your environment, scale it
down for more informal projects. We find it helpful to include the following four components in all
process descriptions:

 ■ Entry criteria, the conditions that must be satisfied before the process execution can begin

 ■ The various tasks involved in the process, the project role responsible for each task, and other
participants in the task

 ■ Steps to verify that the tasks were completed correctly

 ■ Exit criteria, the conditions that indicate when the process is successfully completed

The rest of this section describes the various sections in the change control process description.

476 PART IV Requirements management

FIGURE 28-1 Sample template for a change control process description.

1. Purpose and scope
Describe the purpose of this process and the organizational scope to which it applies. Indicate
 whether any specific kinds of changes are exempted, such as changes in interim work products.
 Define any terms that are necessary for understanding the rest of the document.

2. Roles and responsibilities
List the project team roles that participate in the change control activities and describe their
 responsibilities. Table 28-1 suggests some pertinent roles; adapt these to each project situation.
 Different individuals need not be required for each role. For example, the CCB Chair might also
receive submitted change requests. The same person can fill several—perhaps all—roles on a small
project. As one experienced project manager put it, “What I find important is that the representation
of the CCB needs to be able to speak to the needs of the diverse stakeholders, including the end
 users, the business, and the development community: do we need it, can we sell it, can we build it?”

TABLE 28-1 Possible project roles in change-management activities

Role Description and responsibilities

CCB Chair Chairperson of the change control board; generally has final decision-making authority if the
CCB does not reach agreement; identifies the Evaluator and the Modifier for each change
 request

CCB The group that decides to approve or reject proposed changes for a specific project

Evaluator Person whom the CCB Chair asks to analyze the impact of a proposed change

Modifier Person who is responsible for making changes in a work product in response to an approved
change request

Originator Person who submits a new change request

Request Receiver Person who initially receives newly submitted change requests

Verifier Person who determines whether the change was made correctly

 CHAPTER 28 Change happens 477

3. Change request status
A change request passes through a defined life cycle of states. You can represent these states by using
a state-transition diagram (see Chapter 12,” A picture is worth 1024 words”), as illustrated in Figure 28-2.
Update a request’s status only when the specified transition criteria are met. For instance, you can set the
state to “Change Made” after all affected work products have been modified to implement the change,
whether that is just a single requirement statement or a set of related development work products.

FIGURE 28-2 State-transition diagram for a change request.

478 PART IV Requirements management

4. Entry criteria
The basic entry criterion for your change control process is that a change request with all the
 necessary information has been received through an approved channel. All potential originators
should know how to submit a change request. Your change tool should assign a unique identifier to
each request and route all changes to the Request Receiver.

5. Tasks
This section of the process describes the tasks that are performed to handle a single change request.

5.1 Evaluate change request
Begin by evaluating the request for technical feasibility, cost, and alignment with the project’s
 business requirements and resource constraints. The CCB Chair might assign an Evaluator to perform
impact analysis, risk and hazard analysis, or other assessments. (See the “Change impact analysis”
 section later in this chapter.) This ensures that the consequences of accepting the change are
 understood. The Evaluator and the CCB should also consider the business and technical implications,
if any, of rejecting the request.

5.2 Make change decision
The appropriate decision makers, chartered as the CCB, then decide whether to approve or reject
the change. The CCB gives each approved change a priority or target implementation date, or it
allocates the change to a specific iteration or release. It might simply add a new requirement to the
product backlog of pending work. The CCB updates the request’s status and notifies all affected team
 members.

5.3 Implement the change
The assigned Modifier (or Modifiers) updates the affected work products as necessary to fully
 implement the change. Use requirements trace information to find all the parts of the system that the
change touches, and revise the trace information if necessary to reflect the changes made.

5.4 Verify the change
Requirements changes typically are verified through a peer review to ensure that modified
 deliverables correctly address all aspects of the change. Multiple team members might verify the
changes made in various downstream work products through testing or review. After verification is
complete, the Modifier stores updated work products in the appropriate locations per the project’s
document and code management conventions.

 CHAPTER 28 Change happens 479

6. Exit criteria
Satisfying the following exit criteria indicates that an execution of your change control process was
properly completed:

 q The status of the request is Rejected, Closed, or Canceled.

 q All modified work products are updated and stored in the correct locations.

 q The relevant stakeholders have been notified of the change details and the status of the
change request.

7. Change control status reporting
Identify the charts and reports you’ll use to summarize the contents of the change database. These
charts might show the number of change requests in each state as a function of time, or trends in the
average time that a change request is unresolved. Describe the procedures for producing the charts
and reports. The project manager uses these reports when tracking the project’s status.

Appendix: Attributes stored for each request
Table 28-2 lists some data attributes to consider storing for each change request. Some of these items
are supplied by the Originator and some by the CCB. In your change control process, indicate which
attributes are required and which are optional. Don’t define more attributes than you really need.
Your change tool should handle some of these (ID, date submitted, date updated) automatically.

TABLE 28-2 Suggested change request attributes

Item Description

Change origin Functional area that requested the change; possible groups include marketing, management,
customer, development, and testing

Change request ID Unique identifier assigned to the request

Change type Type of change request, such as requirement change, proposed enhancement, or defect report

Date submitted Date the Originator submitted the change request

Date updated Date the change request was most recently modified

Description Free-form text description of the change being requested

Implementation
priority

The relative importance of making the change as determined by the CCB: low, medium, or high

Modifier Person who is primarily responsible for implementing the change

Originator Person who submitted this change request

Originator priority The relative importance of making the change from the Originator’s point of view: low, medium,
or high

Planned release Product release or iteration for which an approved change is scheduled

Project Name of the project in which a change is being requested

480 PART IV Requirements management

Item Description

Response Free-form text of responses made to the change request; multiple responses can be made over
time; do not change existing responses when entering a new one

Status The current status of the change request, selected from the options in Figure 28-2

Title One-line summary of the proposed change

Verifier Person who is responsible for determining whether the change was made correctly

The change control board

The change control board is the body of people—whether it is one individual or a diverse group—that
decides which proposed changes and new requirements to accept, which to accept with revisions, and
which to reject. The CCB also decides which reported defects to correct and when to correct them.
Some CCBs are empowered to make decisions, whereas others can only make recommendations
for management decision. Projects always have some de facto group that makes change decisions.
 Establishing a CCB formalizes this group’s composition and authority and defines its operating
 procedures.

To some people, the term “change control board” conjures an image of wasteful bureaucratic
 overhead. Instead, think of the CCB as providing a valuable structure to help manage even a
small project. On a small project, it makes sense to have only one or two people make the change
 decisions. Very large projects or programs might have several levels of CCBs, some responsible for
business decisions, such as requirements changes, and some for technical changes. A large program
that encompasses multiple projects would establish a program-level CCB and an individual CCB for
each project. Each project CCB resolves issues and changes that affect only that project. Issues that
affect multiple projects and changes that exceed a specified cost or schedule impact are escalated to
the program-level CCB.

CCB composition
The CCB membership should represent all groups who need to participate in making decisions within
the scope of that CCB’s authority. Consider selecting representatives from the following areas:

 ■ Project or program management

 ■ Business analysis or product management

 ■ Development

 ■ Testing or quality assurance

 ■ Marketing, the business for which the application is being built, or customer representatives

 ■ Technical support or help desk

Only the subset of these people who need to make the decisions will be part of the CCB, although
all stakeholders must be informed of decisions that affect their work. The CCB for a project with both

 CHAPTER 28 Change happens 481

software and hardware components might also include representatives from hardware engineering,
systems engineering, and/or manufacturing. Keep the CCB small so the group can respond promptly
and efficiently to change requests. Make sure the CCB members understand and accept their
 responsibilities. Invite other individuals to CCB meetings as necessary to ensure that the group has
adequate technical and business information.

CCB charter
All of the project teams in an organization can follow the same change control process. However,
their CCBs might function in different ways. Each project should create a brief charter (which could
be part of the project management plan) that describes its CCB’s purpose, scope of authority,
 membership, operating procedures, and decision-making process (Sorensen 1999). A template for a
CCB charter is available for downloading from this book’s companion content website. The charter
should state the frequency of regularly scheduled CCB meetings and the conditions that trigger a
special meeting or decision. The scope of the CCB’s authority indicates which decisions it can make
and which ones it must escalate.

Making decisions
Each CCB needs to define its decision-making process, which should indicate:

 ■ The number of CCB members or the key roles that constitute a decision-making quorum.

 ■ The decision rules to be used (see Chapter 2 for more about decision rules).

 ■ Whether the CCB Chair can overrule the CCB’s collective decision.

 ■ Whether a higher level of CCB or management must ratify the group’s decision.

The CCB balances the anticipated benefits against the estimated impact of accepting a proposed
change. Benefits from improving the product could include financial savings, increased revenue,
higher customer satisfaction, and competitive advantage. Possible negative impacts include increased
 development and support costs, delayed delivery, and degraded product quality.

Trap Because people don’t like to say “no,” it’s easy to accumulate a huge backlog of
 approved change requests that will never get done. Before accepting a proposed change,
make sure you understand the rationale behind it and the business value the change will
provide.

Communicating status
After the CCB makes its decision, a designated individual updates the request’s status in the change
database. Some tools automatically generate an email message to communicate the new status to the
Originator who proposed the change and to others affected by the change. If an email message is not
generated automatically, inform the affected people so they can respond to the change.

482 PART IV Requirements management

Renegotiating commitments
Stakeholders can’t stuff more and more functionality into a project that has schedule, staff, budget,
or quality constraints and still expect to succeed. Before accepting a significant requirement change,
renegotiate commitments with management and customers to accommodate the change. You might
ask for more time or to defer lower-priority requirements. If you don’t obtain some commitment
 adjustments, document the threats to success in your project’s risk list so people aren’t surprised if
there are negative outcomes.

Change control tools

Many teams use commercial issue-tracking tools to collect, store, and manage requirements changes.
A report of recently submitted change requests extracted from the tool can serve as the agenda
for a CCB meeting. Issue-tracking tools can report the number of requests having each state at any
given time. Because the available tools, their vendors, and their features frequently change, we don’t
 provide specific tool recommendations here. To support your change process, look for a tool that:

 ■ Allows you to define the attributes that constitute a change request.

 ■ Allows you to implement a change request life cycle with multiple change request statuses.

 ■ Enforces the state-transition model so that only authorized users can make specific status changes.

 ■ Records the date of each status change and the identity of the person who made it.

 ■ Provides customizable, automatic email notification when an Originator submits a new request
or when a request’s status is updated.

 ■ Produces both standard and custom reports and charts.

Some commercial requirements management tools have a change-request system built in. These
systems can link a proposed change to a specific requirement so that the individual responsible for
each requirement is notified by email whenever someone submits a pertinent change request.

Tooling up a process
When I worked on a web development team, one of our first process improvements was
to implement a change control process to manage our huge backlog of change requests
(Wiegers 1999). We began with a process like the one described in this chapter. We piloted
it for a few weeks by using paper forms while I evaluated several issue-tracking tools. During
the pilot process we discovered ways to improve the process and additional data attributes
for the change requests. We selected a highly configurable tool and tailored it to match our
process. The team used this process and tool to handle requirements changes in systems
under development, defect reports and suggested enhancements for production systems, and
requests for new projects. Change control was one of our most successful process improvement
initiatives.

 CHAPTER 28 Change happens 483

Measuring change activity

Measuring change activity is a way to assess the stability of the requirements. It also reveals
 opportunities for process improvements that might lead to fewer changes in the future. Consider
tracking the following aspects of your requirements change activity:

 ■ The total number of change requests received, currently open, and closed

 ■ The cumulative number of added, deleted, and modified requirements

 ■ The number of requests that originated from each change origin

 ■ The number of changes received against each requirement since it was baselined

 ■ The total effort devoted to processing and implementing change requests

You don’t necessarily need to monitor your requirements change activities to this degree. As with
all software metrics, understand your goals and how you’ll use the data before you decide what to
measure (Wiegers 2007). Start with simple metrics to begin establishing a measurement culture in
your organization and to collect the data you need to manage your projects effectively.

Figure 28-3 illustrates a way to track the amount of requirements change your project experiences
during development (Wiegers 2006). This requirements volatility chart tracks the rate at which new
proposals for requirements changes arrive after a baseline was established. This chart should trend
toward zero as you approach release. A sustained high frequency of changes implies a risk of failing
to meet your schedule commitments. It probably also indicates that the original requirements set was
incomplete; better elicitation practices might be in order.

FIGURE 28-3 Sample chart of requirements change activity.

Tracking the requirements change origins is also illuminating. Figure 28-4 shows a way to represent
the number of change requests that came from different sources. The project manager could discuss
a chart like this with the marketing manager and point out that marketing has requested the most
requirements changes. This might lead to a fruitful discussion about actions the team could take to

484 PART IV Requirements management

reduce the number of changes received from marketing in the future or better ways to handle them.
Using data as a starting point for such discussions is more constructive than holding a confrontational
debate fueled by emotion. Come up with your own list of possible requirements change origins.

FIGURE 28-4 Sample chart of requirement change origins.

Change impact analysis

The need for impact analysis is obvious for major enhancements. However, unexpected complications
can lurk below the surface of even minor change requests. A company once had to change the text of
one error message in its product. What could be simpler? The product was available in both English-
language and German-language versions. There were no problems in English, but in German the new
message exceeded the maximum character length allocated for error message displays in both the
message box and a database. Coping with this seemingly simple change request turned out to be
much more work than the developer had anticipated when he promised a quick turnaround.

Impact analysis is a key aspect of responsible requirements management (Arnold and Bohner
1996). It provides an accurate understanding of the implications of a proposed change, which helps
the team make informed business decisions about which proposals to approve. The analysis examines
the request to identify components that might have to be created, modified, or discarded, and to
estimate the effort required to implement the change. Before a developer says, “Sure, no problem” in
response to a change request, he should spend a little time on impact analysis.

Impact analysis procedure
The CCB Chair will ask one or more technical people (business analysts, developers, and/or testers) to
perform the impact analysis for a specific change proposal. Impact analysis involves three steps:

1. Understand the possible implications of making the change. A requirement change often
produces a large ripple effect, leading to modifications in other requirements, architectures,

 CHAPTER 28 Change happens 485

designs, code, and tests. Changes can lead to conflicts with other requirements or can
 compromise quality attributes, such as performance or security.

2. Identify all the requirements, files, models, and documents that might have to be modified if
the team incorporates the requested change.

3. Identify the tasks required to implement the change, and estimate the effort needed to
 complete those tasks.

Important Skipping impact analysis doesn’t change the size of the task. It just turns the
size into a surprise. Software surprises are rarely good news.

Figure 28-5 presents a checklist of questions to help the evaluator understand the implications
of accepting a proposed change. The checklist in Figure 28-6 contains questions to help identify
all software elements and other work products that the change might affect. Requirements trace
 information that links the affected requirement to other downstream deliverables helps greatly
with impact analysis. As you gain experience in using these checklists, modify them to suit your own
projects. (Note: Figures 28-5 through 28-8 are available for downloading from this book’s companion
content website.)

FIGURE 28-5 Questions to understand the possible implications of a proposed change.

486 PART IV Requirements management

FIGURE 28-6 Checklist to determine work products that might be affected by a proposed change.

Many estimation problems arise because the estimator doesn’t think of all the work required
to complete an activity. Therefore, this impact analysis approach emphasizes thorough task
 identification. For substantial changes, use a small team—not just one developer—to do the analysis
and effort estimation to avoid overlooking important tasks. Following is a simple procedure for
 evaluating the impact of a proposed requirement change:

1. Work through the checklist in Figure 28-5.

2. Work through the checklist in Figure 28-6. Some requirements management tools include
an impact analysis report that follows traceability links and finds the system elements that
depend on the requirements affected by a change request.

3. Use the worksheet in Figure 28-7 to estimate the effort required for the anticipated tasks.
Most change requests will require only a portion of the tasks on the worksheet.

4. Sum the effort estimates.

5. Identify the sequence in which the tasks must be performed and how they can be interleaved
with currently planned tasks.

6. Estimate the impact of the proposed change on the project’s schedule and cost.

7. Evaluate the change’s priority compared to other pending requirements.

8. Report the impact analysis results to the CCB.

 CHAPTER 28 Change happens 487

FIGURE 28-7 Worksheet for estimating effort of a requirement change.

In most cases, this procedure shouldn’t take more than a couple of hours to complete for a single
change request. This seems like a lot of time to a busy developer, but it’s a small investment in
making sure the project wisely invests its limited resources. To improve your future impact analysis,
compare the actual effort needed to implement each change with the estimated effort. Understand
the reasons for any differences, and modify the impact estimation checklists and worksheet to help
ensure that future impact analyses are more accurate.

488 PART IV Requirements management

Money down the drain
Two developers at the A. Datum Corporation estimated that it would take four weeks to add
an enhancement to one of their information systems. The customer approved the estimate,
and the developers set to work. After two months, the enhancement was only about half done
and the customer lost patience: “If I’d known how long this was really going to take and how
much it was going to cost, I wouldn’t have approved it. Let’s forget the whole thing.” In the
rush to begin implementation, the developers didn’t do enough impact analysis to develop a
reliable estimate that would let the customer make a good business decision. Consequently, the
 company wasted several hundred hours of work that could have been avoided with a few hours
of impact analysis.

Impact analysis template
Figure 28-8 suggests a template for reporting the results from analyzing the impact of a requirement
change. The people who will implement the change will need the analysis details and the effort
 planning worksheet, but the CCB needs only the summary of analysis results. As with all templates, try
it and then adjust it to meet your project needs.

FIGURE 28-8 Impact analysis template.

Change management on agile projects

Agile projects are specifically structured to respond to—and even welcome—scope changes. One
of the 12 principles of agile software development is “Welcome changing requirements, even late in
development. Agile processes harness change for the customer’s competitive advantage”
(www.agilemanifesto.org/principles.html). This principle acknowledges the reality that requirements

http://www.agilemanifesto.org/principles.html

 CHAPTER 28 Change happens 489

changes are inevitable, necessary, and often valuable. Accepting change helps to meet evolving
 business objectives and priorities and to accommodate the limitations of human plans and foresight.

Agile projects manage change by maintaining a dynamic backlog of work to be done (see Figure 28-9).
“Work” includes user stories yet to be implemented, defects to be corrected, business process changes to
be addressed, training to be developed and delivered, and the myriad other activities involved with any
software project. Each iteration implements the set of work items in the backlog that have the highest
priority at that time. As stakeholders request new work, it goes into the backlog and is prioritized against
the other backlog contents. Work that has not yet been allocated can be reprioritized or removed from
the backlog at any time. A new, high-priority story could be allocated to the forthcoming iteration, forcing
a lower-priority story of about the same size to be deferred to a later iteration. Carefully managing the
scope of each iteration ensures that it is completed on time and with high quality.

FIGURE 28-9 Agile projects manage change with a dynamic product backlog.

Because of the iterative nature of agile projects, every few weeks there will be an opportunity to
select a set of work items from the backlog for the next development iteration. Agile teams vary as to
whether new work that arrives during an iteration is always deferred to a future iteration, or whether
they can modify the contents of the current iteration. Keeping the contents of an iteration frozen
while it is under way provides stability for developers and predictability regarding what stakeholders
can expect out of the iteration. On the other hand, adjusting the iteration’s contents makes the team
more responsive to customer needs.

Agile methods vary as to their philosophy on this point; there is no single “correct” approach.
Either freeze the baseline for an iteration once it is under way or introduce high-priority changes
as soon as you learn about them, whatever you think will work best for your team and the project’s
business objectives. The basic principle is to avoid both excessive change (churning requirements) and
excessive rigidity (frozen requirements) within an iteration. One solution is to set the iteration length
to the right duration for keeping most change out of the current iteration. That is, if changes need to
be introduced too often, the standard iteration length might need to be shortened.

All agile methods define a role representing the end-user and customer constituencies. In Scrum
this is the product owner role; in Extreme Programming this is the customer role. The customer or
product owner has primary responsibility for prioritizing the contents of the product backlog.

490 PART IV Requirements management

He also makes decisions to accept proposed requirements changes, based on their alignment with the
 overarching product vision and the business value they will enable (Cohn 2010).

Because an agile team is a collaborative and cross-functional group of developers, testers,
a business analyst, a project manager, and others, the team is already configured like the change
control board discussed earlier in the chapter. The short duration of agile iterations and the small
 increment of product delivered in each iteration allows agile teams to perform change control
frequently but on a limited scale. However, even agile projects must evaluate the potential cost of
changes in requirements and their impact on product components. Scope changes that could affect
the overall cost or duration of the project need to be escalated to a higher-level change authority,
such as the project sponsor (Thomas 2008).

No matter what kind of project you’re working on or what development life cycle your team is
following, change is going to happen. You need to expect it and be prepared to handle it. Disciplined
change-management practices can reduce the disruption that changes can cause. The purpose of
change control is not to inhibit change, nor to inhibit stakeholders from proposing changes. It is
to provide visibility into change activity and mechanisms by which the right people can consider
 proposed changes and incorporate appropriate ones into the project at the right time. This will
 maximize the business value and minimize the negative impact of changes on the team.

Next steps
 ■ Identify the decision makers on your project, and set them up as a change control

board. Have the CCB adopt a charter to establish and document the board’s purpose,
 composition, and decision-making process.

 ■ Define a state-transition diagram for the life cycle of proposed requirements changes in
your project, starting with the diagram in Figure 28-2. Write a process to describe how
your team will handle proposed requirements changes. Use the process manually until
you’re convinced that it’s practical and effective.

 ■ Select an issue-tracking tool that’s compatible with your development environment. Tailor
it to align with the process you created in the previous step.

 ■ The next time you evaluate a requirement change request, first estimate the effort using
your old method. Then estimate it again using the impact analysis approach described in
this chapter. If you implement the change, compare the two estimates to see which agrees
more closely with the actual effort required. Modify the impact analysis checklists and
worksheet based on your experience to improve their future value.

 491

C H A P T E R 2 9

Links in the requirements chain

“We just learned that the new union contract is changing how overtime pay and shift bonuses are
 calculated,” Justin reported at the weekly team meeting. “It’s also changing how the seniority rules
affect priority for vacation scheduling and shift preferences. We have to update the payroll and staff
scheduling systems to handle all these changes right away. How long do you think it will take to get this
done, Chris?”

“Man, that’s going to be a lot of work,” said Chris. “The logic for the seniority rules is sprinkled
throughout the scheduling system. I can’t give you a decent estimate yet. It’s going to take hours just to
scan through the code and try to find all the places where those rules show up.”

Software changes that seem simple often have far-reaching impacts, necessitating modification
of many parts of the system. It’s hard to find all the system elements that might be affected by an
 altered requirement. Chapter 28, “Change happens,” discussed the importance of performing an
 impact analysis to make sure the team knows what it’s getting into before it commits to implementing
a proposed change. Change impact analysis is easier if you have a road map that shows where each
requirement or business rule was implemented in the software.

This chapter addresses the subject of requirements tracing (or traceability). Requirements trace
 information documents the dependencies and logical links between individual requirements and
other system elements. These elements include other requirements of various types, business
rules, architecture and other design components, source code modules, tests, and help files. Trace
 information facilitates impact analysis by helping you identify all the work products you might have to
modify to implement a proposed requirement change.

Tracing requirements

Trace links allow you to follow the life of a requirement both forward and backward, from origin
through implementation. Chapter 11, “Writing excellent requirements,” identified traceability as one
of the characteristics of excellent requirements. (Note that being traceable—having the properties
to facilitate tracing—is not the same as being traced—actually having logical links between
 requirements and other elements recorded.) For requirements to be traceable, each one must be
uniquely and persistently labeled so that you can refer to it unambiguously throughout the project.
Write the requirements in a fine-grained fashion, rather than creating large paragraphs containing
many individual functional requirements that readers have to parse out.

492 PART IV Requirements management

Figure 29-1 illustrates four types of requirements trace links (Jarke 1998). Customer needs are
traced forward to requirements, so you can tell which requirements will be affected if those needs
change during or after development. Customer needs could be articulated in the form of business
 objectives, market demands, and/or user requirements. A complete set of forward traces also gives
you confidence that the requirements set has addressed all stated customer needs. Conversely, you
can trace backward from requirements to customer needs to identify the origin of each software
 requirement. If you choose to represent customer needs in the form of use cases, the top half of
 Figure 29-1 illustrates tracing between use cases and functional requirements.

FIGURE 29-1 Four types of requirements tracing.

The bottom half of Figure 29-1 indicates that, as requirements flow into downstream deliverables
during development, you can trace forward from requirements by defining links between individual
functional and nonfunctional requirements and specific system elements. This type of link allows you
to determine that you’ve satisfied every requirement because you know which design components
and code elements address each one. The fourth type of link traces specific product elements
 backward to requirements so that you know why each element was created. Most applications include
some scaffolding or enabling code, such as for testing, that doesn’t relate directly to user-specified
requirements, but you should know why each line of code was written.

Suppose a tester encounters unexpected functionality with no corresponding written
 requirement. This code could indicate that a developer implemented a legitimate implied or
 verbally communicated requirement that the business analyst can now add to the requirements
set. Alternatively, it might be “orphan code,” an instance of gold-plating that doesn’t belong in the
product. Trace links can help you sort out these kinds of situations and build a more complete picture
of how the pieces of your system fit together. Conversely, tests that are derived from—and traced
back to—individual requirements provide a mechanism for detecting unimplemented requirements,
because the expected functionality will be missing from the system being tested. Trace links also help
you keep track of parentage, interconnections, and dependencies among individual requirements.

 CHAPTER 29 Links in the requirements chain 493

This information reveals the propagation of change that can result when a particular requirement is
deleted or modified.

Figure 29-2 illustrates many kinds of traceability relationships that can be defined on a project.
Of course, you don’t need to define and manage all these trace link types. On many projects, you
can gain most of the traceability benefits you want for just a fraction of the potential effort. Maybe
you only need to trace system tests back to functional requirements or user requirements. Perform a
cost-benefit analysis to decide which links will contribute to the success of your project, both in terms
of development and long-term maintenance effort. Don’t ask team members to spend time recording
information unless you know how they can use it.

FIGURE 29-2 Some possible requirements trace links.

494 PART IV Requirements management

Motivations for tracing requirements

I’ve had the embarrassing experience of writing a program and then realizing that I had inadvertently
overlooked a requirement. It was in the SRS—I simply missed it. I had to go back and write
 additional code after I thought I was done programming. Overlooking a requirement is more than
an embarrassment if it means a customer isn’t satisfied or a product is missing a critical function.
Requirements tracing provides a way to demonstrate compliance with a specification, contract, or
regulation. At an organization level, implementing requirements tracing can improve the quality of
your products, reduce maintenance costs, and facilitate reuse.

Keeping the link information current as the system undergoes development and maintenance
takes discipline and time. If the trace information becomes obsolete, you’ll probably never reconstruct
it. Obsolete or inaccurate trace data wastes time by sending developers and maintainers down the
wrong path, destroying any trust the developers might have had in the information. Because of these
realities, you should adopt requirements tracing for the right reasons (Ramesh et al. 1995). Following
are some potential benefits of implementing requirements tracing:

 ■ Finding missing requirements Look for business requirements that don’t trace to any user
requirements, and user requirements that don’t trace to any functional requirements.

 ■ Finding unnecessary requirements Look for any functional requirements that don’t trace
back to user or business requirements and therefore might not be needed.

 ■ Certification and compliance You can use trace information when certifying a
safety- critical product, to demonstrate that all requirements were implemented—although
that doesn’t confirm that they were implemented correctly! Trace information demonstrates
that requirements demanded for regulatory compliance have been included and addressed, as
is often needed for applications for health care and financial services companies.

 ■ Change impact analysis Without trace information, there’s a good chance that you’ll
overlook a system element that would be affected if you add, delete, or modify a particular
requirement.

 ■ Maintenance Reliable trace information facilitates your ability to make changes correctly
and completely during maintenance. When corporate policies or government regulations
change, software systems often must be updated. A table that shows where each applicable
business rule was addressed in the functional requirements, designs, and code makes it easier
to make the necessary changes properly.

 ■ Project tracking If you record the trace data during development, you’ll have an accurate
record of the implementation status of planned functionality. Absent links indicate work
 products that have not yet been created.

 ■ Reengineering You can list the functions in an existing system you’re replacing and
trace them to where they are addressed in the new system’s requirements and software
 components.

 CHAPTER 29 Links in the requirements chain 495

 ■ Reuse Trace information facilitates the reuse of product components by identifying
 packages of related requirements, designs, code, and tests.

 ■ Testing When a test fails, the links between tests, requirements, and code point developers
toward likely areas to examine for the defect.

Many of these are long-term benefits, reducing overall product life-cycle costs but increasing
the development cost by the effort expended to accumulate and manage the trace information.
View requirements tracing as an investment that increases your chances of delivering a maintainable
 product that satisfies all the stated customer requirements. This investment will pay dividends
 anytime you have to modify, extend, or replace the product. Establishing traces is not much work
if you collect the information as development proceeds, but it’s tedious and expensive to do on a
completed system.

The requirements traceability matrix

The most common way to represent the links between requirements and other system elements is
in a requirements traceability matrix, also called a requirements trace matrix or a traceability table.
Joy Beatty and Anthony Chen (2012) describe a similar tool called a requirements mapping matrix
that shows the relationships between multiple types of objects. Table 29-1 illustrates a portion of a
 requirements traceability matrix, drawn from the Chemical Tracking System. When I’ve set up such
matrices in the past, I started with a copy of the baselined SRS and deleted everything except the
labels for the functional requirements. Then I set up a table laid out like Table 29-1 with only the
“Functional requirement” column populated. As fellow team members and I worked on the project,
we gradually filled in the blank cells in the matrix.

TABLE 29-1 One kind of requirements traceability matrix

User requirement Functional
 requirement

Design element Code element Test

UC-28 catalog.query.sort Class catalog CatalogSort() search.7
search.8

UC-29 catalog.query.import Class catalog CatalogImport()
CatalogValidate()

search.12
search.13
search.14

Table 29-1 shows how each functional requirement is linked backward to a specific use case and
forward to one or more design, code, and test elements. A design element can be something like an
architectural component, a table in a relational data model, or an object class. Code references can be
class methods, stored procedures, source code file names, or modules within a source file. Including more
trace detail takes more work, but it gives you the precise locations of the related software elements.

Fill in the information as the work gets done, not as it gets planned. That is, enter CatalogSort()
in the “Code element” column of the first row in Table 29-1 only when the code in that function has
been written. That way a reader knows that populated cells in the requirements traceability matrix
indicate work that’s been completed.

496 PART IV Requirements management

Important Listing the test cases for each requirement does not indicate that the software
has passed those tests. It simply indicates that certain tests have been written to verify the
requirement at the appropriate time. Tracking testing status is a separate matter.

Another way to represent trace information is through a set of matrices that define links between
pairs of system elements, such as these:

 ■ One type of requirement to other requirements of that same type

 ■ One type of requirement to requirements of another type

 ■ One type of requirement to tests

You can use these matrices to define various relationships that are possible between pairs of
 requirements, such as “specifies/is specified by,” “is dependent on,” “is parent of,” and “constrains/is
constrained by” (Sommerville and Sawyer 1997).

Table 29-2 illustrates a two-way traceability matrix. Most cells in the matrix are empty. Each cell at
the intersection of two linked components contains a symbol to indicate the connection. Table 29-2
uses an arrow to indicate that a certain functional requirement is traced from a particular use case.
For instance, FR-2 is traced from UC-1, and FR-5 is traced from both UC-2 and UC-4. This indicates
that the functional requirement FR-5 is reused across two use cases, UC-2 and UC-4.

TABLE 29-2 Requirements traceability matrix showing links between use cases and functional requirements

Use case

Functional requirement UC-1 UC-2 UC-3 UC-4

FR-1

FR-2

FR-3

FR-4

FR-5

FR-6

Trace links can define one-to-one, one-to-many, or many-to-many relationships between system
elements. The format in Table 29-1 accommodates these cardinalities by letting you enter several
items in each table cell. Here are some examples of the possible link cardinalities:

 ■ One-to-one One design element is implemented in one code module.

 ■ One-to-many One functional requirement is verified by multiple tests.

 CHAPTER 29 Links in the requirements chain 497

 ■ Many-to-many Each use case leads to multiple functional requirements, and certain
 functional requirements are common to several use cases. Similarly, a shared or repeated
design element might satisfy several functional requirements. Ideally, you’ll capture all these
interconnections, but in practice, many-to-many trace relationships become complex and
 difficult to manage.

Nonfunctional requirements such as quality attributes often do not trace directly into code. A
 response-time requirement might dictate the use of certain hardware, algorithms, database structures,
and architectural approaches. A portability requirement could restrict the language features that
the programmer uses but might not result in specific code segments that enable portability. Other
 quality attributes are indeed implemented in code. Security requirements for user authentication
lead to derived functional requirements that might be implemented through passwords or biometrics
 functionality. In those cases, you can trace the corresponding functional requirements backward
to their parent nonfunctional requirement and forward into downstream deliverables as usual.
Figure 29-3 illustrates a possible traceability chain involving nonfunctional requirements.

FIGURE 29-3 Sample traceability chain for requirements dealing with application security.

Trace links should be defined by whomever has the appropriate information available. Table 29-3
identifies some typical sources of knowledge about links between various types of source and target
objects. Determine the roles and individuals who should supply each type of trace information for
your project. Expect some pushback from busy people whom the analyst or project manager asks

498 PART IV Requirements management

to provide this data. Those practitioners are entitled to an explanation of requirements tracing,
why it provides value, and why they’re being asked to contribute to the process. Point out that the
 incremental cost of capturing trace information at the time the work is done is small; it’s primarily a
matter of habit, discipline, and having the storage mechanism established.

Trap Gathering and managing requirements trace data must be made the explicit
 responsibility of certain individuals or it won’t happen. Typically, a business analyst or a
quality assurance engineer collects, stores, and reports on the trace information.

TABLE 29-3 Likely sources of trace link information

Link source object type Link target object type Information source

System requirement Functional requirement System engineer

User requirement Functional requirement Business analyst

Business requirement User requirement Business analyst

Functional requirement Functional requirement Business analyst

Functional requirement Test Tester

Functional requirement Architecture element Architect or developer

Functional requirement Other design elements Designer or developer

Design element Code Developer

Business rule Functional requirement Business analyst

Tools for requirements tracing

As Chapter 30, “Tools for requirements engineering,” describes, commercial requirements
 management tools often have powerful requirements-tracing capabilities. You can store requirements
and other information in a tool’s database and define links between the various types of stored
objects, including peer links between two requirements of the same kind. Some tools let you
 differentiate traced-to and traced-from relationships, automatically defining the complementary links.
That is, if you indicate that requirement R is traced to test T, the tool will also show the symmetrical
relationship in which T is traced from R.

Some tools automatically flag a trace link as being suspect whenever the object on either end of the link
is modified. A suspect link displays a visual indicator (such as a red question mark or a diagonal red line)
in the corresponding cell in the requirements traceability matrix. For example, if you changed Use Case 3,
the requirements traceability matrix in Table 29-2 might look like Table 29-4 the next time you see it. The
suspect link indicators (in this case, question marks) tell you to check whether functional requirements 3,
4, and 6 need to be changed to remain consistent with the modified UC-3. After making any necessary
changes, you clear the suspect link indicators manually. This process helps ensure that you’ve accounted
for the known ripple effects of a change.

 CHAPTER 29 Links in the requirements chain 499

TABLE 29-4 Suspect links in a requirements traceability matrix

Use case

Functional requirement UC-1 UC-2 UC-3 UC-4

FR-1

FR-2

FR-3

FR-4

FR-5

FR-6

Requirements management tools also let you define cross-project or cross-subsystem links.
I know of one large software product that had 20 major subsystems, with certain high-level system
 requirements apportioned among multiple subsystems. In some cases, a requirement that was
 allocated to one subsystem was actually implemented through a service that another subsystem
 provided. This project used a requirements management tool to successfully track these complex
trace relationships.

It’s impossible to perform requirements tracing manually for any but very small applications. You
can use a spreadsheet to maintain trace data for up to a couple hundred requirements, but larger
systems demand a more robust solution. Requirements tracing can’t be fully automated because the
knowledge of the links originates in the development team members’ minds. However, after you’ve
identified the links, tools can help you manage the vast quantity of trace information.

A requirements tracing procedure

Consider following this sequence of steps when you begin to implement requirements tracing on a
specific project:

1. Educate the team and your management about the concepts and importance of requirements
tracing, your objectives for this activity, where the trace data is stored, and the techniques for
defining the links. Ask all participants to commit to their responsibilities.

2. Select the link relationships you want to define from the possibilities shown in Figure 29-2.
Don’t try to do all of these at once! You’ll be overwhelmed.

3. Choose the type of traceability matrix you want to use: the single-matrix style shown in
Table 29-1 or several matrices like the one illustrated in Table 29-2. Select a mechanism for

500 PART IV Requirements management

storing the data: a table in a text document, a spreadsheet, or (much better) a requirements
management tool.

4. Identify the parts of the product for which you want to maintain traceability information. Start
with the critical core functions, the high-risk portions, or the portions that you expect will
undergo the most maintenance and evolution over the product’s life.

5. Identify the individuals who will supply each type of link information and the person
(most likely a BA) who will coordinate the tracing activities and manage the data.

6. Modify your development procedures to remind developers to update the links after
 implementing a requirement or an approved change. The trace data should be updated soon
after someone completes a task that creates or changes a link in the requirements chain.

7. Define the labeling conventions you will use to give each system element a unique identifier
so that the elements can be linked together. Chapter 10, “Documenting the requirements,”
described several ways to label requirements.

8. As development proceeds, have each participant provide the requested trace information as
they complete small bodies of work. Stress the advantage of ongoing accumulation of the
trace data over assembling it at a major milestone or at the end of the project.

9. Audit the trace information periodically to make sure it’s being kept current. If a requirement
is reported as implemented and verified, yet its trace data is incomplete or inaccurate, your
requirements tracing process isn’t working as intended.

I’ve described this procedure as though you were starting to collect trace information at the
outset of a new project. If you’re maintaining an existing system, you probably don’t have trace data
 available. There’s no time like the present to begin accumulating this information. The next time
you add an enhancement or make a modification, write down what you discover about connections
between code, tests, designs, and requirements. You’ll never reconstruct a complete requirements
traceability matrix, but this small amount of effort might make it easier the next time someone needs
to work on that same part of the system.

Best approached with caffeine and music
My friend Sonoko, a highly experienced software developer who works on credit-card
 transaction processing systems, recently sent me an email message. “I thought you’d be amused
to know that I’ve spent the afternoon creating a requirements traceability matrix for one of my
projects, and I’m about to die of tedium,“ Sonoko said. ”The requirements spec was 30 pages
long, my technical design is 100 pages long, and the matrix is therefore hefty. I know that we
have to do them, but I fell asleep two hours ago.”

I asked Sonoko some follow-up questions to better understand what she was doing. “Since
I make my technical designs available to the business analyst, affected business areas, and
project manager, the traceability matrix proves to them that I addressed every requirement
they gave me,“ she replied. “In my design review, I present the design by walking through the

 CHAPTER 29 Links in the requirements chain 501

traceability matrix, which is logically sequenced by requirement.” I asked Sonoko why she was
taking the time to create this traceability matrix. She said, “I create it because it ensures that I
cover everything, and it provides a quick way for me to see all of the system elements that a
given requirement affects.”

After working for decades in the software industry, Sonoko clearly understands the value
that linking requirements to affected design elements can provide. But, as she points out, it’s
not a fun chore to wade through such a large volume of information and link the bits together.
If the way she approaches technical design permits, it would save time to begin aggregating the
trace information as her design begins to stabilize, instead of at the end.

Is requirements tracing feasible? Is it necessary?

You might conclude that accumulating requirements trace information is more expensive than
it’s worth or that it’s not feasible for your project. That’s entirely possible. Acquiring a tool with
the necessary capabilities, setting it up, entering the data, and keeping it current is expensive and
time consuming. You might not need to construct a group memory like this if members of your
team possess the necessary knowledge and share it with others when it’s needed. Only your team
can decide whether requirements tracing—be it just requirements-to-tests or something more
 elaborate—adds value to your project above its cost.

Consider the following example, though. A conference attendee who worked at an aircraft
 manufacturer told me that the SRS for his team’s part of the company’s latest jetliner was a stack
of paper six feet thick. They had a complete requirements traceability matrix. I’ve flown on that
very model of airplane, and I was happy to hear that the developers had managed their software
 requirements so carefully. Managing traces on a huge product with many interrelated subsystems is
a lot of work. This aircraft manufacturer knows it is essential. The U.S. Federal Aviation Administration
agrees: traceability from requirements to designs is required for certification of aviation software.
Similarly, the U.S. Food and Drug Administration advocates that medical device manufacturers
 demonstrate traceability of a product’s requirements into downstream deliverables as part of the
validation process for the device.

Even if your products won’t cause loss of life or limb if they fail, you should take requirements
 tracing seriously. At a minimum, consider tracing between business requirements and user
 requirements to look for alignment, omissions, and unnecessary requirements. The CEO of a major
corporation who was present when I described requirements tracing at a seminar asked, “Why
wouldn’t you do this for your strategic business systems?” That’s an excellent question. You should
decide to use any improved requirements engineering practice based on both the costs of applying
the technique and the risks of not using it. As with all software processes, make an economic decision
to invest your valuable time where you expect the greatest payback.

502 PART IV Requirements management

Next steps
 ■ Set up a trace matrix for 15 or 20 requirements from an important portion of the system

you’re currently developing. Try the approaches shown in both Tables 29-1 and 29-2.
 Populate the matrix as the project progresses for a few weeks. Evaluate which method seems
most effective and what procedures for collecting and storing traceability information will
work for your team.

 ■ The next time you perform maintenance on a poorly documented system, record what
you learn from reverse engineering the part of the product you’re modifying. Build
a fragment of a requirements traceability matrix for the piece of the puzzle you’re
 manipulating so that the next time someone has to work on it they have a head start.
Grow the matrix as your team continues to maintain the product.

 ■ Trace your functional requirements back to user requirements, and trace your user
 requirements to business requirements. Count the requirements that you could cut
 because they don’t link back to a business requirement. Count the requirements that
were missing until the trace matrix revealed their absence. Estimate the costs had you not
discovered these requirements errors until much later in the project. This analysis will help
you judge whether requirements tracing will pay off in your environment.

 503

C H A P T E R 3 0

Tools for requirements
engineering

Estelle finally got her SRS document completed and approved. Now James wants to add a requirement,
but it messes up the numbering scheme, incrementing the labels for requirements that follow it in that
section of the document. Estelle hopes that changing the requirement identifiers won’t cause problems
for anyone already working from those requirements. Sean requests to delete a requirement. Estelle
suspects that the requirement might come back into scope in the future, so she wonders where to put it
and how to keep the developers from working on it now. Antonio asked Estelle yesterday why a specific
requirement was included, but she didn’t have any way to answer that question.

One of the developers, Rahm, asked for a list of all the requirements that he was responsible for
on the next release, but Estelle doesn’t have any easy way to generate such a list. In fact, it’s not easy
to keep track of which requirements are scheduled for which release, because they are all stored in
the same document. Estelle would like to know the status of requirements that are already under
 development, but she doesn’t have an easy way to find that information either.

Estelle’s document-based requirements approach is falling short of her requirements management
needs. She needs a tool.

In earlier chapters, we discussed the creation of a natural-language software requirements
 specification to contain the functional and nonfunctional requirements, as well as documents that
contain the business requirements and user requirements. We pointed out that these deliverables are
just containers for sets of requirements information; they need not be traditional word-processing
documents. Although still widely used, a document-based approach to developing and managing
requirements has numerous limitations, including the following:

 ■ It’s difficult to keep the documents current and synchronized.

 ■ Communicating changes to all affected team members is a manual process.

 ■ It’s not easy to store supplementary information—attributes—about each requirement.

 ■ It’s hard to define links between requirements and other system elements.

 ■ Tracking the status of both individual requirements and the entire set of requirements is
 cumbersome.

504 PART IV Requirements management

 ■ Concurrently managing sets of requirements that are planned for different releases or for
 related products is tricky. When a requirement is deferred from one release to a later one, a
BA needs to manually move it from one requirements specification to another.

 ■ Reusing a requirement generally means that the business analyst must copy the text from
the original document into another document for each other system or product where the
requirement is to be used.

 ■ It’s difficult for multiple project participants to modify the requirements, particularly if the
participants are geographically separated.

 ■ There’s no convenient place to store proposed requirements that were considered but rejected
and requirements that were deleted from a baseline.

 ■ It’s hard to create, trace, and track edits to analysis models in the same location as
 requirements.

 ■ Identifying missing, duplicate, and unnecessary requirements is difficult.

Requirements development (RD) tools and requirements management (RM) tools provide
 solutions to all of these limitations. RD tools can help you elicit the right requirements for your project
and judge whether those requirements are well-written. RM tools help you manage changes to those
requirements, track status, and trace requirements to other project deliverables.

A team working on a small project might be able to get away without using any requirements
tools, instead using documents, spreadsheets, or simple databases to manage their requirements.
Teams working on large projects will benefit from commercial requirements engineering tools. None
of these tools replaces a defined process that your team members follow to develop and manage
their requirements. Use a tool when you already have an approach that works but that requires
greater efficiency. Don’t expect a tool to compensate for a lack of business analysis and requirements
engineering process, training, discipline, or experience.

Trap Avoid the temptation to develop your own requirements tools or to cobble
 together general-purpose automation products in an attempt to mimic the commercial
 requirements products. This initially looks like an easy solution, but it can quickly
 overwhelm a team that doesn’t have the resources to build the tools it really needs.

This chapter presents several benefits of using requirements tools and identifies some general
capabilities you can expect to find in such products. Dozens of commercial requirements tools are
available. This chapter doesn’t contain a feature-by-feature tool comparison, because the products
are constantly evolving and their capabilities (and sometimes their vendors) change with each release.
RD and RM tools often aren’t cheap, but the high cost of requirements-related problems can justify
your investment in them. Recognize that the cost of a tool is not simply what you pay for the initial
license. The cost also includes annual maintenance fees and periodic upgrades, software installation
and configuration, administration, vendor support and consulting, and training for users. Cloud-based

 CHAPTER 30 Tools for requirements engineering 505

solutions eliminate some of these additional support activities and costs. Your cost-benefit analysis
should take into account all of the expenses before you make a purchase decision.

Requirements development tools

Requirements development (RD) tools are used by business analysts to work with stakeholders to
elicit and document requirements more effectively and more efficiently than with manual methods.
Stakeholders will vary in how they best consume and share information: textually, visually, or audibly.
RD tools can improve stakeholder collaboration by accommodating a variety of communication
methods (Frye 2009). This section subdivides the development tools into elicitation, prototyping, and
modeling tools. Some of the tools in the RD category provide all of these services. Some of them also
offer requirements management capabilities. In general, RD tools are not as mature as RM tools, and
their overall impact on projects is typically less than that of RM tools.

Elicitation tools
Elicitation tools include those used for recording notes during elicitation sessions. These enable
the BA to quickly organize ideas and to annotate follow-up questions, action items, core terms,
and the like. Mind-mapping tools facilitate brainstorming as well as organizing the information
produced. Audio pens and other recording tools allow playback of conversations or provide visual
 reminders of what happened during an elicitation session. Some recording devices also tie the audio
directly to the text that was written at the same time, enabling you to hear specific portions of the
 audio conversation as needed. Tools that support quality checks, such as scanning a requirements
 document for vague and ambiguous words, help a BA write clearer requirements. Some elicitation
tools convert requirements from text to auto-generated diagrams. Certain tools also enable
 collaborative voting to help a team prioritize requirements.

Prototyping tools
Prototyping tools facilitate the creation of work products that range from electronic mock-ups to
full application simulations. Simple prototyping tools come with basic shapes and designs to create
 low-fidelity wireframes (Garmahis 2009). Common applications such as Microsoft PowerPoint can be
used to quickly mock up screens and the navigations between them or to annotate existing screen
shots. Sophisticated tools might enable mocked-up functionality that a user can click through to
see just how the application would work. Some prototyping tools support version control, feedback
 management, requirements linking, and code generation. See the cautions in Chapter 15, “Risk
 reduction through prototyping,” to avoid investing more effort in creating prototypes than is needed
to achieve your goals. If you use a tool to create high-fidelity prototypes, make it clear to customers
that the prototypes are just possible models and that the final product might be different. Some
 prototyping tools can show screen mock-ups in a “hand-drawn” style to help manage customer
expectations.

506 PART IV Requirements management

Modeling tools
Requirements modeling tools help the BA create diagrams like those described in Chapter 5,
 “Establishing the business requirements,” Chapter 12, “A picture is worth 1024 words,” and Chapter 13,
“Specifying data requirements.” These tools support the use of standard shapes, notations, and syntax
for drawing diagrams according to established conventions. They might provide templates as starting
points and examples to help the BA learn more about each model. Often these tools automatically
connect shapes in diagrams to accelerate the drawing process and to help ensure that the diagrams
are drawn correctly. They also enable you to create diagrams that look cleaner and more consistent
than if you draw them manually. Specialized software modeling tools facilitate iteration by dragging
along connected arrows and labels whenever you move a symbol in the diagram; general-purpose
drawing tools might not provide that capability.

Many requirements management tools also provide some modeling capability. The most
 sophisticated tools allow you to trace individual requirements to models or even to specific elements
of models. For example, analysts can create swimlane diagrams in the tool, and then after they write
requirements, they can trace those requirements back to specific steps in the diagrams.

Keep in mind that no tool will be able to tell you if a requirement or a model element is missing,
logically incorrect, or unnecessary. These tools enable BAs to represent information in multiple ways
and to spot certain types of errors and omissions, but they don’t eliminate the need for thinking and
peer review.

Requirements management tools

An RM tool that stores information in a multiuser database provides a robust solution to the
 limitations of storing requirements in documents. Small project teams can get away with just entering
the requirements text and several attributes of each requirement. Larger project teams will benefit
from letting users import requirements from source documents, define attribute values, filter and
display the database contents, export requirements in various formats, define traceability links, and
connect requirements to items stored in other software development tools.

Requirements management tools have been available for many years. They are both more plentiful
and more mature than requirements development tools. To be fair, the problem they solve is more
tractable. It’s easier to create a database in which to store requirements and provide some capabilities
to manipulate them than to help a BA discover new knowledge, craft that knowledge into precise
requirement statements and diagrams, and ensure that the resulting information representations are
correct. Some tools combine both RD and RM capabilities into a powerful solution aid.

Benefits of using an RM tool
Even if you do a magnificent job of eliciting and specifying your project’s requirements, you can lose
control of them as development progresses. An RM tool becomes most valuable as time passes and
the team members’ memories of the requirements details fade. The following sections describe some
of the tasks such a tool can help you perform.

 CHAPTER 30 Tools for requirements engineering 507

Manage versions and changes Your project should define one or more requirements baselines,
each identifying a specific collection of requirements allocated to a particular release or iteration.
Some RM tools provide baselining functions. The tools also maintain a history of the changes made to
each requirement. You can record the rationale behind each change decision and revert to a previous
version of a requirement if necessary. Some tools contain a change-proposal system that links change
requests directly to the affected requirements.

Store requirements attributes You should record several descriptive attributes for each
 requirement, as discussed in Chapter 27, “Requirements management practices.” Everyone working
on the project must be able to view the attributes, and selected individuals will be permitted to
update attribute values. RM tools generate several system-defined attributes, such as the date a
 requirement was created and its current version number, and they let you define additional attributes
of various data types. Thoughtful definition of attributes allows stakeholders to select subsets of the
 requirements based on specific combinations of attribute values. A Release Number attribute is one
way to keep track of the requirements allocated to various releases.

Facilitate impact analysis RM tools enable requirements tracing by letting you define links
 between different types of requirements, between requirements in different subsystems, and between
 individual requirements and related system components (for example, designs, code modules, tests,
and user documentation). These links help you analyze the impact that a proposed change to a
 specific requirement will have on other system elements. It’s also a good idea to trace each functional
 requirement back to its origin or parent so that you know where it came from. For instance, you might
ask to see a list of all the requirements originating from a specific business rule so that you can judge
the consequences of a change in that rule. Chapter 28, “Change happens,” describes impact analysis,
and Chapter 29, “Links in the requirements chain,” addresses requirements tracing.

Identify missing and extraneous requirements The tracing functionality in RM tools helps
stakeholders identify requirements that are missing, such as user requirements that have no mapped
functional requirements. Similarly, they can reveal requirements that cannot be traced back to a
reasonable origin, raising the question of whether those requirements are necessary. If a business
requirement is cut from scope, then all the requirements that trace from it can also be cut quickly.

Track requirements status Collecting requirements in a database lets you know how many
 discrete requirements you’ve specified for the product. As Chapter 27 described, tracking the status of
each requirement during development supports the overall status tracking of the project.

Control access RM tools let you define access permissions for individuals or groups of users and
share information with a geographically dispersed team through a web interface to the database.
Some tools permit multiple users to update the database contents concurrently.

Communicate with stakeholders An RM tool serves as a master repository so that all stakeholders
work from the same set of requirements. Some tools permit team members to discuss requirements
issues electronically through threaded conversations. Automatically triggered email messages notify
affected individuals when a new discussion entry is made or when a specific requirement is modified.
This is a convenient method for visibly tracking decisions made about requirements. Making the
 requirements accessible online can minimize document proliferation and version confusion.

508 PART IV Requirements management

Reuse requirements Storing requirements in a database facilitates the reuse of them in multiple
projects or subprojects. Requirements that logically fit into multiple parts of the product description
can be stored once and referenced whenever necessary, to avoid duplicating requirements. Chapter 18,
“Requirements reuse,” describes important concepts regarding effectively reusing requirements.

Track issue status Some RM tools have functionality for tracking open issues and linking each issue
to its related requirements. As issues are resolved, it’s easy to determine whether any requirements
must be updated. You can also quickly find a history of the issue and its resolution. Tracking issues in
a tool enables automatic reporting on the status of the issues.

Generate tailored subsets RM tools allow you to extract and view a set of requirements that fits
a particular purpose. For example, you might want a report that contains all of the requirements for
a specific development iteration, all of the requirements that relate to a particular feature, or a set of
requirements that needs to be inspected.

RM tool capabilities
The feature tree in Figure 30-1 presents a summary of the types of capabilities commonly found
in RM tools. You can find detailed feature comparisons of many RM tools online (for example, see
 Seilevel 2011; INCOSE 2010; Volere 2013).

FIGURE 30-1 Common RM tool features.

 CHAPTER 30 Tools for requirements engineering 509

RM tools let you define different requirement types, such as business requirements, use cases,
functional requirements, hardware requirements, and constraints. This lets you differentiate all the
types of information that are typically contained in an SRS. Many tools allow you to configure an
information architecture (which defines how requirements types and other objects relate to one
another) that is customized to your practices. Chapter 29 shows common traceability links that can
be defined in the information architecture. Most of the tools provide strong capabilities for defining
attributes for each requirement type, a great advantage over the typical document-based approach.

RM tools typically support hierarchical numeric requirement labels, in addition to maintaining a
unique internal identifier for each requirement. These identifiers often consist of a short text prefix
that indicates the requirement type—such as UR for a user requirement—followed by a unique
 integer. Some tools provide displays to let you manipulate the hierarchical requirements tree.

Requirements can be imported into an RM tool from various source document formats. The
textual description of a requirement is treated simply as a required attribute. Several products let you
incorporate nontextual objects such as graphics and spreadsheets into the requirements repository.
Other products let you link individual requirements to external files (such as Microsoft Word files,
graphics files, and so on) that provide supplementary information that augments the contents of the
requirements repository.

Output capabilities from the tools generally include the ability to generate a requirements
 document in a variety of formats, including predefined or user-specified documents, spreadsheets,
and webpages. Some tools allow significant customization for creating templates, allowing you to
specify page layout, boilerplate text, attributes to extract from the database, and the text styles to
use. Specification documents are then simply reports that are generated from the tool according
to certain query criteria, formatted to look like a typical SRS. For example, you could create an SRS
that contains all the functional requirements that are allocated to a specific release and assigned to
a particular developer. Some tools provide functionality that lets users make changes in exported
 documents offline, which are then synchronized with the tool’s database when the user is back online.

Most tools enable different views of the requirements to be generated within the tool or exported
from the tool. Features typically include the ability to set up user groups and define permissions for
selected users or groups to create, read, update, and delete projects, requirements, attributes, and
attribute values. Setting up appropriate views and permissions facilitates the review of requirements
and collaboration to improve those requirements. Some tools also include learning aids, such as
 tutorials or sample projects, to help users get up to speed.

Requirements management tools generally have robust tracing features. Tracing is handled
by defining links between two types of objects or objects of the same type. Some requirements
 management tools include modeling capabilities that also allow the models to be linked at an
 element level to individual requirements or to other model elements.

Some agile project management tools also provide RM capabilities. These tools are used to
 manage and prioritize backlogs, allocate requirements to iterations, and generate test cases directly
from requirements.

510 PART IV Requirements management

RM tools often integrate with other tools used in application development, as illustrated in Figure 30-2.
Chapter 29 describes how individual requirements can be linked to objects that might reside in these other
tools. For instance, you might be able to trace specific requirements to individual design elements stored
in a design modeling tool, or to tests stored in a test management tool.

FIGURE 30-2 RM tools integrate with other kinds of software tools.

When you are selecting an RM product, determine whether the tool will be able to exchange data
with the other tools you use. Think about how you’ll take advantage of these product integrations
as you perform your requirements engineering, testing, project tracking, and other processes. For
example, consider how you would define trace links between functional requirements and specific
design or code elements, and how you would verify that all tests linked back to specific functional
requirements have been successfully executed.

Selecting and implementing a requirements tool

Any of these requirements tools can move your requirements practices to a higher plane of
 sophistication and capability. However, success depends upon selecting the most appropriate tool for
your organization and getting your teams to adopt it as part of their routine practices.

 CHAPTER 30 Tools for requirements engineering 511

Selecting a tool
Select a tool based on the combination of desired features, platform, and pricing that best fits
your development environment and culture. Business analysts should lead the selection efforts
by defining the evaluation criteria and performing the actual assessment. Some companies
 outsource tool evaluations to consultants who can assess a company’s needs comprehensively and
make recommendations from the available tool candidates. If you do the evaluation yourself, the
 suggestions described in Chapter 22, “Packaged solution projects,” for choosing a COTS package
also can be applied to selecting a requirements tool. Chapter 22 also offers a real story from one
 requirements tool evaluation. To summarize the selection process:

1. Identify your organization’s requirements for the tool to serve as evaluation criteria.

2. Prioritize and weight the criteria according to what capabilities or other factors matter most to
your organization.

3. Set up demos or acquire evaluation copies of the tools you want to consider.

4. Score each tool against the criteria in a consistent manner.

5. Calculate a total score for each tool by using your criteria scores and the weights you assigned
to them.

6. For each tool that scored well, use it on an actual project to see if it behaves as you
 anticipated from the objective scores.

7. To make a final selection, combine the scores, licensing costs, and ongoing costs with
 information on vendor support, input from current users, and your team’s subjective
 impressions of the products. Two good final questions to ask people who evaluate the tools
are, “Which tool would you most want to use?” and, “Which tool would you be most upset
about being forced to use?”

Setting up the tool and processes
Recognize that it will take effort to install a tool, load a project’s requirements into it, define attributes
and trace links, keep the contents current, define access groups and their privileges, and adapt your
processes to use the tool. Configuring the tool can be complex; there is a steep learning curve just to
set up a sophisticated requirements tool. Management must allocate the resources needed for these
operations. Make an organization-wide commitment to actually use the product you select, instead of
letting it become expensive shelfware.

There’s little point in using a requirements tool if you don’t take advantage of its capabilities.
I encountered one project team that had diligently stored all its requirements in an RM tool but
hadn’t defined any requirement attributes or trace links. Nor did they provide online access for all the
stakeholders. The fact that the requirements were stored in a different form didn’t provide significant
benefits, although it consumed the effort needed to get the requirements into the tool. Another
team stored hundreds of requirements in a high-end tool and defined many trace links. Their only
use of the information was to generate massive printed traceability reports that were supposed to

512 PART IV Requirements management

be reviewed manually for problems. No one actually examined the reports, and no one regarded the
database as the authoritative repository of the project’s requirements. Neither of these organizations
reaped the full benefits of their considerable investments of time and money in the tools.

Even if you select the best available tool, it won’t necessarily provide every capability that your
organization wants or needs. It might not support your existing requirements templates or processes.
You’ll still likely need to adapt some of your existing processes to incorporate the tool in them. Expect
to have to make some changes to templates, attribute names, and the sequencing of requirements
development activities. Consider the following suggestions to overcome process issues as you strive
to maximize your return on investment from a requirements tool:

 ■ Assign an experienced BA to own the tool setup and process adaptations. She will understand
the impact of configuration choices and process changes.

 ■ Think carefully about the various requirement types that you define. Don’t treat every section
of your current SRS template as a separate requirement type, but don’t simply stuff all of the
SRS contents into a single requirement type either.

 ■ Use the tool to facilitate communication with project stakeholders in various locations. Set the
access and change privileges to permit sufficient input to the requirements by various people
without giving everyone complete freedom to change everything in the database.

 ■ Don’t try to capture requirements directly in an RM tool during your early elicitation
 workshops. As the requirements begin to stabilize, though, storing them in the tool makes
them visible to the workshop participants for refinement.

 ■ Use RD tools during elicitation activities only if you are confident that they will not slow down
the discovery process and waste your stakeholders’ time.

 ■ Don’t define trace links until the requirements stabilize. Otherwise, you can count on doing a
lot of work to revise the links as requirements continue to evolve.

 ■ To accelerate the movement from a document-based paradigm to the use of the tool, set
a date after which the tool’s database will be regarded as the definitive repository of the
 project’s requirements. After that date, requirements residing only in word-processing
 documents won’t be recognized as valid requirements.

Provided you remember that a tool can’t overcome process deficiencies, you’re likely to find that
requirements tools greatly enhance the control you have over your software requirements.

Important Don’t even pilot the use of an RM tool until your organization can create a
 reasonable software requirements specification on paper. If your biggest problems are with
eliciting and writing clear, high-quality requirements, an RM tool won’t help you (although
an RD tool might).

 CHAPTER 30 Tools for requirements engineering 513

Facilitating user adoption
The diligence of the users of your requirements tools is a critical success factor. Dedicated, disciplined,
and knowledgeable people will make progress even with mediocre tools, whereas the best tools won’t
pay for themselves in the hands of unmotivated or ill-trained users. Don’t write a check for a tool
 unless you’re willing to respect the learning curve and make the time investment.

Buying a tool is easy; changing your culture and processes to accept the tool and take best
 advantage of it is much harder. Most organizations already are comfortable with taking elicitation
notes in a word-processing document or by hand, and with storing their requirements in documents.
Changing to use software-based tools requires a different way of thinking. Using RD tools requires
breaking old habits for running elicitation sessions. An RM tool makes the requirements visible to any
stakeholder who has access to the database. Some stakeholders interpret this visibility as reducing
the control they have over the requirements, the requirements engineering process, or both. Some
people prefer not to share an incomplete or imperfect set of requirements with the world, yet the
 database contents are there for all to see. Keeping the requirements private until they’re “done”
means you miss an opportunity to have other pairs of eyes scan the requirements frequently for
 possible problems.

People are often resistant to change things that they’re familiar with, and they usually have a
 comfort level with working on requirements in documents. They might have a perception—even if
incorrect—that using a requirements tool will be harder for them. Also, don’t forget that most of the
tool users are already busy. Time must be allocated to let them get used to using the tool in their
daily jobs. Eventually, the tool probably won’t actually require more time from users, but they first
need to get over the learning curve and develop new work habits using the tool. Following are some
suggestions to help you deal with issues regarding user adoption and culture change:

 ■ Identify a tool advocate, a local enthusiast who learns the tool’s ins and outs, mentors other
users, and sees that it gets employed as intended. This person should be an experienced
 business analyst who can be the single owner for ensuring tool adoption. This initial tool
 advocate will work with other users on their projects to ingrain the tool into their daily
 activities. Then he’ll train and mentor others to support the tool as other projects adopt it.

 ■ One of the biggest adoption challenges to overcome is that users don’t believe the tool will
actually add any value. Perhaps they haven’t recognized the pain from limitations of their
existing manual approaches. Share stories with them about where the lack of a tool caused a
negative impact and ask them to think of their own examples.

 ■ Your team members are smart, but it’s better to train them than to expect them to figure out
how best to use the tool on their own. They can undoubtedly deduce the basic operations, but
they won’t learn about the full set of tool capabilities and how to exploit them efficiently.

 ■ Because you can’t expect instantaneous results, don’t base a project’s success on a tool you’re
using for the first time. Begin with a pilot application of the tool on a noncritical project. This
will help the organization learn how much effort it takes to administer and support the tool.
Chapter 31, “Improving your requirements processes,” describes the learning curve associated
with adopting new tools and techniques.

514 PART IV Requirements management

The proliferation and increased usage of tools to assist with requirements development and
 management represents a significant trend in software engineering that will undoubtedly continue.
Too many organizations, though, fail to reap the benefits of their investment in such tools. They do
not adequately consider their organization’s culture and processes and the effort needed to shift
from a document-based requirements paradigm to a tool-based approach. The guidance in this
chapter will help you choose appropriate tools and use them effectively. Just remember, a tool cannot
replace a solid requirements process or team members with suitable skills and knowledge. A fool with
a tool is an amplified fool.

Next steps
 ■ Analyze shortcomings in your current requirements process to see whether a requirements

development or requirements management tool is likely to provide sufficient value to
justify the investment. Make sure you understand the causes of your current shortcomings;
don’t simply assume that a tool will magically correct them.

 ■ Before launching a comparative evaluation, assess your organization’s readiness for
 adopting a tool. Reflect on previous attempts to incorporate new tools into your
 development process. Understand why they succeeded or failed so that you can position
yourselves for success this time.

 515

PART V

Implementing
requirements
engineering

Chapter 31 Improving your requirements processes517

Chapter 32 Software requirements and risk
management. .537

 517

C H A P T E R 3 1

Improving your requirements
processes

Everyone agreed that the last few projects had not gone smoothly. As the lead business analyst, Joanne
knew that requirements issues had caused at least some of the problems. The BAs on the various
projects varied greatly in their education and experience levels. They each used different approaches
for developing and managing requirements, just doing the best they could based on what they knew.
They each organized their requirements in different ways. Some teams followed effective requirements
change processes, which reduced the turmoil in their projects, whereas others reacted to every change
request that came along in a knee-jerk fashion. The frustration level was high all around.

Joanne had tried mentoring her less experienced BAs; some were more receptive to her input than
others. Some of the teams in Joanne’s organization did do a good job on their requirements, and those
projects suffered fewer headaches than those of the other teams. Joanne realized that it would be great
to bring all of the teams up to a higher level of requirements performance. Maybe now the time was
right to get serious about improving their requirements practices. But would the other BAs and their
f ellow team members play along? Was management truly committed to reducing the pain points?
Would anything really change this time, or would this improvement initiative founder on the rocks of
indifference, as the earlier ones had?

Previous chapters have described several dozen requirements engineering “good practices” to
 consider applying in your organization. Putting better practices into action is the essence of software
process improvement. In a nutshell, process improvement consists of using more of the approaches
that work well for you and avoiding those that have given you headaches in the past. However, the
path to improved performance is paved with false starts, resistance from those who are affected, and
the challenge of having too little time to handle improvement activities in addition to current tasks.

The ultimate objective of process improvement is to reduce the cost of creating and maintaining
software, thereby increasing the value delivered by projects. Ways to accomplish this include:

 ■ Correcting problems encountered on previous projects that arose from process shortcomings.

 ■ Anticipating and preventing problems that you might encounter on future projects.

 ■ Adopting practices that are more efficient and effective than those currently being used.

If your team’s current methods seem to work well—or if people insist that they do, despite
 evidence to the contrary—people might not see the need to change their approach. However, even

518 PART V Implementing requirements engineering

successful software organizations can struggle when confronted with larger or more complex projects
than they are used to, different customers, long-distance collaborations, tighter schedules, or new
business domains. Approaches that worked for a team of 5 people with a single customer don’t scale
up to 100 people located in 3 time zones who are serving 50 corporate customers. At the least, you
should be aware of other approaches to requirements engineering that could be valuable additions to
your tool kit.

This chapter describes how requirements relate to various other project processes and
 stakeholders. We present some basic concepts about software process improvement and a suggested
process improvement cycle. We also list several useful requirements “process assets” that your
 organization should have available. The chapter concludes by describing a process improvement road
map for implementing improved requirements engineering processes.

How requirements relate to other project processes

Requirements lie at the heart of every well-run software project, supporting and enabling the other
technical and management activities. Changes that you make in your requirements development
and management approaches will affect these other project processes, and vice versa. Figure 31-1
 illustrates some connections between requirements and other project processes; the sections that
 follow briefly describe these process interfaces.

FIGURE 31-1 Relationship of requirements to other project processes.

 CHAPTER 31 Improving your requirements processes 519

Project planning Requirements serve as the foundation of the project planning process. The
planners select an appropriate software development life cycle and create resource and schedule
estimates based on the requirements. Project planning might indicate that it’s not possible to deliver
the entire desired feature set within the available bounds of resources and time. The planning process
can lead to reductions in the project scope or to the selection of an incremental or staged-release
approach to deliver functionality in phases. On an agile project, scope is defined through the set of
user stories in the product or release backlog and is incrementally implemented in each iteration. The
scope planned for future iterations is based on the velocity measurements from earlier iterations.

Project tracking and control Project tracking includes monitoring the project’s status so the
project manager can see whether construction and verification are proceeding as intended. If they
are not, management, customers, or other stakeholders might need to request scope modification
through the planning process. This would change the requirements set being worked on. On an agile
project, scope is adjusted by moving lower-priority items to future iterations if necessary to complete
each iteration on schedule.

Change control After a set of requirements has been baselined, all subsequent changes and
 additions should be made through a defined change control process. Requirements changes modify
the backlog of remaining work to be done and the priorities of the work items in the backlog.
Requirements tracing helps you assess the impact of scope changes. As described in Chapter 28,
“Change happens,” the change control process helps ensure that the right people make informed and
well-communicated decisions to accept appropriate requirements changes.

Acceptance and system testing User requirements and functional requirements are essential
inputs to acceptance testing and system testing, respectively. If the expected behavior of the software
under various conditions isn’t clearly specified, the testers will be hard-pressed to verify that all
planned functionality has been implemented as intended. A colleague related her recent experience:
“I was assigned to write a test plan for an SRS from another analyst. I ended up going way over the
estimated time because I had to wade around to figure out what the functionality was. The related
functionality was sometimes in unexpected sections of the SRS. Other times, the analyst who wrote
the SRS talked us through the full description of options that were not chosen before finally getting to
the one that was. It was painful.”

Construction Requirements are the basis for the design and implementation work, and they tie
together the various construction work products. Use design reviews to ensure that the designs
correctly address all of the requirements. Unit testing can determine whether the code satisfies the
design specifications and the pertinent requirements. Requirements tracing lets you identify the
 software design and code elements that were derived from each requirement.

User documentation I once worked in an office area that also housed the technical writers who
prepared user documentation for complex software products. I asked one of the writers why they
worked such long hours. “We’re at the end of the food chain,” she replied. “We have to respond to
the final changes in user interface displays and the features that got dropped or added at the last
minute.” The product’s requirements provide input to the user documentation, so poorly written or
late-breaking requirements lead to documentation problems. It’s not surprising that the people at the

520 PART V Implementing requirements engineering

end of the requirements chain, such as technical writers and testers, are often enthusiastic supporters
of improved requirements engineering practices and of being engaged earlier in the process.

Requirements and various stakeholder groups

Figure 31-2 shows some of the project stakeholders who might interact with a software development
group and some of the contributions they make to a project’s requirements activities. If you’re
the business analyst or project manager, explain to stakeholders in each area the information and
 participation you need from them if the product development effort is to succeed. Agree on the
 communication interfaces between the development group and other functional areas, such as a
system requirements specification, a market requirements document, or a set of user stories.

FIGURE 31-2 Requirements-related contributions from various stakeholders to the software development team.

On the flip side, the BA and project manager should ask the other stakeholders what they need
from the development team to make their jobs easier. What input about requirements feasibility
will help marketing plan their product concepts better? What feedback about requirements status
will give the sponsor adequate visibility into project progress? What collaboration with systems
 engineering will ensure that system requirements are properly partitioned among software and
hardware subsystems? The business analyst and project manager should strive to build collaborative
relationships between the development team and the other stakeholders of the requirements process.

 CHAPTER 31 Improving your requirements processes 521

Gaining commitment to change

When a software organization changes its requirements processes, the interactions it has with other
stakeholder communities change as well. People don’t like to be forced out of their comfort zone, so
expect some resistance to the process changes you propose. Understand the origins of the resistance
so you can both respect it and defuse it.

Much resistance comes from fear of the unknown. To reduce this fear, communicate your process
improvement rationale. Explain the benefits that the other groups will receive from the new process.
Begin from this viewpoint: “Here are the problems we’ve all experienced. What are the issues from
your perspective? Can we put our heads together to figure out a better way to do things here?”
 Engaging other stakeholders in the improvement initiative leads to shared ownership of the solutions.

Following are some forms of resistance that you might encounter:

 ■ People who are already too busy to get their project work done don’t think they have time
to invest in adopting better practices. But if you don’t invest that time, there’s no reason to
expect the next project to go more smoothly than the last one.

 ■ A change control process might be viewed as a barrier thrown up by development to make it
harder to get changes made. In reality, it is a structure, not a barrier. It permits well-informed
people to make good business decisions and to communicate those decisions. The software
team must ensure that the requirements change process really does work. If new processes
don’t yield better results, people will naturally find ways to work around them.

 ■ Some developers and managers view writing and reviewing requirements as bureaucratic
time-wasters that delay the “real work” of coding. If you can explain the high cost of
 continually rewriting the code while the team tries to figure out what the system should do,
developers and managers will better appreciate the need for good requirements. Overlooked
requirements can reduce profitability during the operational lifetime of a software product,
because effort must continually be invested in producing upgrades.

Any time people are asked to change the way they work, the natural reaction is to ask, “What’s
in it for me?” However, process changes don’t always result in fabulous, immediate benefits for each
person involved. A better question—and one that deserves a good answer—is “What’s in it for us?”
Every process change should offer clear benefits to the project team, the development organization,
the company, and/or the customer. Stakeholders who are asked to spend more time helping to create
better requirements just see this as more work for them to do today. But suppose they understand
that this investment on their part can pay off significantly with reduced rework later in the project,
reduced support costs, and increased value for the customers. This understanding might make them
more willing to spend the time now.

It’s common for some project stakeholders to be unaware of the requirement-related impacts
from the organization’s current ways of working. Therefore, an important method for gaining
 commitment to process change is to make the problems visible in a nonjudgmental and constructive
fashion. Suppose the development team builds an application that requires considerable customer
support because of user interface problems. If a support team separate from development has to

522 PART V Implementing requirements engineering

deal with those issues, the development team might not even be aware of the problems. Or suppose
 management has outsourced development in an attempt to save costs or time, but has not dealt with
the resulting communication barriers and cultural differences. If management is not aware of these
consequences, they won’t have any reason to change their approach to correct the shortcomings.

We’ve often heard business analysts and other practitioners say that they can’t make some process
change in their organization without “management support.” Too often, management support
 translates merely into permission to do something different. But as an intelligent professional,
you don’t need management’s permission to work in the best way you know how: that’s your job.
 However, you definitely do need management commitment for a project-wide or organization-wide
improvement effort to be sustained and successful. Without management commitment, only those
practitioners who think that better requirements are important will get on board. It doesn’t help if
your senior people say they “support” the improvements but then revert to the same old processes
as soon as problems arise. Behaviors—not pronouncements—constitute evidence of commitment to
quality. Figure 31-3 lists 10 signs that your organization’s management is truly committed to excellent
requirements processes.

FIGURE 31-3 Some behaviors that indicate management’s commitment to excellent requirements processes.

Fundamentals of software process improvement

Because you’re reading this chapter, presumably you intend to change some of the approaches your
organization currently uses for requirements engineering. As you begin your journey, keep in mind
the following principles of software process improvement (Wiegers 1996):

1. Process improvement should be evolutionary and continuous. Instead of aiming
for perfection, develop a few improved templates and procedures and get started with
 implementation. Adjust your approaches as the team gains experience with the new
 techniques. Sometimes simple and easy changes can lead to substantial gains, so look for the

 CHAPTER 31 Improving your requirements processes 523

low-hanging fruit, problem areas that everyone involved agrees are ripe for improvement.
See Table 3-2 in Chapter 3, “Good practices for requirements engineering,” for some
 suggestions of effective practices to implement.

2. People and organizations change only when they have an incentive to do so.
The strongest incentive for change is pain. Not artificially induced pain, such as
 management-imposed schedule pressure to make teams work harder, but rather the very real
pain people have experienced on previous projects. Following are some examples of problems
that can provide compelling drivers for changing your requirements processes:

• The project missed deadlines because requirements were more extensive than expected.

• Developers worked a lot of overtime because of misunderstood or ambiguous
 requirements.

• System test effort was wasted because the testers didn’t understand what the product was
supposed to do.

• The right functionality was present, but users were dissatisfied because of sluggish
 performance, poor usability, or other quality shortcomings.

• The organization experienced high maintenance costs because customers requested many
enhancements that could have been identified during requirements elicitation.

• Requirement changes weren’t implemented appropriately during the course of the project,
so the delivered solution did not meet the customer needs.

• Edits to requirements were lost or overwritten because multiple BAs were working on them
concurrently without a version control process.

• Customers were not available to clarify and flesh out requirements.

• Requirements-related issues were not resolved in a timely fashion, causing rework.

3. Process changes should be goal-oriented. Before you begin the journey to superior
processes, make sure you know your objectives (Potter and Sakry 2002). Do you want to
reduce the amount of work that is redone because of requirements problems? Do you want to
overlook fewer requirements during implementation? Do you want to cut unneeded features
sooner? A road map that defines pathways to your objectives greatly improves your chances
of successful improvement.

4. Treat your improvement activities as mini-projects. Many improvement initiatives
founder because they’re poorly planned or because resources never materialize. Include
process improvement resources and tasks in an overall project plan. Perform the planning,
tracking, measurement, and reporting that you’d do for any project, scaled for the size of the
improvement project. Write a simple action plan for each improvement area you tackle.

524 PART V Implementing requirements engineering

Trap The single biggest threat to a software process improvement program is lack of
management commitment, followed closely by reorganizations that shuffle the program’s
participants and priorities.

All team members have the opportunity—and the responsibility—to improve how they do their
work. If you address something obvious on your own, your fellow team members might well see the
merit and adopt the new way of working without fuss. However, a broad process improvement effort
can succeed only if management is motivated to commit resources, set expectations, and hold team
members accountable for contributing to the change initiative.

Process improvement one-liners
The experienced software process improvement leader accumulates a list of short, pithy
 observations about this difficult domain. Here are some that we have picked up over the years:

 ■ Take chewable bites. (If you bite into too large a process change, the team might choke on it.)

 ■ Take a lot of satisfaction from small victories. (You won’t have many big victories.)

 ■ Use gentle pressure, relentlessly applied. (Steer the team toward a better future by
 keeping the change initiative visible and continually chipping away at it.)

 ■ Focus, focus, focus. (A busy software team can work on only three, or two, or perhaps just
one improvement initiative at a time. But always work on at least one.)

 ■ Look for allies. (Every team has its early adopters who will try out new approaches and
give the improvement leaders feedback. Cultivate them. Thank them. Reward them.)

 ■ Action plans that don’t turn into actions are not useful. (It’s easy to perform a process
 assessment and to write an action plan. It’s hard to get people to work in new ways that hold
the promise of better results, yet that’s the only useful outcome of process improvement.)

 ■ Everyone has to play. (Get buy-in from team members who have to implement the
change by involving them through the assessment and solution discovery parts of the
 improvement activities.)

Root cause analysis

It’s important to focus your limited time and budget for process improvement efforts where they will
do the most good. If you can identify the causes of any process shortcomings you’ve experienced,
you can home in on those as high-yield improvement opportunities.

Root cause analysis seeks to identify the underlying factors that contribute to an observed
problem, distinguishing symptoms from their causes. Root cause analysis involves asking “why” the
problem exists several times in succession, each time probing for the reason that underlies the answer

 CHAPTER 31 Improving your requirements processes 525

to the previous “why” question. Perform root cause analysis before adopting process changes, to
determine why your current approaches aren’t already achieving your desired outcomes. Otherwise,
it’s easy to run around blindly, trying new methods without any confidence that they’ll address the
real problems.

Sometimes it’s not clear which is the problem and which is the root cause. Certain symptoms and
root causes chain together, with one symptom being the root cause of another symptom. Suppose
you’re experiencing a symptom of too many requirements being missed during elicitation. One
 possible root cause is that the business analysts didn’t ask the right questions. This root cause is itself
a symptom of another problem, that the people performing the BA role don’t know how to do it well.

A cause-and-effect diagram—also called a fishbone diagram or Ishikawa diagram, after its inventor,
Kaoru Ishikawa—is a useful way to depict the results of a root cause analysis. Figure 31-4 illustrates a
cause and effect diagram that partially analyzes a problem in which an organization’s project teams
repeatedly fail to complete projects on time. The “bones” in the diagram that branch off the main
“backbone” show the answers to the question “Why don’t teams finish projects on time?” Additional
bones show the answers to subsequent “why” questions. Eventually this analysis reveals fundamental
root causes in the most highly branched bones.

FIGURE 31-4 A cause-and-effect diagram identifying root causes for identified problem symptoms.

You won’t have to tackle every root cause you identify by using this type of analysis. The Pareto
principle states the familiar 80/20 rule, which suggests that perhaps 20 percent of the vital root causes

526 PART V Implementing requirements engineering

lead to approximately 80 percent of the observed problems. Even a simple root cause analysis will
likely reveal the high-leverage causes that your requirements improvement actions should target.

The process improvement cycle

Figure 31-5 illustrates an effective process improvement cycle. This cycle reflects the importance of
knowing where you are before you take off for someplace else, the need to chart your course, and
the value of learning from your experiences as part of continuous improvement.

FIGURE 31-5 The software process improvement cycle.

Assess current practices
Step 1 of any improvement activity is to assess the practices currently being used to identify their
strengths and shortcomings. The assessment lays the foundation for selecting the changes you
should make. It also brings visibility to the processes actually being used in the organization, which
are frequently different from the stated or documented processes. And you’ll find that different team
members often have rather different perspectives as to what processes the team is actually using.

You can evaluate your current requirements processes in several ways. If you tried any of the
“Next steps” at the end of previous chapters, you’ve already begun an informal evaluation of your
 requirements practices and their results. Appendix B, “Requirements troubleshooting guide,” offers
dozens of symptoms of common requirements problems, along with possible root causes and
 possible solutions. Structured questionnaires can reveal insights about your current processes at a
low cost. Interviews and discussions with team members provide a more accurate and comprehensive
understanding than questionnaires reveal. Formal evaluations by outside consultants produce
a list of findings—statements of both strengths and weaknesses in the current processes—and
 recommendations for addressing the improvement opportunities.

 CHAPTER 31 Improving your requirements processes 527

For a simple do-it-yourself approach, use the questionnaire in Appendix A, “Current requirements
practice self-assessment,” to calibrate your organization’s current requirements engineering practices.
This self-assessment helps you decide which of your requirements processes are most in need of
 improvement. Just because you give yourself a low rating on a particular question isn’t reason
enough to address it immediately or perhaps at all. Focus your energy on improving those practice
areas that cause your projects the most difficulties and those that pose risks to the success of your
future projects.

Plan improvement actions
In keeping with the philosophy of treating process improvement activities as projects, write an action
plan following your current-practices assessment (Potter and Sakry 2002). Tactical action plans target
specific improvement areas, such as the ways you elicit or prioritize requirements. Each action plan
should identify measurable improvement goals, the participants, and the individual action items that
must be completed to implement the plan. Without a plan, it’s easy to overlook important tasks. The
plan also lets you monitor progress as you track the completion of individual action items.

Figure 31-6 illustrates a process improvement action plan template we’ve used many times.
Include no more than about 10 items in each action plan, scoped such that the plan can be completed
in 2 or 3 months. As an example, I saw a plan for requirements management improvements that
included these action items:

1. Draft a requirements change control process.

2. Review and revise the change control process.

3. Pilot the change control process with Project A.

4. Revise the change control process based on feedback from the pilot.

5. Evaluate problem-tracking tools, and select one to support the change control process.

6. Procure the problem-tracking tool, and customize it to support the change control process.

7. Roll out the new change control process and tool to the organization.

Assign each action item to a specific individual who is responsible for seeing that the item is
 completed. Don’t assign “the team” as an action item owner. Teams don’t do work; individuals do.

If you need more than about 10 action items, focus the initial activity cycle on the most important
issues and address the rest later in a separate action plan. Remember, process change is incremental
and ongoing. The process improvement road map described later in this chapter illustrates how you
can group multiple improvement actions into an overall software process improvement plan.

528 PART V Implementing requirements engineering

FIGURE 31-6 Action plan template for software process improvement.

Create, pilot, and roll out processes
So far, you’ve evaluated your current requirements practices and crafted a plan for addressing the
areas you think are most likely to yield benefits. Now comes the hard part: implementing the plan.

Implementing an action plan means developing processes that you believe will yield better results
than your current ways of working do. Don’t expect to get the new processes perfect on the first try.
Many approaches that seem like a good idea in the abstract turn out to be less pragmatic or less
effective than anticipated. Therefore, pilot most of the new procedures or templates you create on a

 CHAPTER 31 Improving your requirements processes 529

small scale before implementing them for real. Use the knowledge gained from the pilot to adjust the
new process. This improves the chance that it will be effective and well received when you roll it out
to the affected community. Keep the following suggestions in mind for your process pilots:

 ■ Select pilot participants who will give the new approaches a fair try and provide helpful
 feedback. These participants could be either allies or skeptics, but they shouldn’t strongly
 oppose the improvement effort.

 ■ Quantify the criteria the team will use to evaluate the pilot’s results.

 ■ Identify the stakeholders who need to be informed about the pilot and why it is being
 performed.

 ■ Consider piloting portions of the new processes on different projects. This engages more
people in trying new approaches, which increases awareness, feedback, and buy-in.

 ■ As part of the evaluation, ask pilot participants how they would feel if they had to go back to
their former ways of working.

If the pilot was successful, you’re ready to make any final adjustments to the process and roll it out
to the affected community for implementation. Even motivated and receptive teams have a limited
capacity to absorb change, so don’t place too many new expectations on a project team at once.
Craft a roll-out plan that defines how you’ll distribute the new methods and materials to the project
teams, and provide sufficient training, coaching, and assistance. Also consider how management will
set and communicate their expectations about the new processes.

Evaluate results
The final step of a process improvement cycle is to evaluate the activities performed and the results
achieved. This evaluation will help the team do an even better job on future improvement activities.
Assess how smoothly the pilots ran. How effective were they in resolving the uncertainties about the
new processes? Would you change anything the next time you conduct a process pilot?

Consider how well the rollout of the new processes went. Was the availability of the new processes
or templates communicated to everyone affected? Did participants understand and successfully apply
the new processes? Would you change anything about how you handle the next rollout?

A critical step is to assess whether the new processes are yielding the desired results. Some new
practices deliver visible improvements quickly, but others take time to demonstrate their full value.
For example, you should be able to tell quickly whether a new requirements change control process
is effective. However, a new document template can take some time to prove its worth as business
 analysts and other stakeholders get used to it. Give new approaches adequate time to work, and
select measures early on that will demonstrate the success of each change.

Accept the reality of the learning curve, the productivity drop that takes place as practitioners
take time to assimilate new ways of working, as illustrated in Figure 31-7. This short-term productivity
drop—sometimes called the “valley of despair”—is part of the investment your organization is
 making in process improvement. People who don’t understand this might be tempted to abandon

530 PART V Implementing requirements engineering

the improvement effort before it begins to pay off, thereby achieving a zero—or worse—return on
their investment. Educate your managers and peers about the learning curve, and commit to seeing
the change initiative through.

FIGURE 31-7 The learning curve, an unavoidable aspect of process improvement.

Requirements engineering process assets

High-performance projects have effective processes for all of the requirements engineering
 components: elicitation, analysis, specification, validation, and management. To facilitate the
 performance of these processes, every organization needs a collection of requirements process assets
(Wiegers 1998b). A process encompasses the actions you take and the deliverables you produce;
process assets help the team members perform processes consistently and effectively. These process
assets will help those involved in the project understand the steps they should follow and the work
products they’re expected to create. Process assets include the types of documents described in
Table 31-1.

TABLE 31-1 Types of process assets

Type Description

Checklist A list that enumerates activities, deliverables, or other items to be noted or verified. Checklists are
 memory joggers. They help ensure that busy people don’t overlook important details.

Example A representative of a specific type of work product. Accumulate and share good examples as your
 project teams create them.

Plan An outline of how an objective will be accomplished and what is needed to accomplish it.

Policy A guiding principle that sets a management expectation of behaviors, actions, and deliverables.
Processes should enable satisfaction of the policies.

Procedure A step-by-step description of the sequence of tasks that accomplishes an activity. Describe the tasks
to be performed and identify the project roles that perform them. Guidance documents can support a
process or procedure with tutorial information and helpful tips.

 CHAPTER 31 Improving your requirements processes 531

Type Description

Process
 description

A documented definition of a set of activities performed for some purpose. A process description
might include the process objective, key milestones, participants, communication steps, inputs and
outputs, deliverables, and how to tailor the process to different project situations.

Template A pattern to be used as a guide for producing a work product. Templates for key project documents
provide many “slots” for capturing and organizing information. Guidance text embedded in the
 template will help the document author use it effectively. Other templates define a structure that is
useful for writing a specific type of information, such as a functional requirement, quality attribute,
business rule, or user story.

Figure 31-8 identifies some valuable process assets for requirements engineering. These items
should be no larger than they need to be to let team members use them consistently and effectively.
They need not be separate documents; an overall requirements management process could include
the status tracking procedure, change control process, and impact analysis checklist. Store these items
in a shared process assets library for ease of access and ready availability, and establish mechanisms
for improving them with experience (Wiegers 1998b). Many of the process assets in Figure 31-8 are
 available with the companion content for this book.

FIGURE 31-8 Key process assets for requirements development and requirements management.

Following are brief descriptions of each of the process assets listed in Figure 31-8, along with
 references to the chapters in which they are discussed further. Each project should plan how it will
perform its requirements activities, drawing from and tailoring the contents of the organization’s
 process assets to best suit its needs. For instance, a large project that involves numerous user classes
and other stakeholders in multiple locations would benefit from a written elicitation plan that
 identifies the techniques to be used for eliciting requirements, who will perform them, when, and
where. A project that has co-located and highly engaged stakeholders can use a simpler, more agile
process.

Requirements development process assets
The items listed here will help your teams do a better job of eliciting, analyzing, specifying, and
 validating requirements for their projects.

532 PART V Implementing requirements engineering

Requirements development process This process describes how to identify and classify
 stakeholders in your domain and how to plan the elicitation activities. The process describes the
requirements deliverables each project is expected to create and the requirements analysis and
validation activities to perform. Chapter 7, “Requirements elicitation,” describes the contents of an
elicitation plan.

Requirements allocation procedure This procedure describes how to allocate high-level product
requirements to specific subsystems when you are developing systems that contain both hardware
and software components or multiple software subsystems. See Chapter 26, “Embedded and other
real-time systems projects,” for more about requirements allocation.

Requirements prioritization procedure This procedure describes techniques and tools to be
used for prioritizing requirements and dynamically adjusting the backlog contents throughout the
project. Chapter 16, “First things first: Setting requirement priorities,” describes several prioritization
 techniques.

Vision and scope template This template guides the project sponsor and the business analyst in
thinking through the business objectives, success metrics, product vision, and other elements of the
business requirements. Chapter 5, “Establishing the business requirements,” recommends a template.

Use case template As described in Chapter 8, “Understanding user requirements,” the use case
template provides a structured format for describing tasks that users need to perform with a system.

Software requirements specification template The SRS template provides a structured,
 consistent way to organize the product’s functional and nonfunctional requirements. Consider
 adopting more than one template to accommodate the various types or sizes of projects your
 organization undertakes. Chapter 10, “Documenting the requirements,” describes a sample SRS
 template.

Requirements review checklist Peer review of requirements documents constitutes a powerful
software quality technique. A review checklist identifies the types of errors commonly found in
requirements documents, which helps the reviewer to focus his attention on common problem areas.
Chapter 17, “Validating the requirements,” contains a sample requirements review checklist.

Requirements management process assets
The following items can assist your teams in managing sets of documented requirements.

Requirements management process This process describes the actions a team takes to distinguish
versions of the requirements, define baselines, deal with changes, track requirements status, and
accumulate traceability information (see Chapter 27, “Requirements management practices”). For
a sample requirements management process description, see Appendix J of CMM Implementation
Guide (Caputo 1998).

Requirements status tracking procedure Requirements management includes monitoring and
reporting the status of each functional requirement. See Chapter 27 for more about requirements
status tracking.

 CHAPTER 31 Improving your requirements processes 533

Change control process The change control process defines the way that a new requirement or a
modification to an existing requirement is proposed, communicated, evaluated, and resolved.
Chapter 28 describes the change control process.

Change control board charter template As described in Chapter 28, the change control board
(CCB) charter describes the composition, function, and operating procedures of the CCB.

Requirements change impact analysis checklist As illustrated in Chapter 28, an impact
analysis checklist helps you contemplate the possible tasks, side effects, and risks associated with
 implementing a specific requirement change, as well as estimating the effort for the tasks.

Requirements tracing procedure This procedure describes who provides the trace data that
 connects each requirement to other project artifacts, who collects and manages the data, and how
and where it is stored. Chapter 29, “Links in the requirements chain,” addresses requirements tracing.

Are we there yet?

As with other journeys, a process improvement initiative should have a goal. If you don’t define
 specific improvement goals, people might not work in alignment, you can’t tell whether you’re
 making progress, you can’t prioritize improvement efforts, and you can’t tell if you’ve reached
your destination. Metrics are quantifiable aspects of a software project, product, or process. Key
 performance indicators, or KPIs, are metrics that are tied to a target and reveal your progress toward
achieving a specific goal or outcome. A set of KPIs can be displayed in a measurement dashboard that
shows how you are approaching meeting your goals.

Keep two considerations in mind when setting process improvement goals. First, remember that
process improvement for its own sake is meaningless. Therefore, ask yourself whether achieving that
goal would in fact deliver the business value improvements that you seek. Second, you don’t want
the team members to get frustrated trying to reach a target they cannot realistically attain, so ask
 yourself whether the goal is achievable in your environment. The answer to both questions must be
”yes” for an improvement goal to be appropriate.

Numerous aspects of requirements work on a project can be measured, including product size,
requirements quality, requirements status, change activity, and the effort devoted to requirements
engineering and management (Wiegers 2006). In addition, measurements of whether the project
achieved its business objectives will reflect whether the requirements activities were on target. For
process improvement activities, though, you need to select measurement targets that will tell you
whether your improvement investments are paying off in the ways you hope they will. We mentioned
earlier in this chapter that process improvement should be goal-oriented, and that a great motivator
for process change is pain the organization has experienced on previous projects. So select your KPIs
by defining quantitative improvement goals and then determining how you could judge whether the
pain that led you to choose those goals is lessening.

Note that you can’t measure quantitative progress unless you’ve established a baseline, a reference
starting point of how things are working for you today. Ideally, you would measure the current value
of some indicator, then set a desired target value you’d like to reach after a certain period of time,

534 PART V Implementing requirements engineering

and direct your process improvement activities toward achieving that outcome. In reality, many
software organizations lack a measurement culture, so they will have difficulty establishing such a
quantitative baseline. Nonetheless, it’s hard to tell how close you’re getting to your objective if you
have neither a starting point nor a yardstick.

Table 31-2 lists several possible requirements process improvement goals you might have. For
conciseness, we’ve omitted the suffix “by X <amount> in Y <period of time>“ that should be applied
to each of these. For each goal, the table suggests possible indicators that would tell whether the
changes you’re making are paying off as intended. Most measurements of software are lagging
 indicators. It takes a while for new approaches to demonstrate sustained benefits, so give the new
ways of working a chance to take hold and begin to yield benefits.

TABLE 31-2 Possible key performance indicators for certain requirements process improvement goals

Improvement goal Suggested indicators

Reduce rework performed because of
requirements errors

 ■ Hours of rework at all life-cycle stages attributable to an erroneous,
ambiguous, unnecessary, or missing requirement

 ■ Percentage of requirements that have errors discovered following
baselining

Reduce the negative impact of
 requirements changes

 ■ Number of new requirements presented after baselining that could
have been known beforehand

 ■ Percentage of requirements that are modified after baselining
 ■ Number of hours per release or iteration needed to modify

 deliverables because of requirement changes
 ■ Distribution of change requests by origin

Reduce the time needed to clarify
 requirements during development

 ■ Number of requirements questions and issues raised after
 baselining

 ■ Average time needed to resolve each question or issue

Improve estimation accuracy for total
requirements development effort

 ■ Estimated and actual labor hours spent on requirements
 development activities per release and for the total project

Reduce the number of unneeded
 features implemented

 ■ Percentage of committed features that are removed before their
 implementation begins

 ■ Percentage of committed features that are removed before
 delivering a release or iteration

If you’re not sure what indicators to select, follow a simple thought process called goal-question-
metric or GQM (Basili and Rombach 1988; Wiegers 2007). GQM is a way of thinking backward to
figure out what metrics would be valuable. First, state the improvement goals. For each goal, think of
questions you would have to answer to judge whether the team is reaching that goal. Finally, identify
metrics that will provide an answer for each question. These metrics, or combinations of them, will
serve as your key performance indicators.

If you select realistic KPIs for your goals but don’t see signs of progress after a reasonable period,
you need to investigate:

 ■ Were the problems correctly analyzed and root causes identified?

 ■ Did you select improvement actions that directly addressed those root causes?

 CHAPTER 31 Improving your requirements processes 535

 ■ Was the plan created to implement those improvement actions realistic? Was the plan
 executed as intended?

 ■ Has something changed since your original analysis that should lead you to redirect the team’s
improvement activities?

 ■ Have team members actually adopted new ways of working and pushed through the learning
curve to begin applying them in practice?

 ■ Did you set realistic targets that the team had a chance of achieving?

Many points of failure are on the path to improved requirements practices; make sure that your
 improvement initiative doesn’t get caught in one of those traps.

Creating a requirements process improvement road map

Haphazard approaches to process improvement rarely lead to sustainable success. Rather than just
diving in, consider developing a road map for implementing improved requirements practices in your
organization. If you tried any of the requirements process assessment approaches described in this
chapter, you have some ideas about the practices and process assets that would be most helpful to
your organization. The process improvement road map sequences improvement actions to yield the
greatest and quickest benefits with the smallest investment.

Because every situation is different, there is no one-size-fits-all road map. Formulaic approaches to
process improvement don’t replace careful thinking, good judgment, and common sense. Figure 31-9
illustrates one organization’s road map for improving its requirements processes. The desired business
goals are shown (in simplified form) in the boxes on the right side of the figure, and the major
 improvement activities are shown in the other boxes. The circles indicate intermediate milestones
along the paths toward the business goals. M1 means milestone 1. Implement each threaded set of
improvement activities from left to right. After you’ve created a road map, give ownership of each
milestone to an individual, who can then write an action plan for achieving that milestone. Then turn
those action plans into actions!

FIGURE 31-9 Sample requirements process improvement road map.

536 PART V Implementing requirements engineering

Next steps

 ■ Complete the “Current requirements practice self-assessment” in Appendix A. Identify
your top three improvement opportunities for requirements practices, based on the
 consequences of shortcomings in your current practices.

 ■ Determine which of the process assets listed in Figure 31-8 are not presently available in
your organization but would be useful to have.

 ■ Based on the two preceding steps, develop a requirements process improvement road
map patterned after that shown in Figure 31-9. Persuade someone in your organization
to take responsibility for each milestone. Have each milestone owner use the template
in Figure 31-6 to write an action plan for implementing the recommendations leading
up to his or her milestone. Track the progress of the action items in the plan as they are
 implemented.

 ■ Select one new requirements engineering practice from this book to learn more about
and try to apply it starting next week—literally! Select two or three additional practices
to begin applying within a month. Choose others as long-term improvements, five or six
months from now. Identify the situation to which you want to apply each new practice, the
benefits that you hope it will provide, and any help or additional information you might
need. Think about whose cooperation you’ll need to use the new techniques. Identify any
barriers that might impede your ability to use the practice and consider who could help
you break down those barriers.

 537

C H A P T E R 3 2

Software requirements and risk
management

Dave, the project manager for the Chemical Tracking System at Contoso Pharmaceuticals, is meeting
with his lead programmer, Helen, and the lead tester, Ramesh. All are excited about the new project, but
they remember the problems they ran into on an earlier project called the Pharm Simulator.

“Remember how we didn’t find out that the users hated the Simulator’s user interface until beta
 testing?” Helen asked. “It took us four weeks to rebuild it and retest it. I sure don’t want to go through
that death march again.”

“That was awful,” Dave agreed. “It was also annoying that the users we talked to swore they needed
a lot of features that no one has used so far. That drug interaction modeling feature took three times
longer to code than we expected, and we wound up throwing it out. What a waste!”

Ramesh had a suggestion. “Maybe we should list these problems from the Simulator so we can try to
avoid them on the Chemical Tracking System. I read an article on software risk management that said
we should identify risks up front and figure out how to prevent them from hurting the project.”

“I don’t know about that,” Dave protested. “We probably won’t have those same problems again. If
we write down things that could go wrong on the Chemical Tracking System, it’ll look like I don’t know
how to run a software project. I don’t want any negative thinkers on this project. We have to plan for
success!”

As Dave’s final comment suggests, software engineers and project managers are eternal optimists.
We often expect our next project to run smoothly, despite the history of problems on earlier projects.
The reality is that dozens of potential pitfalls can delay or derail a software project. Contrary to Dave’s
beliefs, software teams must identify and control their project risks, beginning with those related to
requirements.

A risk is a condition that could cause some loss or otherwise threaten the success of a project.
This condition hasn’t actually caused a problem yet—and you’d like to keep it that way. These
 potential problems might have an adverse impact on the project’s cost, schedule, or technical success;
the product’s quality; or the team’s effectiveness. Risk management is the process of identifying,
 evaluating, and controlling risks before they harm your project. If something untoward has already
happened on the project, it’s an issue, not a risk. Deal with current problems and issues through your
project’s ongoing status tracking and corrective action processes.

538 PART V Implementing requirements engineering

Because no one can predict the future with certainty, risk management is used to minimize the
likelihood or impact of potential problems. Risk management means dealing with a concern before
it becomes a crisis. This improves the chance of project success and reduces the financial or other
 consequences of those risks that you can’t avoid. Risks that lie outside the team’s sphere of control
should be directed to the appropriate level of management for attention.

Because requirements play such a central role in software projects, the prudent project
 manager will identify requirements-related risks early and control them aggressively. Typical
 requirements risks include misunderstanding the requirements, inadequate user involvement,
 uncertain or changing project scope and objectives, and continually changing requirements. Project
 managers can control requirements risks only through collaboration with customers and other
 stakeholders. Jointly documenting requirements risks and planning mitigation actions reinforces
the customer- development partnership that was discussed in Chapter 2, “Requirements from the
 customer’s perspective.”

Simply knowing about the risks doesn’t make them go away, so this chapter presents a brief
 tutorial on software risk management (Wiegers 2007). Later in the chapter, we also describe a number
of risk factors that can raise their ugly heads during requirements engineering activities. Use this
information to launch an attack on your requirements risks before they attack your project.

Fundamentals of software risk management

Projects face many kinds of risks besides those related to requirements. Dependence on an external
entity, such as a subcontractor or another project that is providing components to be reused, is a
common source of risk. Project management is fraught with risks from poor estimation, rejection
of accurate estimates by managers, insufficient visibility into project status, and staff turnover.
 Technology risks threaten highly complex and leading-edge development projects. Lack of
 knowledge is another source of risk, such as with practitioners who have insufficient experience with
the technologies being used or with the application domain. Transitioning to a new development
method introduces a raft of new risks. And ever-changing, imposed government regulations can
disrupt the best-laid project plans.

Scary! This is why all projects need to take risk management seriously. Risk management involves
scanning the horizon for icebergs, rather than steaming full speed ahead with great confidence
that your ship is unsinkable. As with other processes, scale your risk management activities to your
 project’s size. Small projects can get by with a simple risk list, but formal risk management planning is
a key element of a successful large-scale project.

Elements of risk management
Risk management involves the application of tools and procedures to contain project risk within
 acceptable limits. It provides a standard approach to identify and document risk factors, evaluate
their potential severity, and propose strategies for mitigating them (Williams, Walker, and Dorofee
1997). Risk management includes the activities shown in Figure 32-1 (adapted from McConnell
[1996]).

 CHAPTER 32 Software requirements and risk management 539

FIGURE 32-1 Elements of risk management.

Risk assessment is the process of examining a project to identify potential threats. Facilitate risk
identification with lists of common risk factors such as those described in the “Requirements-related
risks” section later in this chapter or with other public lists of typical risks (for example, Carr et al.
1993; McConnell 1996). During risk analysis, you’ll examine the potential consequences of specific
risks to your project. Risk prioritization helps you focus on the most severe risks by assessing the
 potential risk exposure from each. Risk exposure is a function of both the probability of incurring a
loss due to the risk and the potential magnitude of that loss.

Risk avoidance is one way to deal with a risk: don’t do the risky thing. You can avoid some risks
by not undertaking certain projects, by relying on proven rather than cutting-edge technologies
and development methods, or by excluding features that will be especially difficult to implement.
 Software development is intrinsically risky, though, so avoiding risk might also mean losing
 opportunities.

Most of the time you’ll have to perform risk control activities to manage the top-priority risks you
identified. Risk management planning produces a plan for dealing with each significant risk, including
mitigation approaches, contingency plans, owners, and timelines. Mitigation actions try either to
prevent the risk from becoming a problem at all or to reduce the adverse impact if it does. The risks
won’t control themselves, so risk resolution involves executing the plans for mitigating each risk.
Finally, track your progress toward resolving each risk item through risk monitoring, which should
become part of your routine project status tracking. Monitor how well your risk mitigation actions are
working, look for new risks that have popped up, retire risks whose threat has passed, and update the
priorities of your risk list periodically.

Documenting project risks
It’s not enough to simply recognize the risks that face your project. You need to manage them in
a way that lets you communicate risk issues and status to stakeholders throughout the project’s
 duration. Figure 32-2 shows a template for documenting an individual risk statement. You might find
it more convenient to store this information in tabular form, such as a spreadsheet, which makes it
easy to sort the list of risks in various ways, or in a database. Keep the risk list separate from project
plans so that it’s easy to update throughout the project’s duration.

540 PART V Implementing requirements engineering

FIGURE 32-2 Risk item tracking template.

Use a condition-consequence format when you document risk statements. That is, state the
risk condition that you are concerned about, followed by the potential adverse outcome—the
 consequence—from that condition. Often, people who suggest risks state only the condition
(“the customers don’t agree on the product requirements”) or the consequence (“we can satisfy
only one of our major customers”). Pull these statements together into the condition-consequence
 structure: “If the customers don’t agree on the product requirements, then we might be able to satisfy
only one of our major customers.” One condition might lead to several consequences, and several
conditions can result in the same consequence.

The template provides spaces to record the probability of a risk materializing into a problem,
the negative impact on the project as a result of that problem, and the overall risk exposure. I like

 CHAPTER 32 Software requirements and risk management 541

to estimate the probability on a scale from 0.1 (highly unlikely) to 1.0 (certain to happen), and the
impact on a relative scale of 1 (no problem) to 10 (big trouble). Even better, try to rate the potential
impact in units of lost time or money. Multiply the probability by the impact to estimate the exposure
from each risk.

Don’t try to quantify risks too precisely. Your goal is to differentiate the most threatening risks
from those you don’t need to tackle immediately. You might find it easier simply to estimate both
probability and impact as high, medium, or low. Those items that have at least one high rating
 demand your early attention.

Use the Risk Management Plan field to identify the actions you intend to take to control the risk.
Some mitigation strategies work to reduce the risk probability, others to reduce the impact. Consider
the cost of mitigation when planning. It doesn’t make sense to spend $20,000 to control a risk with a
maximum estimated impact of only $10,000 if it materialized into a problem. You might also devise
contingency plans for the most severe risks to anticipate what actions to take if, despite your efforts,
the risk does affect your project. Assign every risk that you plan to control to an individual owner, and
set a target date for completing the mitigation actions. Long-term or complex risks might require a
multistep mitigation strategy.

Figure 32-3 illustrates a risk that the Chemical Tracking System team leaders discussed at the
 beginning of this chapter. The team estimated the probability and impact on the basis of their
 previous experience. Until they evaluate other risks, they won’t know how serious a risk exposure of
4.2 is—risk exposures are relative. The first two mitigation approaches reduce the probability of this
risk becoming a problem by increasing user involvement in the requirements process. Prototyping
reduces the potential impact by seeking early feedback on the user interface.

FIGURE 32-3 Sample risk item from the Chemical Tracking System.

542 PART V Implementing requirements engineering

Planning for risk management
A risk list is not the same as a risk management plan. For a small project, you can include your
plans for controlling risks in the software project management plan. A large project should write
a separate risk management plan that spells out the approaches it intends to take to identify,
 evaluate, document, and track risks. This plan should include the roles and responsibilities for the risk
 management activities. A risk management plan template is available with this book’s companion
content. Many projects appoint a project risk manager to be responsible for staying on top of the
things that could go wrong. One company dubbed their risk manager “Eeyore,” after the gloomy
Winnie-the-Pooh character who constantly bemoaned how bad things could become.

Trap Don’t assume that risks are under control just because you identified them and
 selected mitigation actions. Follow through on the risk management actions. Include
enough time for risk management in the project schedule so that you don’t waste your
 investment in risk planning. Include risk mitigation activities, risk status reporting, and
 updating the risk list in your project’s task list.

Establish a rhythm of periodic risk monitoring. Keep the 10 or so risks that have the highest
risk exposure visible, and track the effectiveness of your mitigation approaches regularly. When a
 mitigation action is completed, reevaluate the probability and impact for that risk item and then
update the risk list and any other pending mitigation plans accordingly. A risk is not necessarily under
control simply because the mitigation actions have been completed. You need to judge whether your
mitigation approaches have reduced the exposure to an acceptable level or whether the opportunity
for a specific risk to become a problem has passed.

Out of control
A project manager once asked me what to do if the same items remained on his top-five
risk list week after week. This suggests that the mitigation actions for those risks aren’t being
 implemented, that they aren’t effective, or that there’s no way for the team to control those
risks. If your mitigation actions are effective, the exposure from risks that you are attempting to
control will decrease. This lets other risks that were less threatening than the initial top five float
up to the top of the risk list and engage your attention. Periodically reassess the probability
of each risk materializing, and the potential loss if it does, to see whether your risk mitigation
activities are getting the job done.

Requirements-related risks

The risk factors described on the following pages are organized by the five requirements engineering
subdisciplines of elicitation, analysis, specification, validation, and management. Techniques
are suggested that can reduce each risk’s probability or impact. This list is just a starting point;

 CHAPTER 32 Software requirements and risk management 543

 accumulate your own list of risk factors and mitigation strategies based on the lessons you learn from
each project. Theron Leishman and David Cook (2002) describe additional risks related to software
requirements. Be sure to write your risk statements in the condition-consequence format.

Requirements elicitation
Numerous factors can conspire to hamper your requirements elicitation efforts. Following are several
areas of potential elicitation risk and suggestions for how to avoid them.

Product vision and project scope Scope creep is more likely if the stakeholders lack a shared
understanding of what the product is supposed to be (and not be) and do. Early in the project, write
a vision and scope document that contains your business requirements, and use it to guide decisions
about new or modified requirements.

Time spent on requirements development Tight project schedules often pressure managers
and customers into glossing over the requirements because they believe that if the developers don’t
start coding immediately, they won’t finish on time. Record how much effort you actually spend
on requirements development for each project so that you can judge whether it was sufficient and
improve your planning for future projects. Agile development approaches allow construction to begin
earlier than on projects following a waterfall life cycle.

Customer engagement Insufficient customer involvement during the project increases the
chance of an expectation gap. Identify stakeholders, customers, and user classes early in the project.
 Determine who will serve as the literal voice of the user for each user class. Engage key stakeholders
as product champions. Make sure product champions fulfill their commitments so you elicit the
 correct needs.

Completeness and correctness of requirements specifications Elicit user requirements that
map to business requirements to ensure that the solution will deliver what the customers really
need. Devise usage scenarios, write tests from the requirements, and have customers define their
 acceptance criteria. Create prototypes to make the requirements more meaningful for users and to
elicit specific feedback from them. Enlist customer representatives to review the requirements and
analysis models.

Requirements for innovative products It’s easy to misgauge market response to products that
are the first of their kind. Emphasize market research, build prototypes, and use focus groups to
 obtain early and frequent customer feedback about your innovative product visions.

Defining nonfunctional requirements Because of the natural emphasis on product functionality,
it’s easy to neglect nonfunctional requirements. Query customers about quality characteristics such as
performance, usability, security, and reliability. Document these nonfunctional requirements and their
acceptance criteria as precisely as you can.

Customer agreement on requirements If the diverse customers for your system don’t agree
on what you should build, someone will be unhappy with the result. Determine who the primary
 customers are, and use the product champion approach to get adequate customer representation

544 PART V Implementing requirements engineering

and involvement. Make sure you’re relying on the right people for making decisions about
 requirements. Have appropriate stakeholder representatives review the requirements.

Unstated requirements Customers often hold implicit expectations that are neither communicated
nor documented. Try to identify any assumptions the customers might be making. Use open-ended
questions to encourage customers to share more of their thoughts, wishes, ideas, information, and
concerns than you might otherwise hear. Asking customers what would make them reject the product
might reveal some topics that have not yet been explored.

Existing product used as the requirements reference Requirements development might not
be deemed important on next-generation or replacement projects. Developers are sometimes told
to use the existing product as their source for requirements, with a list of changes and additions.
 Chapter 21, “Enhancement and replacement projects,” suggested some ways to reverse-engineer
 requirements from an existing application.

Solutions presented as needs User-proposed solutions can mask the users’ actual needs, lead
to automating ineffective business processes, and overconstrain the developers’ design options.
The analyst must drill down to understand the intent—the real requirement—behind a solution the
 customer has presented.

Distrust between the business and the development team As you have seen throughout this
book, effective requirements engineering demands close collaboration among various stakeholders,
particularly customer communities (the business side for IT projects) and developers. If these parties
do not feel that their counterparts are working in good faith toward a mutually beneficial outcome,
conflicts can arise and requirements elicitation can be threatened.

Requirements analysis
It isn’t prudent to just record whatever the customer tells you and dive into development.
 Requirements analysis poses its own threat areas, as described below.

Requirements prioritization Ensure that every functional requirement, feature, or user
 requirement is prioritized and allocated to a specific system release or iteration. Evaluate the priority
of new requirements against the backlog of work remaining to be done, so that you can make
 appropriate trade-off decisions and iteration plans.

Technically difficult features Evaluate the feasibility of each requirement to identify those that
might take longer than anticipated to implement. Use status tracking to watch for requirements
that are falling behind their implementation schedule. Take corrective action as early as possible.
 Prototype the novel or risky requirements to select effective approaches.

Unfamiliar technologies, methods, languages, tools, or hardware Don’t underestimate
the learning curve of getting up to speed with new techniques that are needed to satisfy certain
 requirements. Identify those high-risk requirements early on, and work with the development team to
allow sufficient time for false starts, learning, and experimentation.

 CHAPTER 32 Software requirements and risk management 545

Requirements specification
Requirements are all about communication. Just because requirements are communicated on paper
or in writing doesn’t mean they are actually understood.

Requirements understanding Different interpretations of the requirements by developers and
customers lead to expectation gaps, in which the delivered product fails to satisfy customer needs.
Peer review of requirements by developers, testers, and customers can mitigate this risk. Trained and
experienced business analysts will acquire the right information and write high-quality specifications.
Creating models and prototypes that represent the requirements from multiple perspectives can
reveal fuzzy, ambiguous requirements.

Time pressure to proceed despite open issues It is a good idea to mark areas of the
 requirements that need further work with TBD (to be determined) or as issues, but it’s risky to
 proceed with construction if these haven’t been resolved. Record who is responsible for closing each
open issue and the target date for resolution.

Ambiguous terminology Create a glossary to define business and technical terms that might
be interpreted differently by different readers. Requirements reviews can help participants reach a
 common understanding of terms and concepts.

Design included in requirements Design elements that are included in the requirements place
constraints on the options available to developers. Unnecessary constraints inhibit the creation of
 optimal designs. Review the requirements to make sure they emphasize what needs to be done to
solve the business problem, rather than dictating the solution.

Requirements validation
Even if you’ve done a good job on requirements elicitation, it’s important to confirm the quality and
validity of the solution that the requirements specify. Validation offers the following pitfalls.

Unvalidated requirements The prospect of reviewing a lengthy requirements specification is
daunting, as is the idea of writing tests very early in the development process. However, if you confirm
the correctness and quality of each set of requirements before their implementation, you can avoid
considerable expensive rework later. Include time and resources for these quality activities in the
project plan. Gain commitment from your customer representatives to participate in requirements
reviews. Perform incremental, informal reviews to find problems as early and cheaply as possible.

Inspection proficiency If inspection participants do not know how to inspect requirements
 effectively, they might miss serious defects. Train all team members who will participate in inspections
of requirements documents. Invite an experienced inspector from your organization or an outside
consultant to observe your early inspections to coach the participants.

546 PART V Implementing requirements engineering

Requirements management
Much of the requirements-related risk on a software project comes from how changes are handled.
Those and other requirements management risks are mentioned below.

Changing requirements You can control rampant scope creep by using documented business
 requirements and scope definitions as the benchmark for approving changes. A collaborative
 elicitation process with extensive user involvement can cut requirements creep nearly in half
(Jones 1996a). Detecting requirements errors early reduces the number of modifications requested
later on. Design the system for easy modifiability, particularly when you are following an iterative
life cycle.

Requirements change process Risks related to how requirements changes are handled include
not having a defined change process, using ineffective change mechanisms, failing to incorporate
 valuable changes efficiently, and incorporating changes that bypass the process. A requirements
change process that includes impact analysis, a change control board, and a tool to support the
process is an important starting point. Clear communication of changes to the affected stakeholders
is essential.

Unimplemented requirements Requirements tracing helps you avoid overlooking any
 requirements during design, construction, or testing.

Expanding project scope If requirements are poorly defined initially, further clarification can
 expand the scope of the project. Vaguely specified areas of the product will consume more effort
than anticipated. The project resources that were allocated according to the initial incomplete
 requirements might be insufficient to implement the full scope of user needs. To mitigate this risk,
plan on a phased or incremental delivery life cycle. Implement the top priority functionality in the
early releases, and elaborate the system’s capabilities in later iterations.

Risk management is your friend

A project manager can use risk management to raise the awareness of conditions that could cause the
project to suffer. Consider the manager of a new project who’s concerned about getting appropriate
users involved in requirements elicitation. The astute manager will realize that this condition poses
a risk and will document it in the risk list, estimating the probability and impact based on previous
experience. If time passes and users still are not involved, the risk exposure for this item will increase,
perhaps to the point where it compromises the project’s success. I’ve been able to convince managers
to postpone a project that could not engage sufficient user representatives by arguing that we
shouldn’t waste the company’s money on a doomed project.

Periodic risk tracking keeps the project manager apprised of the threat from identified risks.
 Escalate risks that aren’t adequately controlled to senior managers, who can either initiate corrective
actions or make a conscious business decision to proceed despite the risks. Risk management helps
you keep your eyes open and make informed decisions, even if you can’t control or avoid every
 adversity your project might encounter.

 CHAPTER 32 Software requirements and risk management 547

Next steps
 ■ Identify several requirements-related risks facing your current project. Don’t identify

known problems as risks, only things that haven’t happened yet. Document the risks by
using the template in Figure 32-2. Suggest at least one possible mitigation approach for
each risk that you choose to control. Are there any risks that you are going to simply
 accept and hope they don’t bite you?

 ■ Hold a risk brainstorming session with key project stakeholders. Identify as many
 requirements-related risks as you can. Evaluate each for its probability of occurrence and
relative impact, and multiply these together to calculate the risk exposure. Sort the risk list
in descending order by risk exposure to identify your top five requirements-related risks.
For each one, identify actions that can be taken to mitigate the risk. Assign each action to
an individual to implement.

 ■ Build your own list of potential requirements risks facing your organization. Start with the
ones in this chapter, then augment the list based on actual project experiences. This rich
risk list will help each future project manager identify his own risks early on.

 549

Epilogue

Nothing is more important to a software project’s success than understanding what problems it
needs to solve. Requirements provide the foundation for that success. If the development team and
its customers don’t agree on the product’s capabilities and characteristics, the most likely outcome is
one of those unpleasant software surprises that we’d all prefer to avoid. If your current requirements
practices aren’t giving you the results you need, selectively and thoughtfully apply the techniques
presented in this book that you think might help. Effective requirements engineering involves:

 ■ Engaging customer representatives early and extensively.

 ■ Developing requirements iteratively and incrementally.

 ■ Representing the requirements in various ways to make sure everyone understands them.

 ■ Assuring the requirements’ completeness and correctness with all stakeholder groups.

 ■ Finding the right supporting technology and practices to enable a shared view and ensure
requirements integrity.

 ■ Controlling the way that requirements changes are made.

Changing the way an organization works is difficult. It’s hard to acknowledge that your current
approaches aren’t working as well as you’d like and to figure out what to try next. It’s hard to find
the time to learn about new techniques, develop improved processes, pilot and adjust them, and roll
them out to the rest of the organization. And it can be difficult to convince the various stakeholders
that change is needed. However, if you don’t change the way your teams work, there’s no reason to
believe that the next project will go any better than the last one.

Success in software process improvement depends on:

 ■ Focusing on a few clear pain points at a time.

 ■ Setting clear goals and defining action plans for your improvement activities.

 ■ Addressing the human and cultural factors associated with organizational change.

 ■ Persuading everyone to view process improvement as a strategic investment in business success.

Keep these process improvement principles in mind as you define a road map to improved
 requirements engineering performance. Stay grounded in practical approaches that are appropriate
for your organization and team. If you actively apply known good practices and rely on common
sense, you can significantly improve how you handle your project’s requirements, with all the
 advantages and benefits that brings. And remember that without excellent requirements, software is
like a box of chocolates: you never know what you’re going to get.

 551

A P P E N D I X A

Current requirements practice
self-assessment

This appendix contains 20 questions that you can use to calibrate your team’s current requirements
engineering practices and to identify areas to reinforce. You can download a copy of this assessment
and a spreadsheet to help you analyze the responses from the companion content website for
this book. More comprehensive assessments are available if you want to get a more precise
 understanding of what aspects of your current practices and documents would benefit most from
improvement. Seilevel (2012) offers a thorough project assessment that can be adapted to evaluate
your organization’s requirements practices and deliverables.

To complete the quick assessment in this appendix, select the response for each question that
most closely describes the way your team currently deals with that requirements issue. If you want to
quantify the self-assessment, give yourself 0 points for each (a) response, 1 point for each (b), 3 points
for each (c), and 5 points for each (d) response [except for question 16, where both (c) and (d) are
worth 5 points]. The maximum possible score is 100 points. Generally speaking, the higher the score,
the more mature—and likely more effective—your requirements practices are. Each question refers
you to the chapter or chapters that address the topic of the question.

Instead of just trying to achieve a high score, use this self-assessment to spot opportunities to
apply new practices that might benefit your organization. Some questions might not pertain to the
kind of software your organization develops. Also, situations are different; not every project needs
the most rigorous approaches. Recognize, though, that informal approaches to requirements increase
the likelihood that your team will end up doing excessive rework. Most organizations will benefit from
following the practices represented by the “c” and “d” responses.

The people you select to complete the assessment could influence the results. Watch out for
respondents who, rather than describing what’s really going on in the organization, might bias their
responses based on politics, on what they wish was being done, or on what they think the “correct”
answers should be. Asking multiple people to complete the self-assessment independently will help
remove some of that bias and provide a more realistic representation of your current practices than
asking just one person. Multiple responders might also reveal different understandings of how
certain practices are being performed at present. You can use the spreadsheet tool provided on the
 companion content website to accumulate multiple sets of responses and view the distribution.

552 APPENDIX A Current requirements practice self-assessment

1. How are the project’s business requirements defined, communicated, and used? [Chapter 5]

a. We sometimes write a high-level product description early on, but we don’t refer back to it.

b. The person who conceives the product knows the business requirements and discusses
them verbally with the development team.

c. We record business requirements in a vision and scope, project charter, or similar
 document according to a standard template. All project stakeholders have access to this
document.

d. We actively use the documented business requirements on our project, evaluating
proposed product features and requirement changes to see whether they lie within the
documented scope, and adjusting scope as needed based on business objectives.

2. How are the user communities for the product identified and characterized? [Chapter 6]

a. The developers think they know who our users will be.

b. Marketing or the project sponsor believes that they know who the users are.

c. Target user groups or market segments are identified by management or marketing
from some combination of market research, our existing user base, and input from other
stakeholders.

d. The project stakeholders identify distinct user classes, whose characteristics are
 summarized in the software requirements specification.

3. How do you elicit customer input on the requirements? [Chapter 7]

a. The developers are confident that they already know what to build.

b. Typical users are surveyed with questionnaires or interviewed in focus groups.

c. We meet with people, sometimes one on one and sometimes in groups, and they tell us
what they want.

d. A variety of elicitation techniques are used, including interviews and workshops with user
class representatives, document analysis, and system interface analysis.

4. How well trained and how experienced are your business analysts? [Chapter 4]

a. They are developers or former users who have little experience and no specific training in
software requirements engineering.

b. Developers, experienced users, or project managers who have had some previous
 exposure to requirements engineering perform the BA role.

c. The BAs have had several days of training and considerable experience in collaborating
with users.

 APPENDIX A Current requirements practice self-assessment 553

d. We have professional business analysts or requirements engineers who are trained
and proficient in interviewing techniques, the facilitation of group sessions, technical
 writing, and modeling. They understand both the application domain and the software
 development process.

5. How are the high-level system requirements allocated to the software portions of the
 product? [Chapters 19 and 26]

a. Software is expected to overcome any shortcomings in the hardware.

b. Software and hardware engineers discuss which subsystems should perform which
 functions.

c. A system engineer or an architect analyzes the system requirements and decides which
ones will be implemented in each software subsystem.

d. Knowledgeable team members collaborate to allocate portions of the system
 requirements to software subsystems and components and to trace them into specific
software requirements. Component interfaces are explicitly defined and documented.

6. To what extent are requirements reused on your projects? [Chapter 18]

a. We do not reuse requirements.

b. A business analyst who is familiar with previous projects sometimes knows of
 requirements that can be reused on a new project, so she copies and pastes the
 requirements into the new specification.

c. A business analyst can search through the previous projects stored in our requirements
management tool for requirements that are relevant to his new project. He can reuse
specific versions of those requirements by using the functions built into the tool.

d. We have established a repository of potentially reusable requirements, which have been
adapted and improved from previous projects. BAs routinely check this repository for
 requirements that might be usable on their current projects. We use trace links to pull in
child requirements, dependent requirements, design elements, and tests when possible
when we are reusing a requirement.

7. What approaches are used when working with stakeholders to identify the specific software
requirements? [Chapters 7, 8, 12, and 13]

a. We begin with a general understanding, write some code, show the software to some
 users, and modify the code until they’re happy.

b. Management or marketing provides a product concept, and the developers write the
 requirements. Customer stakeholders tell the development team if they’ve missed
 anything.

554 APPENDIX A Current requirements practice self-assessment

c. Marketing or customer representatives tell the development team what features and
functions the product should contain. Sometimes marketing tells the development team
when the product direction changes.

d. We hold structured requirements elicitation interviews or workshops with representatives
from the different user classes for the product. We employ use cases or user stories to
understand the users’ goals, and we create analysis models to help ensure we identify all
the functional requirements. We flesh out the requirements incrementally and iteratively,
giving the customers numerous opportunities to improve them.

8. How are the software requirements documented? [Chapters 10, 11, 12, and 30]

a. We piece together oral history, email and voice mail messages, interview notes, and
 meeting notes.

b. We write unstructured narrative textual documents, or we create simple requirements
lists, or we draw some diagrams.

c. We write requirements in structured natural language according to a standard template.
Sometimes we augment these requirements with visual analysis models that use standard
notations.

d. We create requirements and visual analysis models and store them all in a requirements
management tool. Several attributes are stored along with each requirement.

9. How are nonfunctional requirements, such as software quality attributes, elicited and
 documented? [Chapter 14]

a. What are “software quality attributes”?

b. We do beta testing to get feedback about how the users like the product.

c. We document certain attributes, such as performance, usability, and security
 requirements.

d. We work with customers to identify the important quality attributes for each product,
which we then document in a precise and verifiable way.

10. How are the individual functional requirements labeled? [Chapter 10]

a. We write paragraphs of narrative text or short user stories; specific requirements are not
explicitly identified.

b. We use bulleted or numbered lists.

c. We use a hierarchical numbering scheme, such as “3.1.2.4.”

d. Each discrete requirement has a unique, meaningful label that is not disrupted when
other requirements are added, moved, or deleted.

 APPENDIX A Current requirements practice self-assessment 555

11. How are priorities for the requirements established? [Chapter 16]

a. All of the requirements are important, so we don’t need to prioritize them.

b. The customers tell us which requirements are most important to them. If the customers
don’t tell us or don’t agree, the developers decide.

c. Each requirement is labeled as high, medium, or low priority by customer consensus.

d. To help us make priority decisions, we use an analytical process to rate the value, the cost,
and the technical risk of each requirement, or we use a similar structured prioritization
technique.

12. What techniques are used to prepare a partial solution and verify a mutual understanding of
the problem? [Chapter 15]

a. We just build the system and then fix it if we need to.

b. We build some simple prototypes and ask users for feedback. Sometimes we’re pressured
to deliver prototype code.

c. We create prototypes for both user interface mock-ups and technical proofs of concept
when appropriate.

d. Our project plans include tasks to create electronic or paper throwaway prototypes to
help us refine the requirements. Sometimes we build evolutionary prototypes. We use
evaluation scripts to obtain customer feedback on our prototypes.

13. How are the requirements validated? [Chapter 17]

a. We think our requirements are pretty good when we first write them.

b. We pass the specified requirements around to people to get their feedback.

c. The BA and some stakeholders hold informal reviews when they have time.

d. We inspect our requirements documents and models, with participants that include
 customers, developers, and testers. We write tests against the requirements and use them
to validate the requirements and models.

14. How are different versions of the requirements documents distinguished? [Chapters 27 and 30]

a. The document shows the auto-generated date that the document was printed.

b. We use a sequence number—like 1.0, 1.1, and so on—for each document version.

c. We have a manual identification scheme that distinguishes draft versions from baselined
versions and major revisions from minor revisions.

d. The requirements documents are stored under version control in a document
 management system, or requirements are stored in a requirements management tool
that maintains a revision history for each requirement.

556 APPENDIX A Current requirements practice self-assessment

15. How are software requirements traced back to their origin? [Chapter 29]

a. They aren’t.

b. We know where many of the requirements came from but don’t document the
 knowledge.

c. Each requirement has an identified origin.

d. We have full two-way tracing between business requirements, system requirements, user
requirements, functional requirements, and nonfunctional requirements.

16. How are requirements used as the basis for developing project plans? [Chapter 19]

a. The delivery date is set before we begin requirements development. We can’t change
either the project schedule or the scope. Sometimes we go through a rapid descoping
phase to drop features just before the delivery date.

b. The first iteration of the project plan addresses the schedule needed to gather
 requirements. The rest of the project plan is developed after we have a preliminary
 understanding of the requirements. We can’t change the plan much thereafter, however.

c. We start with just enough information about requirements to prioritize them, then
 estimate the effort needed to implement the top-priority requirements. We develop
our requirements and our software incrementally, planning the requirements for each
 iteration based on their priority and size. If we need to accommodate more requirements
than our plan allowed, we add more iterations.

d. We base the schedules and plans on the estimated effort needed to implement the
 required functionality, starting with the highest-priority requirements. These plans are
updated as the requirements change. If we must drop features or adjust resources to
meet schedule commitments, we do so as early as possible. We plan to deliver multiple
releases to accommodate requirements changes and growth. [Note: (c) and (d) are
equally good responses for this question.]

17. How are the requirements used as a basis for design? [Chapter 19]

a. When we have written requirements, we refer to them during development.

b. The requirements documents describe the solution we intend to implement.

c. Each functional requirement is traced to a design element.

d. Developers inspect the requirements to make sure they can be used as the basis for
design. We have full two-way traceability between individual functional requirements and
design elements.

 APPENDIX A Current requirements practice self-assessment 557

18. How are the requirements used as the basis for testing? [Chapter 19]

a. The testers test the software based on how they think it should function.

b. The testers test what the developers said they implemented.

c. We write system tests against the user requirements and functional requirements.

d. Testers inspect the requirements to make sure they are verifiable and to begin their
test planning. We trace system tests to specific functional requirements. System testing
 progress is measured in part by requirements coverage.

19. How is a software requirements baseline defined and managed for each project? [Chapters 2
and 27]

a. We don’t have to think about baselines because we are on an agile project.

b. The customers and managers sign off on the requirements, but the development team
still gets a lot of changes and complaints.

c. We define an initial requirements baseline, but we don’t always keep it current as changes
are made over time.

d. The requirements are stored in a requirements management tool when an initial
 baseline is defined. The requirements repository is updated as requirements changes are
 approved. We maintain a change history for each requirement after it’s baselined. On an
agile project, the team agrees on a requirements baseline for each iteration.

20. How are changes to the requirements managed? [Chapter 28]

a. The requirements change whenever someone has a new idea or realizes that he forgot
something.

b. We discourage change by freezing the requirements after the requirements phase is
 complete, but informal change agreements are still made.

c. We use a defined format for submitting change requests and a central submission point.
The project manager decides which changes to incorporate.

d. Changes are made according to our documented change control process. We use a
tool to collect, store, and communicate change requests. The impact of each change is
 evaluated before the change control board decides whether to approve it.

 559

A P P E N D I X B

Requirements troubleshooting
guide

With perseverance and the cooperation of the various stakeholders, you can successfully implement
improved requirements development and management practices in your organization. You should
select practices that will solve or prevent specific requirements-related problems that your projects
experience. After you’ve identified the most pressing issues you’re going to address, it’s important
to determine the root causes that contribute to each observed problem. Effective solutions confront
root causes, not just superficially observed symptoms.

This appendix lists many symptoms of requirements-related problems that you might encounter.
The symptoms are accompanied by related possible root causes and suggestions for dealing with
each problem. Of course, these aren’t the only possible problems, so extend this table with your own
experiences as you encounter—and handle—symptoms that aren’t listed here. Sometimes observed
symptoms are themselves root causes of other problems. For instance, the process symptom
 “People performing the BA role don’t know how to do it well” is a root cause of numerous elicitation
 symptoms you might observe. These things chain together; not all of the possible links are shown
here.

Unfortunately, there’s no guarantee that a proposed solution will cure your specific symptom,
especially if the underlying problems are political or cultural in nature or if the root causes lie outside
the development team’s sphere of control. As we’ve cautioned before, none of these solutions will
work if you’re dealing with unreasonable people.

Common signs of requirements problems

Problems are conditions that lead to a negative impact on your project. Signs that indicate that your
projects might be suffering from requirements-related problems include:

 ■ A product that doesn’t satisfy user needs or meet user expectations.

 ■ A product that requires corrections and updates immediately following release.

 ■ A delivered solution that doesn’t help the organization achieve its business objectives.

 ■ Project schedule and budget overruns.

560 APPENDIX B Requirements troubleshooting guide

 ■ Team member frustration, loss of morale, loss of motivation, and staff turnover.

 ■ Extensive rework during development of the solution.

 ■ A missed market window or delayed business benefit.

 ■ Loss of market share or revenue.

 ■ Product returns, market rejection of the product, and poor reviews.

Common barriers to implementing solutions

Any attempt to change the way people work or the way an organization operates might encounter
resistance. As you identify corrective actions that could address the root causes of your requirements
problems, also think about the obstacles that might make it difficult to implement those actions,
and possible ways to get around those obstacles. Common barriers to implementing changes in
 requirements practices include:

 ■ Lack of recognition of the problems that current requirements practices cause.

 ■ Lack of time—everyone is already too busy.

 ■ Market or management pressure to deliver quickly.

 ■ Lack of management commitment to investing in a requirements engineering process.

 ■ Skepticism about the value of requirements engineering.

 ■ Reluctance to follow a new or more structured requirements or software development
 process.

 ■ Politics and entrenched corporate culture.

 ■ Conflicts between stakeholders.

 ■ Inadequately trained and skilled team members.

 ■ Unclear project roles and responsibilities.

 ■ Lack of ownership and accountability for requirements activities.

Notice that these are people-oriented and communication-oriented issues, not technical
 impediments. There are no easy ways to overcome most of these barriers, but the first step is to
 recognize them.

 APPENDIX B Requirements troubleshooting guide 561

Requirements troubleshooting guide

To use this section, identify symptoms that suggest that requirements activities aren’t going as well
as you’d like on your project. Then search the “Symptoms” columns in the tables for something that
resembles your observation. Alternatively, scan through the “Symptoms” columns for conditions
that describe your project or organization. Next, study the “Possible root causes” column for each
 symptom to see which factors might be contributing to the problem in your environment. Finally,
select practices and approaches from the “Possible solutions” column that you think would effectively
address those root causes, thereby—if all goes well—resolving the problem.

Process issues
The symptoms described in this section suggest that your requirements development and
 management processes are in need of a tune-up.

Symptoms Possible root causes Possible solutions

 ■ Requirements processes and
 document templates are
 inconsistent across projects.

 ■ Requirements processes aren’t
effective.

 ■ Document templates aren’t fully
fleshed out or used as intended.

 ■ Lack of common understanding of
the requirements process.

 ■ No mechanism for sharing process
experiences and materials.

 ■ Lack of good examples of
templates and requirements
 documents.

 ■ No requirements processes
defined.

 ■ BAs don’t understand how to use
all the sections in the templates
appropriately.

 ■ Use project retrospectives to learn
about current problems and their
impacts on projects.

 ■ Document the current
 requirements process and create
a proposed description of the
desired process.

 ■ Train all team members in
 requirements engineering.

 ■ Adopt one or more standard
templates for requirements
 deliverables. Provide guidance
to help project teams tailor the
templates as appropriate.

 ■ Collect and share good examples
of templates and actual
 requirements documents in a
shared repository.

 ■ Consider whether the templates
are too complex for all projects;
simplify them if you can.

 ■ People performing the BA role
don’t know how to do it well.

 ■ Lack of education about or
 experience with requirements
engineering and the BA role.

 ■ Management expects that any
user, developer, or other team
member can automatically be a
good BA, so people are assigned
to the role without training or
guidance.

 ■ Train prospective BAs in both
requirements engineering and
associated soft skills.

 ■ Write a job description and a skills
list for your BAs.

 ■ Set up a mentoring program for
new BAs.

 ■ Provide management with
 descriptions of the BA role as
found in many organizations.

 ■ Develop a professional BA career
path in the organization.

562 APPENDIX B Requirements troubleshooting guide

Symptoms Possible root causes Possible solutions

 ■ Requirements management tools
are underutilized.

 ■ Inadequate training in tool
 capabilities.

 ■ Processes and culture haven’t been
modified to take full advantage
of tools.

 ■ No one is responsible for leading
the use of the tool.

 ■ Amount of time needed to
 configure, learn how to use, and
employ the tool is underestimated.

 ■ Send some BAs to a tool vendor
training class.

 ■ Establish a tool advocate to
 administer the tool and mentor
other tool users.

 ■ Identify and address the process
and culture issues that impede full
exploitation of the tool.

Product issues
Certain problems with the products you build indicate that improved requirements practices might
be advisable.

Symptoms Possible root causes Possible solutions

 ■ Dissatisfied customers.
 ■ Customers reject the product.
 ■ Poor product reviews.
 ■ Low sales, loss of market share.
 ■ Excessive number of enhancement

requests received.

 ■ Inadequate user involvement in
requirements development.

 ■ Unrealistic customer expectations.
 ■ Mismatch between customer’s and

developer’s perception of specific
requirements.

 ■ Insufficient market research.
 ■ Poor problem definition.
 ■ Necessary changes are not

 incorporated during development.
 ■ Developers implemented what

they thought they should, not
what the requirements specified.

 ■ Define user classes.
 ■ Identify product champions.
 ■ Convene focus groups.
 ■ Use collaborative requirements

elicitation approaches.
 ■ Build prototypes and have users

evaluate them.
 ■ Have customer representatives

review requirements.
 ■ Use incremental and iterative

development methods to adapt to
customer needs.

 ■ Product doesn’t achieve business
objectives.

 ■ Lack of clear, accurate business
requirements, including business
objectives and success metrics.

 ■ Develop business requirements
with key stakeholders.

 ■ Understand which success metrics
are important to the project’s
business stakeholders.

 ■ Communicate business objectives
to other stakeholders to achieve
alignment.

Planning issues
The symptoms listed in this section suggest that the ways in which requirements and project planning
intertwine are not being handled optimally.

 APPENDIX B Requirements troubleshooting guide 563

Symptoms Possible root causes Possible solutions

 ■ Requirements are incomplete.
 ■ Requirements are insufficiently

detailed.
 ■ Construction begins before the

requirements for a development
iteration or enhancement cycle are
sufficiently understood.

 ■ Inadequate user involvement in
requirements development.

 ■ Insufficient time spent on
 requirements development.

 ■ Release date set before
 requirements are understood.

 ■ Key marketing or business
 stakeholders are not engaged in
the requirements process.

 ■ Management or customers
don’t understand the need for
 requirements.

 ■ BAs and developers don’t agree
on what constitutes adequate
requirements.

 ■ Requirements tracing is not used
to identify gaps.

 ■ Too many open requirements
issues.

 ■ Don’t commit to a delivery
schedule before requirements are
sufficiently understood.

 ■ On an agile project, expect to
cut scope or add iterations as
 precision in the requirements
develops.

 ■ Involve developers early in the
project to ensure that they
 understand requirements.

 ■ Define business requirements,
especially scope, carefully.

 ■ Educate stakeholders about the
risks of hasty construction.

 ■ Build a collaborative relationship
between BAs, developers, and
customers to set realistic goals.

 ■ Use incremental development
approaches to begin delivering
customer value quickly.

 ■ Have developers review
 requirements before they begin
implementing them.

 ■ Trace functional requirements to
business requirements and user
requirements to look for missing
requirements.

 ■ Manage and track requirements
issue status.

 ■ Schedule is cut after project starts
but scope is not reduced.

 ■ Stakeholders don’t understand
the impact of reduced time on
 achievable project scope.

 ■ Build a collaborative relationship
between project management and
customers to set realistic goals.

 ■ Negotiate trade-offs when project
constraints change.

 ■ Use better estimation techniques.

 ■ Some necessary and planned
 requirements work isn’t
 performed.

 ■ Multiple people perform the same
requirements activities.

 ■ Unclear roles and responsibilities
for requirements activities.

 ■ Requirements tasks are not
 incorporated into project plans.

 ■ No one has responsibility for
managing requirements.

 ■ Define roles and responsibilities
for requirements activities on each
project.

 ■ Commit the resources needed
for effective requirements
 development and management.

 ■ Build requirements activities and
deliverables into project plans and
schedules.

 ■ More requirements are planned
than can be implemented with
available time and resources.

 ■ Schedule is set before
 requirements are defined.

 ■ Project is committed to before
scope is accurately assessed.

 ■ Scope growth is uncontrolled.
 ■ The learning curve for unfamiliar

technologies or tools isn’t taken
into account.

 ■ Insufficient staff is allocated to
project.

 ■ Stakeholders are afraid they will
have only one release opportunity.

 ■ Document vision and scope,
aligned with business objectives,
before making commitments.

 ■ Derive development schedule
from requirements.

 ■ Plan for multiple delivery cycles
to accommodate lower-priority
requirements.

 ■ Incorporate training time and
learning curve time in schedule.

 ■ Prioritize requirements based on
business objectives.

 ■ Timebox the development
or deliver product features
 incrementally.

 ■ Adjust priorities dynamically as
project realities dictate.

564 APPENDIX B Requirements troubleshooting guide

Symptoms Possible root causes Possible solutions

 ■ Undocumented or poorly defined
scope.

 ■ Releases or iterations are poorly
planned.

 ■ Unclear business objectives.
 ■ Haste to begin construction.
 ■ Lack of understanding of the

 importance of scope definition.
 ■ Lack of agreement on scope

among stakeholders.
 ■ Volatile market or rapidly

 changing business needs.

 ■ Don’t begin a project without clear
business objectives.

 ■ Write a vision and scope
 document and obtain buy-in from
key stakeholders.

 ■ Postpone or cancel the project if
sponsorship and scope definition
are not achieved.

 ■ Use shorter development
 iterations to adapt to rapidly
changing requirements.

Communication issues
Many problems, including those in the following table, arise because of ineffective communication
among project stakeholders.

Symptoms Possible root causes Possible solutions

 ■ Duplication of effort as multiple
people implement the same
requirement.

 ■ Responsibilities for implementing
requirements are not clear.

 ■ Inadequate communication
among subgroups working on the
project.

 ■ Define clear roles and
 responsibilities for software
 implementation.

 ■ Provide visible status tracking of
individual requirements.

 ■ Introduce more effective
 communication techniques and
practices among team members.

 ■ Revisiting decisions made
 previously.

 ■ Lack of clear recognition and
empowerment of appropriate
decision makers.

 ■ Failure to record how and why
decisions are made.

 ■ Identify the project’s requirements
decision makers and define their
decision-making process.

 ■ Identify and empower product
champions.

 ■ Document why requirements
were added, rejected, deferred, or
canceled.

 ■ Requirements questions and issues
are not resolved.

 ■ Lack of coordination of questions
and issues that arise about
 requirements.

 ■ Responsibilities for resolving issues
are not clear.

 ■ No one is responsible for tracking
issues and their status.

 ■ Team is unable to obtain necessary
information from a vendor, client,
contractor, or other stakeholder.

 ■ Assign each open issue to an
individual for resolution.

 ■ Use an issue-tracking tool for
tracking requirements issues to
closure.

 ■ Monitor open issues as part of
project tracking.

 ■ Obtain commitment from all
stakeholders early on for open
and timely information exchange
and for answering questions and
resolving issues.

 ■ Project participants don’t share
the same vocabulary.

 ■ Assuming that everyone has
the same and the correct
 interpretation of key terms.

 ■ Define terms in a glossary.
 ■ Define data structures and

 elements in a data dictionary.
 ■ Train development team in the

business domain.
 ■ Train user representatives in

requirements engineering.

 APPENDIX B Requirements troubleshooting guide 565

Elicitation issues
Many symptoms suggest that those team members who are engaged in requirements elicitation are
not performing as well as they could be.

Symptoms Possible root causes Possible solutions

 ■ The team can’t get customer
representatives to participate in
elicitation.

 ■ Developers make many guesses
about what to implement.

 ■ Developers have to resolve
 requirements questions that arise.

 ■ Customer representatives don’t
have time to participate in
 requirements development.

 ■ Customers don’t understand the
need to participate.

 ■ Customers don’t know what BAs
need from them.

 ■ Customers aren’t committed to
the project.

 ■ Customers think that developers
should already know what the
customers need.

 ■ BAs don’t know who the
 customers are.

 ■ BAs don’t have access to actual
users.

 ■ Resistance to following a
 requirements development
process.

 ■ No BA is dedicated to the project.

 ■ Educate customers and managers
about requirements and the need
for their participation.

 ■ Describe the risks from insufficient
user involvement to customers
and managers.

 ■ Build a collaborative relationship
between development teams and
their customers.

 ■ Define user classes or market
segments.

 ■ Identify a product champion for
each user class.

 ■ Obtain development and customer
management commitment to an
effective requirements process.

 ■ Define clear roles and
 responsibilities.

 ■ Hold regular customer meetings
with defined agendas.

 ■ Wrong user representatives are
involved.

 ■ Managers, the marketing team,
or other surrogates do not speak
accurately for end users.

 ■ Managers don’t make qualified
actual users available to work
with BAs.

 ■ Define user classes.
 ■ Identify and empower appropriate

and effective product champions.
 ■ Develop user personas as

 stand-ins for real users.
 ■ Decline requirement requests from

unauthorized or inappropriate
sources.

 ■ Users are unsure about their
needs.

 ■ Users don’t understand or can’t
 describe their business process well.

 ■ System is being built to support
a new, incompletely defined
 business process.

 ■ Users aren’t committed to the
project, perhaps are threatened
by it.

 ■ Business objectives are not well
defined or communicated.

 ■ Clarify the intended outcomes
of a successful project for the
 stakeholders affected by it.

 ■ Identify product champions or
product owners.

 ■ Model the user’s business process.
 ■ Develop an elicitation plan to

define requirements sources and
select appropriate elicitation
techniques.

 ■ Compile a list of generic questions
as a starting point for elicitation
activities.

 ■ Develop use cases or user stories.
 ■ Build prototypes and have users

evaluate them.
 ■ Use incremental development to

clarify requirements a bit at a time.

 ■ Project manager or business
analyst doesn’t know who the
users are.

 ■ Ill-defined product vision.
 ■ Poorly understood marketplace

needs.

 ■ Create a product vision statement.
 ■ Perform sufficient market research.
 ■ Identify users of current or

 competing products.
 ■ Establish focus groups.
 ■ Create user personas.
 ■ Use an organization chart to look

for likely users.

566 APPENDIX B Requirements troubleshooting guide

Symptoms Possible root causes Possible solutions
 ■ Too many people are involved in

requirements elicitation.
 ■ Everyone wants to be represented

for political reasons.
 ■ User classes aren’t clearly defined.
 ■ Lack of delegation to specific user

representatives.
 ■ There really are a lot of different

user classes.

 ■ Define user classes.
 ■ Identify product champions or

product owners.
 ■ Identify requirements decision

makers.
 ■ Distinguish political priorities from

business and technical priorities.
 ■ Focus on the needs of favored user

classes.

 ■ Implemented “requirements” don’t
meet user needs.

 ■ Requirements are overconstrained.

 ■ Requirements contain unnecessary
or premature design constraints.

 ■ Solutions are presented as needs,
and requirements have to be
deduced from the presented
solutions.

 ■ New software must conform to
existing application standards and
user interface constraints.

 ■ Customers don’t know what
 information constitutes “the
requirements.”

 ■ Requirements discussions focus on
user interface design.

 ■ Ask “why” several times to
 understand the real user
needs behind the presented
 requirements and the rationale
behind design constraints.

 ■ Understand user requirements
before addressing user interface
specifics.

 ■ Develop skilled BAs who can ask
the right questions and elicit true
needs.

 ■ Educate customers about
 requirements development.

 ■ Document business rules and
constraints.

 ■ Needed requirements are missed. ■ Users don’t know what they need.
 ■ BA didn’t ask the right questions.
 ■ Insufficient time was provided for

elicitation.
 ■ Some user classes aren’t

 represented.
 ■ Appropriate, knowledgeable user

representatives did not participate
in elicitation.

 ■ Elicitation participants make
 incorrect assumptions.

 ■ Insufficient communication
 between developers and
 customers.

 ■ Users don’t express their implicit
and assumed requirements.

 ■ Develop skilled BAs who can ask
the right questions.

 ■ Elicit use cases or user stories.
 ■ Use multiple elicitation techniques.
 ■ Represent requirements in

multiple ways, emphasizing visual
models, to look for gaps.

 ■ Conduct requirements reviews.
Use multiple, incremental reviews.

 ■ Analyze requirements by using a
CRUD matrix.

 ■ Build prototypes and have users
evaluate them.

 ■ Build the product incrementally
and incorporate new requirements
in later iterations.

 ■ Create and use a requirements
traceability matrix to find missing
requirements.

 ■ Requirements specified are
 incorrect or inappropriate.

 ■ The wrong user representatives
or inappropriate surrogates are
involved.

 ■ User representatives speak for
themselves, not for those they
represent.

 ■ Managers do not provide access to
user representatives.

 ■ Business requirements are not
clearly established.

 ■ User and functional requirements
are not aligned with business
objectives.

 ■ Determine what was wrong with
the flawed requirements and why
they were specified.

 ■ Define user classes.
 ■ Identify appropriate product

champions, educate them, and
empower them.

 ■ Have a multifunctional team
review requirements.

 ■ Communicate the risks of
 inaccurate requirements to
 high-authority stakeholders.

 ■ Explain the importance of good
user representation to high-level
stakeholders.

 APPENDIX B Requirements troubleshooting guide 567

Analysis issues
The symptoms described in the following table indicate that more effective requirements analysis is
advisable.

Symptoms Possible root causes Possible solutions
 ■ Unnecessary requirements are

specified.
 ■ Unexpected functionality becomes

apparent during testing.
 ■ Functionality is specified and built,

but not used.

 ■ Ineffective requirement approval
process.

 ■ Developers incorporate
 functionality without input from
users.

 ■ Users request complex solutions
instead of expressing business
needs.

 ■ Elicitation focuses on system
 functions instead of user goals.

 ■ Developers and customers
 interpret requirements differently.

 ■ Requirements don’t trace back to
business objectives.

 ■ Record the origin and rationale for
each requirement.

 ■ Employ use cases to focus on the
users’ business objectives. Derive
functional requirements from the
use cases or user stories.

 ■ Prioritize requirements to deliver
high-value functionality early.

 ■ Have a multifunctional team
review requirements.

 ■ Testers aren’t able to write good
tests from requirements.

 ■ Requirements are ambiguous,
 incomplete, or lack sufficient
detail.

 ■ Have testers review requirements
early on for verifiability and other
quality issues.

 ■ All requirements seem to be
equally important.

 ■ All requirements have high
 priority.

 ■ BAs can’t make informed trade-off
decisions when new requirements
appear.

 ■ Fear that low-priority
 requirements will never be
 implemented.

 ■ Insufficient or evolving knowledge
about the business and its needs.

 ■ Information on the value and cost
of requirements is not known,
communicated, or discussed.

 ■ The product isn’t usable unless a
large, critical set of functionality is
implemented.

 ■ Unreasonable customer or
 developer expectations.

 ■ Only customers provide input
regarding priorities.

 ■ Develop a collaborative process
for prioritizing requirements to
balance customer value against
implementation cost and technical
risk.

 ■ Prioritize requirements early.
 ■ Develop detailed specifications of

high-priority requirements.
 ■ Use incremental development

or staged releases to deliver
 maximum value as early as
 possible.

 ■ Dynamically adjust the priorities
of requirements remaining in the
backlog.

 ■ Changing requirements priorities. ■ Decision makers are not identified
or empowered.

 ■ Internal political pressure.
 ■ Unclear business objectives, or

lack of agreement on business
objectives.

 ■ External forces, such as regulatory
or legislative issues.

 ■ Requirements and their priorities
are not agreed to by the
 appropriate people.

 ■ Document the project’s business
objectives, scope, and priorities.

 ■ Align requirements priorities to
business objectives.

 ■ Identify and empower
 requirements decision makers.

 ■ Track the impact of changes
in terms of cost, revenue, and
 schedule slippage.

 ■ Use incremental development and
dynamically adjust the priorities
of requirements remaining in the
backlog.

568 APPENDIX B Requirements troubleshooting guide

Symptoms Possible root causes Possible solutions
 ■ Conflicting requirements priorities

among stakeholders.
 ■ Different user classes have

 conflicting needs.
 ■ Lack of focus on the original

 product vision, or the vision
evolves during the project.

 ■ Unclear business objectives, or
lack of agreement on business
objectives.

 ■ Changing business objectives.
 ■ It’s not clear who the requirements

decision makers are.

 ■ Perform sufficient market research.
 ■ Establish and communicate

 business objectives.
 ■ Base priorities on vision, scope,

and business objectives.
 ■ Identify favored user classes or

market segments.
 ■ Identify product champions to

represent different user classes.
 ■ Identify and empower

 requirements decision makers.

 ■ Rapid descoping late in the
project.

 ■ Unrealistic optimism about
 developer productivity.

 ■ Insufficient early and ongoing
prioritization.

 ■ Not relying on priorities to define
implementation sequence and to
make controlled scope changes.

 ■ Define priorities early on.
 ■ Use priorities to guide decisions

about what to work on now and
what to defer.

 ■ Reprioritize when new
 requirements are incorporated.

 ■ Adjust scope periodically, not just
late in the project.

 ■ Use incremental development or
staged releases to stay focused on
delivering customer value.

 ■ Developers find requirements
vague and ambiguous.

 ■ Developers have to track down
missing information.

 ■ Developers misunderstand
requirements and have to rework
their implementations.

 ■ BAs and customers don’t
 understand the level of
 requirements detail developers
need.

 ■ Customers don’t know what they
need or can’t articulate it clearly.

 ■ Insufficient time is spent on
 elicitation.

 ■ Business rules aren’t identified,
communicated, or understood.

 ■ Requirements contain vague and
ambiguous words.

 ■ Stakeholders interpret terms,
concepts, and data definitions
differently.

 ■ Customers assume that developers
already know enough about the
business domain and their needs.

 ■ Train BAs in writing good
 requirements.

 ■ Avoid using subjective,
 ambiguous words in requirements
 specifications.

 ■ Have developers and customers
review requirements early for
 clarity and appropriate detail.

 ■ Model requirements to find
missing information and enhance
details.

 ■ Build prototypes and have users
evaluate them.

 ■ Refine requirements in progressive
levels of detail.

 ■ Document business rules.
 ■ Define terms in a glossary.
 ■ Define data items in a data

 dictionary.
 ■ Facilitate effective communication

among all project participants.

 ■ Some requirements aren’t
 technically feasible.

 ■ Requirements are not analyzed
sufficiently.

 ■ Customers don’t accept feasibility
analysis results.

 ■ Lack of understanding of the
 limitations of tools, technologies,
and the operating environment.

 ■ Perform feasibility analysis.
 ■ Create proof-of-concept

 prototypes.
 ■ Have a developer participate in

elicitation.
 ■ Have developers review

 requirements for feasibility.
 ■ Conduct a separate research or

exploratory mini-project or pilot
to assess feasibility.

 APPENDIX B Requirements troubleshooting guide 569

Symptoms Possible root causes Possible solutions
 ■ Requirements from different

sources or user classes conflict.
 ■ Difficulty in reaching agreement

on requirements among
 stakeholders.

 ■ Lack of shared product vision.
 ■ Requirements decision makers are

not identified.
 ■ Business processes are not

 understood in the same way by
different stakeholders.

 ■ Politics drive requirements input.
 ■ Diverse users or market segments

have differing needs, expectations,
and objectives.

 ■ Product isn’t sufficiently focused
on a specific target market.

 ■ Some user groups already have a
useful system in place that they’re
attached to.

 ■ Develop, approve, and
 communicate a unified set of
 business requirements.

 ■ Understand target market
 segments and user classes.

 ■ Identify favored user classes to
resolve conflicts.

 ■ Identify product champions to
resolve conflicts within each user
class.

 ■ Identify and empower
 requirements decision makers.

 ■ Focus on shared business interests
instead of emotional and political
positions.

 ■ Requirements contain TBDs,
 information gaps, and open issues.

 ■ No one is assigned to resolve
TBDs or open issues before
 requirements are baselined.

 ■ No time is available to resolve
TBDs or open issues before
 beginning implementation.

 ■ Review requirements to identify
information gaps.

 ■ Assign responsibility for resolving
each TBD or open issue to an
individual.

 ■ Prioritize TBDs to be resolved if
time is tight.

 ■ Track each TBD or open issue to
closure before baselining a set of
requirements.

 ■ BAs spend too much time on
requirements analysis.

 ■ Reluctance to proceed until
the requirements are “perfect”
 (analysis paralysis).

 ■ An intent to develop a complete
specification rather than one that
is good enough.

 ■ Inappropriate selection of analysis
techniques for the project.

 ■ Focus analysis and modeling on
the complex, novel, or uncertain
portions of the requirements.

 ■ Use peer reviews to judge when
requirements are good enough
for development to proceed at
acceptable risk.

Specification issues
The symptoms in the following table indicate shortcomings in the way that requirements are being
specified for the project.

Symptoms Possible root causes Possible solutions

 ■ Requirements are not
 documented.

 ■ Developers create the
 requirements.

 ■ Customers provide requirements
details to developers verbally.

 ■ Developers do a lot of exploratory
programming as they try to figure
out what customers want.

 ■ No one is sure what to build.
 ■ Insufficient time is provided to

elicit and document requirements.
 ■ There’s a perception that writing

requirements slows down the
project.

 ■ Individuals responsible for
 specification aren’t clearly
 identified and committed.

 ■ No defined requirements
 development process or templates
in place.

 ■ Development management
doesn’t value and expect
 requirements specifications.

 ■ Developers think they know what
customers need.

 ■ Point out risks of inadequately
specified requirements.

 ■ Define and follow a requirements
development process.

 ■ Establish team role definitions,
and obtain commitment from
 individuals to perform their roles.

 ■ Train other team members and
customers in the requirements
process.

 ■ Build requirements effort,
resources, tasks, and deliverables
into project plans and schedules.

 ■ Have standard templates and
good examples of requirements
specifications available to share.

570 APPENDIX B Requirements troubleshooting guide

Symptoms Possible root causes Possible solutions
 ■ Stakeholders assume that

 functionality in the existing system
will be replicated in a new system.

 ■ Requirements for a new system are
specified as deltas from a poorly
documented existing system.

 ■ Business objectives aren’t clear.

 ■ Reverse engineer the existing
system to understand its full
capabilities.

 ■ Write a requirements specification
that includes all the desired
 functionality for the new system.

 ■ Build as-is and to-be process
 models so that stakeholders are
clear on what the future system
will and won’t do.

 ■ Don’t replicate old functionality
that might not be needed.

 ■ Requirements documentation
doesn’t accurately describe the
system.

 ■ Changes made during
 development are not incorporated
into requirements documentation.

 ■ Follow a change control
 process that includes updating
 requirements when changes are
accepted.

 ■ Pass all change requests through
the change control board.

 ■ Have key stakeholders review
modified requirements.

 ■ Different, conflicting versions of
the requirements exist.

 ■ Poor version control practices.
 ■ Multiple “master” copies of

 requirements documents.
 ■ Requirements are maintained

 separately in a tool and in
 documents; people aren’t sure
which is the definitive source.

 ■ Define and follow good version
control practices for requirements
documents.

 ■ Store requirements in a
 requirements management tool.

 ■ Assign a requirements manager to
be responsible for making changes
to requirements.

Validation issues
It’s difficult to know for sure if the requirements you’ve developed will in fact achieve the intended
business objectives. The symptoms in this section are indicative of requirements validation
 shortcomings.

Symptoms Possible root causes Possible solutions
 ■ Product doesn’t achieve

 business objectives or meet user
 expectations.

 ■ Customers have unstated,
 assumed, or implicit requirements
that weren’t satisfied.

 ■ Customers didn’t accurately
 present their needs.

 ■ Market or business needs changed
and mechanisms were not in place
to revise requirements accordingly.

 ■ The BA didn’t ask the right
 questions.

 ■ Inadequate customer participation
in requirements development.

 ■ Wrong customer representatives
involved, such as surrogates who
don’t represent the real users’ real
needs.

 ■ Market needs were not accurately
assessed, especially for innovative
products with uncertain
 requirements.

 ■ Project participants made
 incorrect assumptions.

 ■ Perform market research to
understand market segments and
their needs.

 ■ Engage product champions
 representing each user class
throughout the duration of the
project.

 ■ Train BAs in how to elicit
 requirements.

 ■ Develop use cases to make sure
business tasks are understood.

 ■ Have customers participate in
requirements reviews.

 ■ Build prototypes and have users
evaluate them.

 ■ Have users write acceptance tests
and acceptance criteria.

 ■ Establish effective change
 mechanisms to allow requirements
to adapt to business realities.

 APPENDIX B Requirements troubleshooting guide 571

Symptoms Possible root causes Possible solutions
 ■ Product does not achieve

 performance goals or satisfy other
quality expectations that users
have.

 ■ Quality attribute requirements
were not elicited and specified.

 ■ Stakeholders don’t understand
nonfunctional requirements and
their importance.

 ■ The requirements template or tool
being used doesn’t have sections
for nonfunctional requirements.

 ■ Users don’t state their assumptions
about the system’s quality
 characteristics.

 ■ Quality attributes weren’t
 specified precisely enough to
give all stakeholders the same
 understanding.

 ■ Educate BAs and customers about
nonfunctional requirements and
how to specify them.

 ■ Have BAs explore nonfunctional
requirements during elicitation.

 ■ Use an SRS template that includes
sections for nonfunctional
 requirements.

 ■ Use Planguage to specify quality
attributes precisely.

Requirements management issues
One sign that requirements are not being managed well is that not all of the intended requirements
are implemented.

Symptoms Possible root causes Possible solutions

 ■ Some planned requirements were
not implemented.

 ■ SRS was not well organized or well
written.

 ■ Individual requirements were not
discretely identified and labeled.

 ■ Developers didn’t follow the SRS.
 ■ SRS was not communicated to

everyone.
 ■ Changes were not communicated

to all those affected.
 ■ Requirements were

 inadvertently overlooked during
 implementation.

 ■ Responsibilities for implementing
requirements were not assigned.

 ■ The status of individual
 requirements was not tracked
accurately.

 ■ Keep requirements current and
make them available to the whole
team.

 ■ Make sure the change control
process includes communication
to stakeholders.

 ■ Store requirements in a
 requirements management tool.

 ■ Track the status of individual
requirements.

 ■ Create and use a requirements
traceability matrix.

 ■ Define clear responsibilities for
software construction.

 ■ Train BAs in writing clear, concise
requirements.

572 APPENDIX B Requirements troubleshooting guide

Change management issues
There are many indicators that a software project is not handling change requests well, several of
which are itemized in the following table.

Symptoms Possible root causes Possible solutions
 ■ Requirements change frequently.
 ■ Many requirements changes are

made late in the development
cycle.

 ■ Changes cause missed delivery
targets.

 ■ Customers aren’t sure what they
need.

 ■ Changing business processes or
market demands.

 ■ Not all the right people were
involved in eliciting and approving
the requirements.

 ■ Requirements weren’t adequately
defined initially.

 ■ Requirements baseline wasn’t
defined or agreed to.

 ■ External sources, such as the
 government or political issues,
dictate changes.

 ■ The initial requirements contained
many solution ideas, which did not
satisfy the real needs.

 ■ Market needs weren’t well
 understood.

 ■ Improve requirements elicitation
practices.

 ■ Implement and follow a change
control process.

 ■ Establish a change control board
to make decisions on proposed
changes.

 ■ Perform impact analysis before
accepting changes.

 ■ Have stakeholders review
 requirements before baselining
them.

 ■ Design software for high
 modifiability to accommodate
change.

 ■ Include contingency buffers in the
project schedule to accommodate
some change.

 ■ Use incremental development
approaches to respond quickly to
changing requirements.

 ■ Protect the schedule and
 negotiate to deliver reduced
scope, planning a follow-on
release.

 ■ New requirements are added
frequently.

 ■ Increased scope causes missed
delivery targets.

 ■ Requirements elicitation was
incomplete.

 ■ Insufficient customer participation
in requirements development.

 ■ Business needs or environment are
changing rapidly.

 ■ Business domain is not well
 understood.

 ■ Stakeholders don’t understand or
respect project scope.

 ■ Management, marketing, or
customers demand new features
without considering their impact
on the project.

 ■ Improve requirements elicitation
practices.

 ■ Define and communicate scope.
 ■ Have the right people make

 explicit business decisions to
change scope.

 ■ Perform root cause analysis to see
where new requirements come
from and why.

 ■ Perform change impact
analysis before accepting new
 requirements.

 ■ Ensure that all user classes have
provided input.

 ■ Include contingency buffers in the
project schedule to accommodate
some growth.

 ■ Use incremental development
approaches to respond quickly to
new requirements.

 APPENDIX B Requirements troubleshooting guide 573

Symptoms Possible root causes Possible solutions
 ■ Requirements move in and out of

scope.
 ■ Vision and scope are not clearly

defined.
 ■ Business objectives are not clearly

understood and communicated.
 ■ Scope is volatile, perhaps in

response to changing market
demands.

 ■ Requirements priorities are poorly
defined.

 ■ Decision makers don’t agree on
project scope.

 ■ Clearly define the business
 objectives, vision, and scope.

 ■ Use the scope statement to decide
whether proposed requirements
are in or out of scope.

 ■ Record the rationale for rejecting a
proposed requirement.

 ■ Ensure that the change control
board has the appropriate
 members and a shared
 understanding of project scope.

 ■ Use incremental development to
adapt flexibly to a changing scope
boundary.

 ■ Focus on implementing the stable
requirements.

 ■ Scope definition changes after
development is underway.

 ■ Poorly defined, poorly
 understood, or changing business
objectives.

 ■ Market segments and market
needs aren’t well understood.

 ■ Competing products become
available.

 ■ Key stakeholders did not review
and approve requirements.

 ■ Changes in key stakeholders
 partway through the project.

 ■ Define business objectives and
align vision and scope with them.

 ■ Identify decision-making
 stakeholders at the business
 requirements level.

 ■ Have decision makers review the
vision and scope document.

 ■ Follow a change control process to
incorporate changes.

 ■ Renegotiate schedules, resources,
and commitments when project
direction changes.

 ■ People don’t know the scope or
understand scope changes.

 ■ Requirements changes aren’t
communicated to all affected
stakeholders.

 ■ Requirements specifications aren’t
updated when requirements
change.

 ■ Customers request changes
directly from developers.

 ■ Not everyone has ready access to
the requirements documentation.

 ■ Informal communication pathways
exclude some project participants.

 ■ It’s not clear who needs to be
informed of changes.

 ■ No established change control
process.

 ■ Lack of understanding of
 interrelationships between
 requirements.

 ■ Define an owner for each
 requirement.

 ■ Define trace links between
 requirements and other artifacts.

 ■ Include all affected areas in
 requirements communications.

 ■ Establish a change control process
that includes the communication
mechanisms.

 ■ Handle all requirements changes
through the change control
process.

 ■ Use a requirements management
tool to make current requirements
available to stakeholders.

 ■ Improve collaboration and
 communication among
 project participants and other
 stakeholders.

 ■ Proposed requirements changes
are lost.

 ■ The status of each change request
isn’t known.

 ■ Ineffective or undefined change
control process.

 ■ Change control process isn’t
 followed.

 ■ Adopt a practical, effective change
control process and educate
 stakeholders about it.

 ■ Assign responsibilities for
performing the change control
process steps.

 ■ Ensure that the change control
process is followed.

 ■ Use requirements management
tools to track changes and track
each requirement’s status.

574 APPENDIX B Requirements troubleshooting guide

Symptoms Possible root causes Possible solutions
 ■ Stakeholders bypass the change

control process.
 ■ Customers request changes

directly from developers.

 ■ Change control process isn’t
 practical and effective.

 ■ Change control board is
 ineffective.

 ■ Stakeholders don’t understand or
accept the change control process.

 ■ Management doesn’t require that
the change control process be
followed.

 ■ Ensure that the change control
process is pragmatic, effective,
efficient, and accessible to all
stakeholders.

 ■ Make the change control process
flexible in how it handles small
versus large changes.

 ■ Establish and charter an
 appropriate change control board.

 ■ Enlist management to commit to
and champion the change control
process.

 ■ Enforce a policy that requirements
changes are made only through
the change control process.

 ■ Requirements changes take much
more effort than planned.

 ■ Changes affect more system
 components than expected.

 ■ Changes conflict with other
requirements.

 ■ Changes degrade system quality.

 ■ Insufficient impact analysis of
 proposed requirements changes.

 ■ Developers underestimate the
impact of requirements changes.

 ■ The wrong people make decisions
to accept changes.

 ■ Team members are afraid to
be honest about the impact of
 proposed changes.

 ■ Change requests do not provide
enough information to permit
good impact analysis.

 ■ Adopt a change impact analysis
procedure and checklist.

 ■ Incorporate impact analysis into
the change control process.

 ■ Use requirements trace
 information to evaluate the impact
of proposed changes.

 ■ Communicate changes to all
 affected stakeholders.

 ■ Renegotiate project commitments
as needed and make necessary
trade-offs when changes are
proposed.

 575

A P P E N D I X C

Sample requirements documents

This appendix illustrates some of the requirements documents and diagrams described in this book,
using a hypothetical project called the Cafeteria Ordering System (COS). This appendix includes:

 ■ A vision and scope document.

 ■ A list of use cases and several use case specifications, showing different degrees of detail.

 ■ A portion of a software requirements specification.

 ■ Several partial analysis models, including a feature tree, context diagram, entity-relationship
diagram, and state-transition diagram.

 ■ A partial data dictionary.

 ■ Several business rules.

Because this is just an example, these deliverables aren’t intended to be complete. Instead, they
are meant to illustrate how the various types of requirements information relate to each other and
how you might write the contents of each document section. The information in these examples
could be organized and grouped in many other reasonable ways, including combining it into a single
 document on a small project or storing it in a requirements management tool. Clarity, completeness,
and usability of the requirements information are the essential objectives. The examples conform to
the templates described in previous chapters. Because this is a small project, some template sections
have been combined. Every project should consider how to adapt the organization’s standard
 templates to best suit the size and nature of the project.

576 APPENDIX C Sample requirements documents

Vision and Scope Document

1. Business Requirements

1.1 Background
Employees at the company Process Impact presently spend an average of 65 minutes per day going
to the cafeteria to select, purchase, and eat lunch. About 20 minutes of this time is spent walking to
and from the cafeteria, selecting their meals, and paying by cash or credit card. When employees go
out for lunch, they spend an average of 90 minutes off-site. Some employees phone the cafeteria in
advance to order a meal to be ready for them to pick up. Employees don’t always get the selections
they want because the cafeteria runs out of certain items. The cafeteria wastes a significant quantity
of food that is not purchased and must be thrown away. These same issues apply to breakfast and
supper, although far fewer employees use the cafeteria for those meals than for lunch.

1.2 Business Opportunity
Many employees have requested a system that would permit a cafeteria user to order meals (defined
as a set of one or more food items selected from the cafeteria menu) online, to be picked up at the
cafeteria or delivered to a company location at a specified time and date. Such a system would save
employees time, and it would increase their chance of getting the items they prefer. Knowing what
food items customers want in advance would reduce waste in the cafeteria and would improve the
efficiency of cafeteria staff. The future ability for employees to order meals for delivery from local
restaurants would make a wide range of choices available to employees and provide the possibility of
cost savings through volume discount agreements with the restaurants.

1.3 Business Objectives
BO-1: Reduce the cost of cafeteria food wastage by 40% within 6 months following initial release.
[This example shows the use of Planguage to precisely state a business objective.]

Scale: Cost of food thrown away each week by cafeteria staff

Meter: Examination of Cafeteria Inventory System logs

Past: 33% (2013, initial study)

Goal: Less than 20%

Stretch: Less than 15%

BO-2: Reduce cafeteria operating costs by 15% within 12 months following initial release.

BO-3: Increase average effective work time by 15 minutes per cafeteria-using employee per day
within 6 months following initial release.

 APPENDIX C Sample requirements documents 577

1.4 Success Metrics
SM-1: 75% of employees who used the cafeteria at least 3 times per week during Q3 2013 use the
COS at least once a week within 6 months following initial release.

SM-2: The average rating on the quarterly cafeteria satisfaction survey increases by 0.5 on a scale of
1 to 6 from the Q3 2013 rating within 3 months following initial release and by 1.0 within 12 months.

1.5 Vision Statement
For employees who want to order meals from the company cafeteria or from local restaurants online,
the Cafeteria Ordering System is an Internet-based and smartphone-enabled application that will
 accept individual or group meal orders, process payments, and trigger delivery of the prepared meals
to a designated location on the Process Impact campus. Unlike the current telephone and manual
ordering processes, employees who use the Cafeteria Ordering System will not have to go to the
cafeteria to get their meals, which will save them time and will increase the food choices available to
them.

1.6 Business Risks
RI-1: The Cafeteria Employees Union might require that their contract be renegotiated to reflect the
new employee roles and cafeteria hours of operation. (Probability = 0.6; Impact = 3)

RI-2: Too few employees might use the system, reducing the return on investment from the system
development and the changes in cafeteria operating procedures. (Probability = 0.3; Impact = 9)

RI-3: Local restaurants might not agree to offer delivery, which would reduce employee satisfaction
with the system and possibly their usage of it. (Probability = 0.3; Impact = 3)

RI-4: Sufficient delivery capacity might not be available, which means that employees might not
always receive their meals on time and could not always request delivery for the desired times.
 (Probability = 0.5; Impact = 6)

1.7 Business Assumptions and Dependencies
AS-1: Systems with appropriate user interfaces will be available for cafeteria employees to process the
expected volume of meals ordered.

AS-2: Cafeteria staff and vehicles will be available to deliver all meals for specified delivery time slots
within 15 minutes of the requested delivery time.

DE-1: If a restaurant has its own online ordering system, the Cafeteria Ordering System must be able
to communicate with it bidirectionally.

578 APPENDIX C Sample requirements documents

2. Scope and Limitations

2.1 Major Features
FE-1: Order and pay for meals from the cafeteria menu to be picked up or delivered.

FE-2: Order and pay for meals from local restaurants to be delivered.

FE-3: Create, view, modify, and cancel meal subscriptions for standing or recurring meal orders, or for
daily special meals.

FE-4: Create, view, modify, delete, and archive cafeteria menus.

FE-5: View ingredient lists and nutritional information for cafeteria menu items.

FE-6: Provide system access through corporate intranet, smartphone, tablet, and outside Internet
 access by authorized employees.

FIGURE C-1 Partial feature tree for the Cafeteria Ordering System.

 APPENDIX C Sample requirements documents 579

2.2 Scope of Initial and Subsequent Releases
Feature Release 1 Release 2 Release 3

FE-1, Order from cafeteria Standard meals from lunch
menu only; meal orders for
delivery can be paid for by
payroll deduction only

Accept credit and debit
card payments

Accept meal orders for
breakfasts and suppers

FE-2, Order from
 restaurants

Not implemented Delivery to campus
 locations only

Fully implemented

FE-3, Meal subscriptions Not implemented Implemented if time
 permits

Fully implemented

FE-4, Menus Create and view menus Modify, delete, and archive
menus

FE-5, Ingredient lists Not implemented Fully implemented

FE-6, System access Intranet and outside
Internet access

iOS and Android phone
and tablet apps

Windows Phone and tablet
apps

2.3 Limitations and Exclusions
LI-1: Some food items that are available from the cafeteria will not be suitable for delivery, so the
delivery menus available to patrons of the COS must be a subset of the full cafeteria menus.

LI-2: The COS shall be used only for the cafeteria at the Process Impact campus in Clackamas, Oregon.

3. Business Context

3.1 Stakeholder Profiles
Stakeholder Major value Attitudes Major interests Constraints

Corporate
Management

Improved employee
productivity; cost
savings for cafeteria

Strong commitment
through release 2;
support for release 3
contingent on earlier
results

Cost and employee
time savings must
exceed development
and usage costs

None identified

Cafeteria Staff More efficient use of
staff time throughout
the day; higher
 customer satisfaction

Concern about union
relationships and
possible downsizing;
otherwise receptive

Job preservation Training for staff
in Internet usage
 needed; delivery staff
and vehicles needed

Patrons Better food selection;
time savings;
 convenience

Strong enthusiasm,
but might not use it
as much as expected
because of social
value of eating
lunches in cafeteria
and restaurants

Simplicity of use;
reliability of delivery;
availability of food
choices

Corporate intranet
access, Internet
 access, or a mobile
device is needed

Payroll Department No benefit;
needs to set up
 payroll deduction
 registration scheme

Not happy about
the software
work needed, but
 recognizes the value
to the company and
employees

Minimal changes
in current payroll
 applications

No resources yet
committed to make
software changes

580 APPENDIX C Sample requirements documents

Stakeholder Major value Attitudes Major interests Constraints

Restaurant Managers Increased sales;
marketing exposure
to generate new
 customers

Receptive but
 cautious

Minimal new
 technology needed;
concern about
 resources and costs
of delivering meals

Might not have
capacity to handle
order levels; might
not all have menus
online

3.2 Project Priorities
Dimension Constraint Driver Degree of freedom

Features All features scheduled for
release 1.0 must be fully
 operational

Quality 95% of user acceptance tests
must pass; all security tests
must pass

Schedule Release 1 planned to be
 available by end of Q1 of
next year, release 2 by end of
Q2; overrun of up to 2 weeks
 acceptable without sponsor
review

Cost Budget overrun up to 15%
acceptable without sponsor
review

Staff Team size is half-time project
manager, half-time BA, 3
 developers, and 1 tester;
 additional developer and
 half-time tester available if
necessary

3.3 Deployment Considerations
The web server software will need to be upgraded to the latest version. Apps will have to be
 developed for iOS and Android smartphones and tablets as part of the second release, with
 corresponding apps for Windows Phone and tablets to follow for the third release. Any corresponding
infrastructure changes must be in place at the time of the second release. Videos no more than five
minutes in length shall be developed to train users in both the Internet-based and app-based versions
of COS.

 APPENDIX C Sample requirements documents 581

Use Cases

The various user classes identified the following primary actors and use cases for the COS:

Primary actor Use cases

Patron 1. Order a Meal
2. Change Meal Order
3. Cancel Meal Order
4. View Menu
5. Register for Payroll Deduction
6. Unregister for Payroll Deduction
7. Manage Meal Subscription

Menu Manager 8. Create a Menu
9. Modify a Menu
10. Delete a Menu
11. Archive Menus
12. Define a Meal Special

Cafeteria Staff 13. Prepare Meal
14. Generate a Payment Request
15. Request Meal Delivery
16. Generate System Usage Reports

Meal Deliverer 17. Record Meal Delivery
18. Print Delivery Instructions

ID and Name: UC-1: Order a Meal

Created By: Prithvi Raj Date Created: October 4, 2013

Primary Actor: Patron Secondary Actors: Cafeteria Inventory System

Description: A Patron accesses the Cafeteria Ordering System from either the corporate intranet or
 external Internet, views the menu for a specific date, selects food items, and places an
 order for a meal to be picked up in the cafeteria or delivered to a specified location within a
 specified 15-minute time window.

Trigger: A Patron indicates that he wants to order a meal.

Preconditions: PRE-1. Patron is logged into COS.
PRE-2. Patron is registered for meal payments by payroll deduction.

Postconditions: POST-1. Meal order is stored in COS with a status of “Accepted.”
POST-2. Inventory of available food items is updated to reflect items in this order.
POST-3. Remaining delivery capacity for the requested time window is updated.

Normal Flow: 1.0 Order a Single Meal
1. Patron asks to view menu for a specific date. (see 1.0.E1, 1.0.E2)
2. COS displays menu of available food items and the daily special.
3. Patron selects one or more food items from menu. (see 1.1)
4. Patron indicates that meal order is complete. (see 1.2)
5. COS displays ordered menu items, individual prices, and total price, including taxes and
 delivery charge.
6. Patron either confirms meal order (continue normal flow) or requests to modify meal order
 (return to step 2).
7. COS displays available delivery times for the delivery date.
8. Patron selects a delivery time and specifies the delivery location.
9. Patron specifies payment method.
10. COS confirms acceptance of the order.
11. COS sends Patron an email message confirming order details, price, and delivery
 instructions.
12. COS stores order, sends food item information to Cafeteria Inventory System, and updates
 available delivery times.

582 APPENDIX C Sample requirements documents

Alternative Flows: 1.1 Order multiple identical meals
1. Patron requests a specified number of identical meals. (see 1.1.E1)
2. Return to step 4 of normal flow.
1.2 Order multiple meals
1. Patron asks to order another meal.
2. Return to step 1 of normal flow.

Exceptions: 1.0.E1 Requested date is today and current time is after today’s order cutoff time
1. COS informs Patron that it’s too late to place an order for today.
2a. If Patron cancels the meal ordering process, then COS terminates use case.
2b. Else if Patron requests another date, then COS restarts use case.
1.0.E2 No delivery times left
1. COS informs Patron that no delivery times are available for the meal date.
2a. If Patron cancels the meal ordering process, then COS terminates use case.
2b. Else if Patron requests to pick the order up at the cafeteria, then continue with normal
 flow, but skip steps 7 and 8.
1.1.E1 Insufficient inventory to fulfill multiple meal order
1. COS informs Patron of the maximum number of identical meals he can order, based on
 current available inventory.
2a. If Patron modifies number of meals ordered, then return to step 4 of normal flow.
2b. Else if Patron cancels the meal ordering process, then COS terminates use case.

Priority: High

Frequency of Use: Approximately 300 users, average of one usage per day. Peak usage load for this use case is
between 9:00 A.M. and 10:00 A.M. local time.

Business Rules: BR-1, BR-2, BR-3, BR-4, BR-11, BR-12, BR-33

Other Information: 1. Patron shall be able to cancel the meal ordering process at any time prior to confirming it.
2. Patron shall be able to view all meals he ordered within the previous six months and repeat
 one of those meals as the new order, provided that all food items are available on the
 menu for the requested delivery date. (Priority = medium) [Note: You could also show this
 as an alternative flow for the use case.]
3. The default date is the current date if the Patron is using the system before today’s order
 cutoff time. Otherwise, the default date is the next day that the cafeteria is open.

Assumptions: Assume that 15 percent of Patrons will order the daily special (Source: previous 6 months of
cafeteria data).

 APPENDIX C Sample requirements documents 583

[Note: the following use case is written in less detail than UC-1, to illustrate that it isn’t always necessary
to fully specify every detail of the use case, provided developers have the necessary information
 available from some other source.]

ID and Name: UC-5 Register for Payroll Deduction

Created By: Nancy Anderson Date Created: September 15, 2013

Primary Actor: Patron Secondary Actors: Payroll System

Description: Cafeteria patrons who use the COS and have meals delivered must be registered for payroll
 deduction. For noncash purchases made through the COS, the cafeteria will issue a payment
 request to the Payroll System, which will deduct the meal costs from the next scheduled
 employee payday direct deposit.

Trigger: Patron requests to register for payroll deduction, or Patron says yes when COS asks if he wants
to register.

Preconditions: PRE-1. Patron is logged into COS.

Postconditions: POST-1. Patron is registered for payroll deduction.

Normal Flow: 5.0 Register for Payroll Deduction
1. COS asks Payroll System if Patron is eligible to register for payroll deduction.
2. Payroll System confirms that Patron is eligible to register for payroll deduction.
3. COS asks Patron to confirm his desire to register for payroll deduction.
4. If so, COS asks Payroll System to establish payroll deduction for Patron.
5. Payroll System confirms that payroll deduction is established.
6. COS informs Patron that payroll deduction is established.

Alternative Flows: None

Exceptions: 5.0.E1 Patron is not eligible for payroll deduction.
5.0.E2 Patron is already enrolled for payroll deduction.

Priority: High

Business Rules: BR-86 and BR-88 govern an employee’s eligibility to enroll for payroll deduction.

Other Information: Expect high frequency of executing this use case within first 2 weeks after system is released.

[Note: the following use case is written in a very brief form, to illustrate that it is not always necessary
to fully complete the use case template, provided developers have the necessary information available
from some other source. It’s a good idea to plan out which use cases require detailing and which do
not.]

ID and Name: UC-9 Modify a Menu

Created By: Mark Hassall Date Created: October 7, 2013

Description: The cafeteria Menu Manager may retrieve the menu for a specific date in the future, modify
it to add new food items, remove or change food items, create or change a meal special, or
change prices, and save the modified menu.

Exceptions: No menu exists for the specified date; show an error message and let the Menu Manager
 enter a new date.

Priority: High

Business Rules: BR-24

Other Information: Certain food items will not be deliverable, so the menu presented to the Patrons of the COS
for delivery will not always exactly match the menu available for pickup in the cafeteria. The
Menu Manager can set which items are not deliverable.

584 APPENDIX C Sample requirements documents

Software Requirements Specification

1. Introduction

1.1 Purpose
This SRS describes the functional and nonfunctional requirements for software release 1.0 of the
 Cafeteria Ordering System (COS). This document is intended to be used by the members of the
project team who will implement and verify the correct functioning of the system. Unless otherwise
noted, all requirements specified here are committed for release 1.0.

1.2 Document Conventions
No special typographical conventions are used in this SRS.

1.3 Project Scope
The COS will permit Process Impact employees to order meals from the company cafeteria online
to be delivered to specified campus locations. A detailed description is available in the Cafeteria
Ordering System Vision and Scope Document [1], along with the features that are scheduled for full or
partial implementation in this release.

1.4 References
1. Wiegers, Karl. Cafeteria Ordering System Vision and Scope Document, www.processimpact.com/

projects/COS/COS Vision and Scope.docx

2. Beatty, Joy. Process Impact Intranet Development Standard, Version 1.3, www.processimpact.com/
corporate/standards/PI Intranet Development Standard.pdf

3. Rath, Andrew. Process Impact Internet Application User Interface Standard, Version 2.0,
www.processimpact.com/corporate/standards/PI Internet UI Standard.pdf

2. Overall Description

2.1 Product Perspective
The Cafeteria Ordering System is a new software system that replaces the current manual and
 telephone processes for ordering and picking up meals in the Process Impact cafeteria. The context
diagram in Figure C-2 illustrates the external entities and system interfaces for release 1.0. The system
is expected to evolve over several releases, ultimately connecting to the Internet ordering services for
several local restaurants and to credit and debit card authorization services.

http://www.processimpact.com/projects/COS/COS
http://www.processimpact.com/projects/COS/COS
http://www.processimpact.com/corporate/standards/PI
http://www.processimpact.com/corporate/standards/PI
http://www.processimpact.com/corporate/standards/PI

 APPENDIX C Sample requirements documents 585

FIGURE C-2 Context diagram for release 1.0 of the Cafeteria Ordering System.

2.2 User Classes and Characteristics
User class Description

Patron (favored) A Patron is a Process Impact employee who wants to order meals to be delivered from the
company cafeteria. There are about 600 potential Patrons, of which 300 are expected to use
the COS an average of 5 times per week each. Patrons will sometimes order multiple meals for
group events or guests. An estimated 60 percent of orders will be placed using the corporate
intranet, with 40 percent of orders being placed from home or by smartphone or tablet apps.

Cafeteria Staff The Process Impact cafeteria employs about 20 Cafeteria Staff who will receive orders from the
COS, prepare meals, package them for delivery, and request delivery. Most of the Cafeteria Staff
will need training in the use of the hardware and software for the COS.

Menu Manager The Menu Manager is a cafeteria employee who establishes and maintains daily menus of the
food items available from the cafeteria. Some menu items may not be available for delivery. The
Menu Manager will also define the cafeteria’s daily specials. The Menu Manager will need to
edit existing menus periodically.

Meal Deliverer As the Cafeteria Staff prepare orders for delivery, they will issue delivery requests to a Meal
Deliverer’s smartphone. The Meal Deliverer will pick up the food and deliver it to the Patron. A
Meal Deliverer's other interactions with the COS will be to confirm that a meal was (or was not)
delivered.

586 APPENDIX C Sample requirements documents

2.3 Operating Environment
OE-1: The COS shall operate correctly with the following web browsers: Windows Internet Explorer
versions 7, 8, and 9; Firefox versions 12 through 26; Google Chrome (all versions); and Apple Safari
versions 4.0 through 8.0.

OE-2: The COS shall operate on a server running the current corporate-approved versions of Red Hat
Linux and Apache HTTP Server.

OE-3: The COS shall permit user access from the corporate intranet; from a VPN Internet connection;
and by Android, iOS, and Windows smartphones and tablets.

2.4 Design and Implementation Constraints
CO-1: The system’s design, code, and maintenance documentation shall conform to the Process
 Impact Intranet Development Standard, Version 1.3 [2].

CO-2: The system shall use the current corporate standard Oracle database engine.

CO-3: All HTML code shall conform to the HTML 5.0 standard.

2.5 Assumptions and Dependencies
AS-1: The cafeteria is open for breakfast, lunch, and supper every company business day in which
employees are expected to be on site.

DE-1: The operation of the COS depends on changes being made in the Payroll System to accept
 payment requests for meals ordered with the COS.

DE-2: The operation of the COS depends on changes being made in the Cafeteria Inventory System to
update the availability of food items as COS accepts meal orders.

3. System Features

3.1 Order Meals from Cafeteria
3.1.1 Description

A cafeteria Patron whose identity has been verified can order meals either to be delivered to a
 specified company location or to be picked up in the cafeteria. A Patron can cancel or change a meal
order if it has not yet been prepared. Priority = High.

 APPENDIX C Sample requirements documents 587

3.1.2 Functional Requirements

588 APPENDIX C Sample requirements documents

[Note: Functional requirements for reordering a meal and for changing and canceling meal orders are
not provided in this example.]

3.2 Order Meals from Restaurants
[Details are not provided in this example. Quite a lot of the functionality described under 3.1
 Order Meals from Cafeteria could likely be reused, so this section should just specify the additional
 functionality that addresses the restaurant interface.]

3.3 Create, View, Modify, and Delete Meal Subscriptions
[Details are not provided in this example.]

3.4 Create, View, Modify, and Delete Cafeteria Menus
[Details are not provided in this example.]

 APPENDIX C Sample requirements documents 589

4. Data Requirements

4.1 Logical Data Model

FIGURE C-3 Partial data model for release 1.0 of the Cafeteria Ordering System.

4.2 Data Dictionary
Data element Description Composition or data type Length Values

delivery instruction where and to whom a meal
is to be delivered, if it isn’t
being picked up in the
 cafeteria

patron name
+ patron phone number
+ meal date
+ delivery location
+ delivery time window

delivery location building and room to which
an ordered meal is to be
delivered

alphanumeric 50 hyphens and
 commas permitted

delivery time
 window

beginning time of a
15- minute range on the
meal date during which
an ordered meal is to be
 delivered

time hh:mm local time; hh = 0-23
inclusive; mm = 00,
15, 30, or 45

employee ID company ID number of the
employee who placed a
meal order

integer 6

food item
 description

description of a food item
on a menu

alphabetic 100

food item price pre-tax cost of a single unit
of a menu food item

numeric, dollars and cents dd.cc

590 APPENDIX C Sample requirements documents

Data element Description Composition or data type Length Values

meal date the date the meal is to be
delivered or picked up

date, MM/DD/YYYY 10 default = current
date if the current
time is before the
order cutoff time,
else the next day;
cannot be prior to
current date

meal order details about a meal a
Patron ordered

meal order number
+ order date
+ meal date
+ 1:m{ordered food item}
+ delivery instruction
+ meal order status

meal order number unique ID that COS assigns
to each accepted meal order

integer 7 Initial value is 1

meal order status status of a meal order that a
Patron initiated

alphabetic 16 Incomplete,
 accepted, prepared,
pending delivery,
delivered, canceled

meal payment information about a
 payment COS accepted for
a meal

payment amount
+ payment method
+ transaction number

menu list of food items available
for purchase on a specific
date

menu date
+ 1:m{menu food item}

menu date the date for which a specific
menu is available

date, MM/DD/YYYY 10

menu food item description of a menu item food item description
+ food item price

order cutoff time the time of day before
which all meal orders for
that date must be placed

time, HH:MM 5

order date the date on which a Patron
placed a meal order

date, MM/DD/YYYY 10

ordered food item one menu food item that a
Patron requested as part of
a meal order

menu food item
+ quantity ordered

patron a Process Impact employee
who is authorized to order
a meal

patron name
+ employee ID
+ patron phone number
+ patron location
+ patron email

patron email email address of the
 employee who placed a
meal order

alphanumeric 50

patron location building and room numbers
of the employee who placed
a meal order

alphanumeric 50 hyphens and
 commas permitted

patron name name of the employee who
placed a meal order

alphabetic 30

patron phone
 number

telephone number of the
employee who placed a
meal order

AAA-EEE-NNNN xXXXX for
area code (A), exchange
(E), number (N), and
 extension (X)

18

 APPENDIX C Sample requirements documents 591

Data element Description Composition or data type Length Values

payment amount total price of an order in
dollars and cents, calculated
per BR-12

numeric, dollars and cents dddd.cc

payment method how the Patron is paying for
a meal he ordered

alphabetic 16 payroll deduction,
cash, credit card,
debit card

quantity ordered the number of units of each
food item that the Patron
is ordering in a single meal
order

integer 4 default = 1;
 maximum = quantity
presently in inventory

transaction number unique sequence number
that COS assigns to each
payment transaction

integer 12

4.3 Reports
4.3.1 Ordered Meal History Report

Report ID COS-RPT-1

Report Title Ordered Meal History

Report Purpose Patron wants to see a list of all meals that he had previously ordered from the Process
Impact cafeteria or local restaurants over a specified time period up to 6 months prior
to the current date, so he can reorder a particular meal he liked.

Priority Medium

Report Users Patrons

Data Sources Database of previously placed meal orders

Frequency and Disposition Report is generated on demand by a Patron. Data in the report is static. Report is
 displayed on user’s web browser screen on a computer, tablet, or smartphone. It can be
printed if the display device permits printing.

Latency Complete report must be displayed to Patron within 3 seconds after it is requested.

Visual Layout Landscape mode

Header and Footer Report header shall contain the report title, Patron’s name, and date range specified.
If printed, report footer shall show the page number.

Report Body Fields shown and column headings:
 ■ Order Number
 ■ Meal Date
 ■ Ordered From (“Cafeteria” or restaurant name)
 ■ Items Ordered (list all items in the meal order, their quantity, and their prices)
 ■ Total Food Price
 ■ Tax
 ■ Delivery Charge
 ■ Total Price (sum of food item prices, tax, and delivery charge)

Selection Criteria: date range specified by Patron, inclusive of end points
Sort Criteria: reverse chronological order

End-of-Report Indicator None

Interactivity Patron can drill down to see ingredients and nutritional information for each item in
the order.

Security Access Restrictions A Patron may retrieve only his own meal order history.

[Note: Other COS reports are not provided in this example.]

592 APPENDIX C Sample requirements documents

4.4 Data Integrity, Retention, and Disposal
DI-1: The COS shall retain individual Patron meal orders for 6 months following the meal’s delivery date.

DI-2: The COS shall retain menus for 1 year following the menu date.

5. External Interface Requirements

5.1 User Interfaces
UI-1: The Cafeteria Ordering System screen displays shall conform to the Process Impact Internet
 Application User Interface Standard, Version 2.0 [3].

UI-2: The system shall provide a help link from each displayed webpage to explain how to use that
page.

UI-3: The webpages shall permit complete navigation and food item selection by using the keyboard
alone, in addition to using mouse and keyboard combinations.

5.2 Software Interfaces
SI-1: Cafeteria Inventory System

SI-1.1: The COS shall transmit the quantities of food items ordered to the Cafeteria Inventory
 System through a programmatic interface.

SI-1.2: The COS shall poll the Cafeteria Inventory System to determine whether a requested food
item is available.

SI-1.3: When the Cafeteria Inventory System notifies the COS that a specific food item is no longer
available, the COS shall remove that food item from the menu for the current date.

SI-2: Payroll System

The COS shall communicate with the Payroll System through a programmatic interface for the
 following operations:

SI-2.1: To allow a Patron to register and unregister for payroll deduction.

SI-2.2: To inquire whether a Patron is registered for payroll deduction.

SI-2.3: To inquire whether a Patron is eligible to register for payroll deduction.

SI-2.4: To submit a payment request for a purchased meal.

SI-2.5: To reverse a previous charge because a patron rejected a meal or wasn’t satisfied with it, or
because the meal was not delivered per the delivery instructions.

5.3 Hardware Interfaces
No hardware interfaces have been identified.

 APPENDIX C Sample requirements documents 593

5.4 Communications Interfaces
CI-1: The COS shall send an email or text message (based on user account settings) to the Patron to
confirm acceptance of an order, price, and delivery instructions.

CI-2: The COS shall send an email or text message (based on user account settings) to the Patron to
report any problems with a meal order or delivery.

6. Quality Attributes

6.1 Usability Requirements
USE-1: The COS shall allow a Patron to retrieve the previous meal ordered with a single interaction.

USE-2: 95% of new users shall be able to successfully order a meal without errors on their first try.

6.2 Performance Requirements
PER-1: The system shall accommodate a total of 400 users and a maximum of 100 concurrent users
during the peak usage time window of 9:00 A.M. to 10:00 A.M. local time, with an estimated average
session duration of 8 minutes.

PER-2: 95% of webpages generated by the COS shall download completely within 4 seconds from the
time the user requests the page over a 20 Mbps or faster Internet connection.

PER-3: The system shall display confirmation messages to users within an average of 3 seconds and a
maximum of 6 seconds after the user submits information to the system.

6.3 Security Requirements
SEC-1: All network transactions that involve financial information or personally identifiable
 information shall be encrypted per BR-33.

SEC-2: Users shall be required to log on to the COS for all operations except viewing a menu.

SEC-3: Only authorized Menu Managers shall be permitted to work with menus, per BR-24.

SEC-4: The system shall permit Patrons to view only orders that they placed.

6.4 Safety Requirements
SAF-1: The user shall be able to see a list of all ingredients in any menu items, with ingredients
 highlighted that are known to cause allergic reactions in more than 0.5 percent of the North
 American population.

594 APPENDIX C Sample requirements documents

6.5 Availability Requirements
AVL-1: The COS shall be available at least 98% of the time between 5:00 A.M. and midnight local
time and at least 90% of the time between midnight and 5:00 A.M. local time, excluding scheduled
 maintenance windows.

6.6 Robustness Requirements
ROB-1: If the connection between the user and the COS is broken prior to a new order being either
confirmed or terminated, the COS shall enable the user to recover an incomplete order and continue
working on it.

Appendix A: Analysis Models
Figure C-4 is a state-transition diagram that shows the possible meal order statuses and the allowed
changes in status.

FIGURE C-4 State-transition diagram for meal order status.

 APPENDIX C Sample requirements documents 595

Business Rules

[Note: The following illustrates a portion of a separate business rules catalog.]

ID Rule definition Type of rule Static or
 dynamic

Source

BR-1 Delivery time windows are 15 minutes,
 beginning on each quarter hour.

Fact Dynamic Cafeteria Manager

BR-2 Deliveries must be completed between
11:00 A.M. and 2:00 P.M. local time, inclusive.

Constraint Dynamic Cafeteria Manager

BR-3 All meals in a single order must be delivered
to the same location.

Constraint Static Cafeteria Manager

BR-4 All meals in a single order must be paid for by
using the same payment method.

Constraint Static Cafeteria Manager

BR-8 Meals must be ordered within 14 calendar
days of the meal date.

Constraint Dynamic Cafeteria Manager

BR-11 If an order is to be delivered, the patron must
pay by payroll deduction.

Constraint Dynamic Cafeteria Manager

BR-12 Order price is calculated as the sum of each
food item price times the quantity of that
food item ordered, plus applicable sales tax,
plus a delivery charge if a meal is delivered
outside the free delivery zone.

Computation Dynamic cafeteria policy; state
tax code

BR-24 Only cafeteria employees who are designated
as Menu Managers by the Cafeteria Manager
can create, modify, or delete cafeteria menus.

Constraint Static cafeteria policy

BR-33 Network transmissions that involve financial
information or personally identifiable
 information require 256-bit encryption.

Constraint Static corporate security
policy

BR-86 Only regular employees can register for
 payroll deduction for any company purchase.

Constraint Static Corporate
Accounting Manager

BR-88 An employee can register for payroll
 deduction payment of cafeteria meals if no
more than 40 percent of his gross pay is
 currently being deducted for other reasons.

Constraint Dynamic Corporate
Accounting Manager

Glossary

 597

acceptance criteria Conditions that a software
product must satisfy to be accepted by a user,
 customer, or other stakeholder.

acceptance test A test that evaluates anticipated
usage scenarios to determine the software’s
 acceptability. Used in agile development both
to express details about a user story and to
 determine whether a user story is fully and correctly
 implemented.

activity diagram An analysis model that depicts
a process flow proceeding from one activity to
another. Similar to a flowchart.

actor A person performing a specific role, a
 software system, or a hardware device that interacts
with a system to achieve a useful goal. Also called a
user role.

agile development A term used for software
development methods characterized by continuous
collaboration between developers and customers,
limited documentation of requirements in the form
of user stories and corresponding acceptance tests,
and rapid and frequent delivery of small increments
of useful functionality. Agile development
 methods include Extreme Programming, Scrum,
 Feature-Driven Development, Lean Software
 Development, and Kanban.

allocation See requirements allocation.

alternative flow A path through a use case that
leads to success but that involves a variation from
the normal flow in the specifics of the task or in the
actor’s interaction with the system.

analysis, requirements The process of classifying
requirements information into various categories,
evaluating requirements for desirable qualities,
 representing requirements in different forms,
 deriving detailed requirements from high-level

requirements, negotiating priorities, and related
activities.

analyst See business analyst.

application See product.

architecture The structure of a system, including
any software, hardware, and human components
that make up the system, the interfaces and
relationships between those components, and
the component behaviors that are visible to other
components.

assumption A statement that is believed to be true
in the absence of proof or definitive knowledge.

attribute, quality See quality attribute.

attribute, requirement See requirement attribute.

BA See business analyst.

backlog, product On an agile project, the
 prioritized list of work remaining for the project.
A backlog can contain user stories, business
 processes, change requests, infrastructure
 development, and defect stories. Work items from
the backlog are allocated to upcoming iterations
based on their priority.

baseline, requirements A snapshot in time that
represents the current agreed-upon, reviewed,
and approved set of requirements, often defining
the contents of a specific product release or
 development iteration. Serves as the basis for
 further development work.

big data A collection of data that is characterized
as large volume (much data exists), high velocity
(data flows rapidly into an organization), and/or
highly complex (the data is diverse). Managing big
data entails understanding how to discover, collect,
store, and process the data quickly and effectively.

598 Glossary

business analyst (BA) The role on a project
team that has primary responsibility for
 working with stakeholder representatives
to elicit, analyze, specify, validate, and
 manage the project’s requirements. Also
called a requirements analyst, system analyst,
 requirements engineer, requirements manager,
business systems analyst, and simply analyst.

business analytics system A software system
used to convert large and complex data sets into
meaningful information from which to make
decisions.

business objective A financial or nonfinancial
business benefit that an organization expects
to receive as a result of a project or some other
initiative.

business objectives model A visual
 representation of a hierarchy of business
 problems and business objectives.

business requirements A set of information
that describes a business need that leads to
one or more projects to deliver a solution
and the desired ultimate business outcomes.
The business requirements include business
 opportunities, business objectives, success
 metrics, a vision statement, and scope and
limitations.

business rule A policy, guideline, standard,
 regulation, or computational formula that
 defines or constrains some aspect of the
 business.

cardinality The number of instances of a
particular data entity that logically relate to
an instance of another entity. Possibilities are
 one-to-one, one-to-many, and many-to-many.

change control board (CCB) The group of
people responsible for deciding to accept or
reject proposed changes on a software project,
including changes in requirements.

class A description of a set of objects having
common properties and behaviors, which
 typically correspond to real-world items
(persons, places, or things) in the business or
problem domain.

class diagram An analysis model that shows a
set of system or problem domain classes, their
interfaces, and their relationships.

constraint A restriction that is imposed on the
choices available to the developer for the design
and construction of a product. Other types of
constraints can restrict the options available to
project managers. Business rules often impose
constraints on business operations and hence on
software systems.

context diagram An analysis model that
depicts a system at a high level of abstraction.
The context diagram identifies objects outside
the system that exchange data with the system,
but it shows nothing about the system’s internal
structure or behavior.

COTS (commercial off-the-shelf) product
A software package purchased from a vendor
and either used as a self-contained solution to
a problem or integrated, customized, and/or
extended to satisfy customer needs.

CRUD matrix A table that correlates system
 actions with data entities to show where each
data item is created, read, updated, and deleted.

customer An individual or organization that
derives either direct or indirect benefit from a
product. Software customers might request, pay
for, select, specify, use, or receive the output
generated by a software product.

dashboard report A screen display or
printed report that uses multiple textual and/or
 graphical representations of data to provide a
consolidated, multidimensional view of what is
going on in an organization or a process.

data dictionary A collection of definitions for
the data elements and data structures that are
relevant to the problem domain.

data flow diagram An analysis model that
depicts the processes, data stores, external
 entities, and flows among them that characterize
the behavior of data flowing through business
processes or software systems.

decision rule An agreed-upon way by which a
body of people arrives at a decision.

decision table An analysis model in the form
of a matrix that shows all combinations of
values for a set of conditions and indicates the
expected system action in response to each
combination.

 Glossary 599

decision tree An analysis model that visually
depicts the actions a system takes in response to
specific combinations of a set of conditions.

dependency As used in requirements
 specification, a reliance that a project has on a
factor, event, or group outside its control.

dialog map An analysis model that depicts a
user interface architecture, showing the dialog
elements with which the user can interact and
the navigations permitted between them.

ecosystem map An analysis model that shows a
set of systems that interact with each other and
the nature of their relationships. Unlike a context
diagram, an ecosystem map shows systems that
have a relationship even if there is no direct
interface between them.

elicitation, requirements The process of
identifying requirements from various sources
through interviews, workshops, focus groups,
observations, document analysis, and other
mechanisms.

embedded system A system that contains
hardware components controlled by software
running on a dedicated computer that is
 incorporated as part of a larger product.

entity An item in the business domain about
which data is collected and stored.

entity-relationship diagram An analysis
model that identifies the logical relationships
between pairs of entities. Used for modeling
data.

epic A user story on an agile project that is
too large to implement in one development
iteration. It is subdivided into smaller stories
that each can be fully implemented in a single
iteration.

event A trigger or stimulus that takes place in
a system’s environment that leads to a system
response, such as a functional behavior or a
change in state.

event-response table A list of the external
or time-triggered events that could affect the
system and a description of how the system is to
respond to each event.

evolutionary prototype A fully functional
prototype created as a skeleton or an initial
increment of the final product, which is fleshed

out and extended incrementally as requirements
become clear and ready for implementation.

exception A condition that can prevent a use
case from concluding successfully. Unless some
recovery mechanism is possible, the use case’s
postconditions are not reached and the actor’s
goal is not achieved.

extend relationship A construct in which an
alternative flow in a use case branches off from
the normal flow into a separate extension use
case.

external entity An object in a context diagram
or a data flow diagram that represents a user
class, actor, software system, or hardware device
that is external to the system being described
but interfaces to it in some fashion. Also called a
terminator.

external interface requirement A description
of a connection between a software system and
a user, another software system, or a hardware
device.

facilitator A person who is responsible for
planning and leading a group activity, such as a
requirements elicitation workshop.

feature One or more logically related system
capabilities that provide value to a user and are
described by a set of functional requirements.

feature tree An analysis model that depicts the
features planned for a product in a hierarchical
tree, showing up to two levels of subfeatures
beneath each main feature.

flowchart An analysis model that shows the
processing steps and decision points in the logic
of a process. Similar to an activity diagram.

function point A measure of software size,
based on the number and complexity of internal
logical files, external interface files, external
inputs, outputs, and queries.

functional requirement A description of a
 behavior that a software system will exhibit
under specific conditions.

gap analysis A comparison of the current state
to an alternative or potential state for a system,
process, or other aspect of a business situation,
to identify significant differences between them.

600 Glossary

gold-plating Unnecessary or excessively
 complex functionality that is specified or built
into a product, sometimes without customer
approval.

green-field project A project in which new
software or a new system is developed.

horizontal prototype See mock-up.

include relationship A construct in which
several steps that recur in multiple use cases are
factored out into a separate sub-use case, which
the other use cases then invoke when needed.

inspection A type of formal peer review that
involves a trained team of individuals who
 follow a well-defined process to examine a work
 product carefully for defects.

issue, requirement A defect, open question,
or decision regarding a requirement. Examples
include items flagged as TBD, pending decisions,
information that is needed, and conflicts
 awaiting resolution.

iteration An uninterrupted development
period, typically one to four weeks in duration,
during which a development team implements
a defined set of functionality selected from the
product backlog or baselined requirements for
the product.

mock-up A partial or possible representation
of a user interface for a software system.
Used to evaluate usability and to assess the
 completeness and correctness of requirements.
Could be executable or could be in the form
of a paper prototype. Also called a horizontal
prototype.

navigation map See dialog map.

nonfunctional requirement A description of
a property or characteristic that a system must
exhibit or a constraint that it must respect.

normal flow The default sequence of steps in a
use case, which leads to satisfying the use case’s
postconditions and letting the user achieve his
goal. Also known as the normal course, main
course, basic flow, normal sequence, main success
scenario, and happy path.

operational profile A suite of scenarios that
represents the expected usage pattern of a
software product.

paper prototype A non-executable mock-up of
a software system’s user interface using low-tech
screen sketches.

peer review An activity in which one or more
persons other than the author of a work product
examine that product with the intent of finding
defects and improvement opportunities.

pilot A controlled execution of a new solution
(such as a process, tool, software system, or
training course) with the objective of evaluating
the solution under real conditions to assess its
readiness for general deployment.

Planguage A keyword-oriented language
developed by Tom Gilb that enables precise
and quantitative specification of requirements,
particularly nonfunctional requirements.

postcondition A condition that describes the
state of a system after a use case is successfully
completed.

precondition A condition that must be satisfied
or a state the system must be in before a use
case can begin.

prioritization The act of determining which
requirements for a software product are the
most important for achieving business success
and the sequence in which requirements should
be implemented.

procedure A step-by-step description of
a course of action to be taken to perform a
 specified activity, describing how the activity is
to be accomplished.

process A sequence of activities performed for
a particular purpose. A process description is a
documented definition of those activities.

process assets Items such as templates,
forms, checklists, policies, procedures, process
descriptions, and sample work products that are
collected to assist an organization’s effective
 application of software development practices.

process flow The sequential steps of a business
process or the operations of a proposed
 software system. Often represented by using an
activity diagram, flowchart, swimlane diagram,
or other modeling notation.

product Whatever ultimate deliverable a
project is developing. In this book, product,

 Glossary 601

 application, system, and solution are used
 interchangeably.

product backlog See backlog, product.

product champion A designated
 representative of a specific user class who
 supplies the user requirements for the group
that he or she represents.

product owner A role, typically on an agile
project team, that represents the customer and
that is responsible for setting the product vision,
providing project boundaries and constraints,
prioritizing the contents of the product backlog,
and making product decisions.

proof of concept A prototype that implements
a portion of a software-containing system that
slices through multiple layers of the architecture.
Used to evaluate technical feasibility and
 performance. Also called a vertical prototype.

prototype A partial, preliminary, or possible
implementation of a software system. Used
to explore and validate requirements and
design approaches. Types of prototypes
are evolutionary and throwaway; paper and
 electronic; and mock-up and proof-of-concept.

quality attribute A nonfunctional requirement
that describes a service or performance
 characteristic of a product. Types of quality
attributes include usability, portability,
 maintainability, integrity, efficiency, reliability,
and robustness. Quality attribute requirements
describe the extent to which a software product
must demonstrate desired characteristics.

quality-of-service requirement See quality
attribute.

real-time system A hardware and software
system that must produce a response within a
specified time after an initiating event.

requirement A statement of a customer need
or objective, or of a condition or capability that
a product must possess to satisfy such a need or
objective. A property that a product must have
to provide value to a stakeholder.

requirement attribute Descriptive information
about a requirement that enriches its definition
beyond the statement of intended functionality.
Example attribute types are origin, rationale,
priority, owner, release number, and version
number.

requirement pattern A systematic approach to
specifying a particular type of requirement.

requirements allocation The process of
 apportioning system requirements among
 various architectural subsystems and
 components.

requirements analysis See analysis,
 requirements.

requirements analyst See business analyst.

requirements development The process
of defining a project’s scope, identifying
user classes and user representatives, and
 eliciting, analyzing, specifying, and validating
 requirements. The product of requirements
 development is a set of documented
 requirements that defines some portion of the
product to be built.

requirements engineer See business analyst.

requirements engineering The subdiscipline
of systems engineering and software
 engineering that encompasses all project
 activities associated with understanding a
product’s necessary capabilities and attributes.
Includes both requirements development and
requirements management.

requirements management The process of
working with a defined set of requirements
throughout the product’s development
 process and its operational life. Includes
 tracking requirements status, managing
changes to requirements, controlling versions
of requirements specifications, and tracing
 individual requirements to other requirements
and system elements.

requirements specification See software
requirements specification and specification,
requirements.

requirements traceability matrix
A table that depicts logical links between
individual functional requirements and other
system artifacts, including other functional
 requirements, user requirements, business
requirements, architecture and design elements,
code modules, tests, and business rules.

retrospective A review in which project
 participants reflect on the project’s activities and
outcomes with the intent of identifying ways to
make the next project be even more successful.

602 Glossary

reuse, requirements The act of using existing
requirements knowledge in multiple systems
that share some similar functionality.

review See peer review.

risk A condition that could cause some loss or
otherwise threaten the success of a project.

root cause analysis An activity that seeks
to understand the underlying factors that
 contribute to an observed problem.

scenario A description of a specific interaction
between a user and a system to accomplish
some goal. Alternatively, an instance of usage of
the system, or a specific path through a use case.

scope The portion of the ultimate product
 vision that the current project will address.
The scope draws the boundary between what’s
in and what’s out for a project that creates a
 specific release or for a single development
iteration.

scope creep A condition in which the scope
of a project continues to increase in an
 uncontrolled fashion throughout the
 development process.

software development life cycle A sequence
of activities by which a software product is
defined, designed, built, and verified.

software requirements specification (SRS)
A collection of the functional and nonfunctional
requirements for a software product.

solution All of the components delivered by a
project to achieve a set of business objectives
specified by an organization, including software,
hardware, business processes, user manuals, and
training.

specification, requirements The process
of documenting a software application’s
 requirements in a structured, shareable, and
manageable form. Also, the product from this
process (see software requirements specification).

sprint See iteration.

SRS See software requirements specification.

stakeholder An individual, group, or
 organization that is actively involved in a
 project, is affected by its process or outcome, or
can influence its process or outcome.

state machine diagram An analysis model
that shows the sequence of states that an object
in a system goes through during its lifetime in
response to specific events that take place, or
that shows the possible states of the system as a
whole. Similar to a state-transition diagram.

state table An analysis model that shows in
 matrix form the various states that a system, or
an object in the system, can be in, and which
of the possible transitions between states are
allowed.

state-transition diagram An analysis model
that visually depicts the various states in which
a system or an object in the system can exist,
the permitted transitions that can take place
 between states, and the conditions and/or
events that trigger each transition. Similar to a
state machine or statechart diagram.

story See user story.

subject matter expert An individual who
has extensive experience and knowledge
in a domain and who is recognized as an
 authoritative source of information about the
domain.

swimlane diagram An analysis model that
shows the sequential steps of a business process
flow or the operations of a proposed software
system. The process is subdivided into visual
components called lanes, which show the
 systems or actors that execute the steps.

system A product that contains multiple software
and/or hardware subsystems. Colloquially, system
also is used interchangeably in this book with
 application, product, and solution to refer to
whatever software-containing deliverable a team
is building.

system requirement A high-level requirement
for a product that contains multiple subsystems,
which could be all software or software and
hardware.

TBD Abbreviation for to be determined. TBD
serves as a placeholder when you know you are
missing some requirements information. See
issue, requirement.

template A pattern to be used as a guide for
producing a complete document or other item.

throwaway prototype A prototype that
is created with the intent of discarding it

 Glossary 603

 after it has served its purpose of clarifying
and validating requirements and/or design
 alternatives.

tracing The process of defining logical links
between one system element (user requirement,
functional requirement, business rule, design
component, code module, test, and the like) and
another. Also called traceability.

UML An abbreviation for the Unified Modeling
Language, which describes a set of standard
notations for creating various visual models
of systems, particularly for object-oriented
 software development.

usage scenario See scenario.

use case A description of a set of logically
related possible interactions between an actor
and a system that results in an outcome that
provides value to the actor. Can encompass
multiple scenarios.

use case diagram An analysis model that
 identifies the actors who can interact with a
system to accomplish valuable goals and the
various use cases that each actor might be
involved with.

user A customer who will interact with a
 system either directly or indirectly (for example,
by using outputs from the system but not
 generating those outputs personally). Also called
end user.

user class A group of users for a system who
have similar characteristics and requirements for
the system. Members of a user class function as
actors when interacting with the system through
use cases.

user requirement A goal or task that specific
classes of users must be able to perform with a
system, or a desired product attribute. Use cases,

user stories, and scenarios are common ways to
represent user requirements.

user role See actor.

user story A format to capture user
 requirements on agile projects in the form of
one or two sentences that articulate a user need
or describe a unit of desired functionality, as well
as stating the benefit of the functionality to the
user.

validation The process of evaluating a project
deliverable to determine whether it satisfies
 customer needs. Often stated as “Are we
 building the right product?”

verification The process of evaluating a project
deliverable to determine whether it satisfies
the specifications on which it was based. Often
stated as “Are we building the product right?”

vertical prototype See proof of concept.

vision A statement that describes the strategic
concept or the ultimate purpose and form of a
new system.

vision and scope document A collection of
the business requirements for a new system,
including business objectives, success metrics,
a product vision statement, and a project scope
 description.

waterfall development life cycle A model
of the software development process in which
the various activities of requirements, design,
coding, testing, and deployment are performed
sequentially with little overlap or iteration.

wireframe A kind of throwaway mock-up
prototype that is often used for preliminary
webpage design.

work product Any interim or final deliverable
created for a software project.

References

 605

Abran, Alain, James W. Moore, Pierre Bourque, and Robert Dupuis, eds. 2004. Guide to the Software
Engineering Body of Knowledge, 2004 Version. Los Alamitos, CA: IEEE Computer Society Press.

Akers, Doug. 2008. “Real Reuse for Requirements.” Methods & Tools 16(1):33–40.

Alexander, Ian F., and Ljerka Beus-Dukic. 2009. Discovering Requirements: How to Specify Products
and Services. Chichester, England: John Wiley & Sons Ltd.

Alexander, Ian F., and Neil Maiden. 2004. Scenarios, Stories, Use Cases: Through the Systems
Development Life-Cycle. Chichester, England: John Wiley & Sons Ltd.

Alexander, Ian F., and Richard Stevens. 2002. Writing Better Requirements. London: Addison-Wesley.

Ambler, Scott. 2005. The Elements of UML 2.0 Style. New York: Cambridge University Press.

Anderson, Ross J. 2008. Security Engineering: A Guide to Building Dependable Distributed Systems,
2nd ed. Indianapolis, IN: Wiley Publishing, Inc.

Arlow, Jim. 1998. “Use Cases, UML Visual Modeling and the Trivialisation of Business Requirements.”
Requirements Engineering 3(2):150–152.

Armour, Frank, and Granville Miller. 2001. Advanced Use Case Modeling: Software Systems.
Boston: Addison-Wesley.

Arnold, Robert S., and Shawn A. Bohner. 1996. Software Change Impact Analysis. Los Alamitos,
CA: IEEE Computer Society Press.

Basili, Victor R., and H. Dieter Rombach. 1988. “The TAME Project: Towards Improvement-Oriented
Software Environments.” IEEE Transactions on Software Engineering. 14(6):758–773.

Bass, Len, Paul Clements, and Rick Kazman. 1998. Software Architecture in Practice. Reading,
MA: Addison-Wesley.

Beatty, Joy, and Anthony Chen. 2012. Visual Models for Software Requirements. Redmond,
WA: Microsoft Press.

Beatty, Joy, and Remo Ferrari. 2011. “How to Evaluate and Select a Requirements Management Tool.”
http://www.seilevel.com/wp-content/uploads/RequirementsManagementToolWhitepaper_1.pdf.

Beck, Kent, et al. 2001. “Manifesto for Agile Software Development.” http://www.agilemanifesto.org.

Beizer, Boris. 1999. “Best and Worst Testing Practices: A Baker’s Dozen.” Cutter IT Journal 12(2):32–38.

http://www.seilevel.com/wp-content/uploads/RequirementsManagementToolWhitepaper_1.pdf
http://www.agilemanifesto.org

606 References

Beyer, Hugh, and Karen Holtzblatt. 1998. Contextual Design: Defining Customer-Centered
Systems. San Francisco, CA: Morgan Kaufmann Publishers, Inc.

Blackburn, Joseph D., Gary D. Scudder, and Luk N. Van Wassenhove. 1996. “Improving Speed
and Productivity of Software Development: A Global Survey of Software Developers.”
IEEE Transactions on Software Engineering 22(12):875–885.

Boehm, Barry W. 1981. Software Engineering Economics. Upper Saddle River, NJ: Prentice Hall.

 . 1988. “A Spiral Model of Software Development and Enhancement.” IEEE Computer
21(5):61–72.

 . 2000. “Requirements that Handle IKIWISI, COTS, and Rapid Change.” IEEE Computer
33(7):99–102.

Boehm, Barry W., Chris Abts, A. Winsor Brown, Sunita Chulani, Bradford K. Clark, Ellis Horowitz,
Ray Madachy, Donald J. Reifer, and Bert Steece. 2000. Software Cost Estimation with
Cocomo II. Upper Saddle River, NJ: Prentice Hall PTR.

Boehm, Barry W., and Philip N. Papaccio. 1988. “Understanding and Controlling Software
Costs.” IEEE Transactions on Software Engineering 14(10):1462–1477.

Boehm, Barry, and Richard Turner. 2004. Balancing Agility and Discipline: A Guide for the
Perplexed. Boston: Addison-Wesley.

Booch, Grady, James Rumbaugh, and Ivar Jacobson. 1999. The Unified Modeling Language User
Guide. Reading, MA: Addison-Wesley.

Box, George E. P., and Norman R. Draper. 1987. Empirical Model-Building and Response
Surfaces. New York: John Wiley & Sons, Inc.

Boyer, Jérôme, and Hafedh Mili. 2011. Agile Business Rule Development: Process, Architecture,
and JRules Examples. Heidelberg, Germany: Springer.

Bradshaw, Jeffrey M. 1997. Software Agents. Menlo Park, CA: The AAAI Press.

Brijs, Bert. 2013. Business Analysis for Business Intelligence. Boca Raton, FL: CRC Press.

Brooks, Frederick P., Jr. 1987. “No Silver Bullet: Essence and Accidents of Software Engineering.”
IEEE Computer 20(4):10–19.

Brosseau, Jim. 2010. “Software Quality Attributes: Following All the Steps.” http://www.clarrus.com/
resources/articles/software-quality-attributes.

Brown, Norm. 1996. “Industrial-Strength Management Strategies.” IEEE Software 13(4):94–103.

Business Rules Group. 2012. http://www.businessrulesgroup.org.

Callele, David, Eric Neufeld, and Kevin Schneider. 2008. "Emotional Requirements.“ IEEE
Software 25(1):43–45.

Caputo, Kim. 1998. CMM Implementation Guide: Choreographing Software Process Improvement.
Reading, MA: Addison-Wesley.

http://www.clarrus.com/resources/articles/software-quality-attributes
http://www.clarrus.com/resources/articles/software-quality-attributes
http://www.businessrulesgroup.org

 References 607

Carr, Marvin J., Suresh L. Konda, Ira Monarch, F. Carol Ulrich, and Clay F. Walker. 1993.
Taxonomy-Based Risk Identification (CMU/ SEI-93-TR-6). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University.

Cavano, J. P., and J. A. McCall. 1978. “A Framework for the Measurement of Software Quality.”
ACM SIGSOFT Software Engineering Notes 3(5):133–139.

Charette, Robert N. 1990. Applications Strategies for Risk Analysis. New York: McGraw-Hill.

Chernak, Yuri. 2012. “Requirements Reuse: The State of the Practice.” In Proceedings of the 2012
IEEE International Conference on Software Science, Technology and Engineering, 46–53.
Los Alamitos, CA: IEEE Computer Society Press.

Chung, Lawrence, Kendra Cooper, and D.T. Huynh. 2001. “COTS-Aware Requirements
Engineering Techniques.“ In Proceedings of the 2001 Workshop on Embedded Software
Technology (WEST‘01).

Cockburn, Alistair. 2001. Writing Effective Use Cases. Boston: Addison-Wesley.

Cohen, Lou. 1995. Quality Function Deployment: How to Make QFD Work for You. Reading,
MA: Addison-Wesley.

Cohn, Mike. 2004. User Stories Applied: For Agile Software Development.
Boston: Addison-Wesley.

 . 2005. Agile Estimating and Planning. Upper Saddle River, NJ: Prentice Hall.

 . 2010. Succeeding with Agile: Software Development Using Scrum. Upper Saddle River,
NJ: Addison-Wesley.

Collard, Ross. 1999. “Test Design.” Software Testing & Quality Engineering 1(4):30–37.

Colorado State University. 2013. “Writing@CSU.“ http://writing.colostate.edu/guides/guide
.cfm?guideid=68.

Constantine, Larry. 1998. “Prototyping from the User’s Viewpoint.” Software Development
6(11):51–57.

Constantine, Larry L., and Lucy A. D. Lockwood. 1999. Software for Use: A Practical Guide to the
Models and Methods of Usage-Centered Design. Reading, MA: Addison-Wesley.

Cooper, Alan. 2004. The Inmates Are Running the Asylum: Why High-Tech Products Drive Us
Crazy and How to Restore the Sanity. Indianapolis, IN: Sams Publishing.

Covey, Stephen R. 2004. The 7 Habits of Highly Effective People. New York: Free Press.

Davenport, Thomas H., ed. 2013. Enterprise Analytics: Optimize Performance, Process, and
Decisions through Big Data. Upper Saddle River, NJ: Pearson Education, Inc.

Davenport, Thomas H., Jeanne G. Harris, and Robert Morrison. 2010. Analytics at Work: Smarter
Decisions, Better Results. Boston: Harvard Business Review Press.

Davis, Alan M. 1993. Software Requirements: Objects, Functions, and States, Revised Edition.
Englewood Cliffs, NJ: Prentice Hall PTR.

http://writing.colostate.edu/guides/guide.cfm?guideid=68
http://writing.colostate.edu/guides/guide.cfm?guideid=68

608 References

 . 1995. 201 Principles of Software Development. New York: McGraw-Hill.

 . 2005. Just Enough Requirements Management: Where Software Development Meets
Marketing. New York: Dorset House Publishing.

DeGrace, Peter, and Leslie Hulet Stahl. 1993. The Olduvai Imperative: CASE and the State of
Software Engineering Practice. Englewood Cliffs, NJ: Yourdon Press/Prentice Hall.

Dehlinger, Josh, and Robyn R. Lutz. 2008. “Supporting Requirements Reuse in Multi-Agent
System Product Line Design and Evolution.“ In Proceedings of the 24th IEEE International
Conference on Software Maintenance, 207–216. Los Alamitos, CA: IEEE Computer Society
Press.

DeMarco, Tom. 1979. Structured Analysis and System Specification. Upper Saddle River,
NJ: Prentice Hall PTR.

DeMarco, Tom, and Timothy Lister. 1999. Peopleware: Productive Projects and Teams, 2nd ed.
New York: Dorset House Publishing.

Denne, Mark, and Jane Cleland-Huang. 2003. Software by Numbers: Low-Risk, High-Return
Development. Santa Clara, CA: Sun Microsystems Press/Prentice Hall.

Derby, Esther, and Diana Larsen. 2006. Agile Retrospectives: Making Good Teams Great. Raleigh,
NC: The Pragmatic Bookshelf.

Devine, Tom. 2008. “Replacing a Legacy System.“ http://www.richconsulting.com/our/pdfs/
RichConsulting_ReplacingLegacy.pdf.

Douglass, Bruce Powel. 2001. “Capturing Real-Time Requirements.“ Embedded Systems
Programming (November 2001). http://www.embedded.com/story/OEG20011016S0126.

Dyché, Jill. 2012. “The 7 Steps in Big Data Delivery.“ http://www.networkworld.com/news/
tech/2012/071112-big-data-delivery-260813.html.

Engblom, Jakob. 2007. “Using Simulation Tools For Embedded Systems Software Development:
Part 1.“ Embedded Systems Programming (May 2007). http://www.embedded.com/
design/real-time-and-performance/4007090/Using-simulation-tools-for-embedded-
systems-software-development-Part-1.

Ericson II, Clifton A. 2005. Hazard Analysis Techniques for System Safety. Hoboken,
NJ: John Wiley & Sons, Inc.

 . 2011. Fault Tree Analysis Primer. Charleston, NC: CreateSpace.

 . 2012. Hazard Analysis Primer. Charleston, NC: CreateSpace.

Fagan, Michael E. 1976. “Design and Code Inspections to Reduce Errors in Program
Development.” IBM Systems Journal 15(3):182–211.

Ferdinandi, Patricia L. 2002. A Requirements Pattern: Succeeding in the Internet Economy.
Boston: Addison-Wesley.

Firesmith, Donald. 2004. “Specifying Reusable Security Requirements.“ Journal of Object
Technology 3(1):61–75.

http://www.richconsulting.com/our/pdfs/RichConsulting_ReplacingLegacy.pdf
http://www.richconsulting.com/our/pdfs/RichConsulting_ReplacingLegacy.pdf
http://www.embedded.com/story/OEG20011016S0126
http://www.networkworld.com/news/tech/2012/071112-big-data-delivery-260813.html
http://www.networkworld.com/news/tech/2012/071112-big-data-delivery-260813.html
http://www.embedded.com/design/real-time-and-performance/4007090/Using-simulation-tools-for-embedded-systems-software-development-Part-1
http://www.embedded.com/design/real-time-and-performance/4007090/Using-simulation-tools-for-embedded-systems-software-development-Part-1
http://www.embedded.com/design/real-time-and-performance/4007090/Using-simulation-tools-for-embedded-systems-software-development-Part-1

 References 609

Fisher, Roger, William Ury, and Bruce Patton. 2011. Getting to Yes: Negotiating Agreement
Without Giving In. New York: Penguin Books.

Florence, Al. 2002. “Reducing Risks Through Proper Specification of Software Requirements.”
CrossTalk 15(4):13–15.

Fowler, Martin. 1999. Refactoring: Improving the Design of Existing Code. Reading,
MA: Addison-Wesley.

 . 2003. UML Distilled: A Brief Guide to the Standard Object Modeling Language, 3rd ed.
Boston: Addison-Wesley.

Franks, Bill. 2012. Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams
with Advanced Analytics. Hoboken, NJ: John Wiley & Sons, Inc.

Frye, Colleen. 2009. “New Requirements Definition Tools Focus on Chronic Flaws.“ TechTarget.
http://searchsoftwarequality.techtarget.com/news/1354455/New-requirements-
definition-tools-focus-on-chronic-flaws.

GAO (Government Accounting Office). 2004. “Stronger Management Practices Are Needed to
Improve DOD‘s Software-Intensive Weapon Acquisitions.“ GAO-04-393, http://www.gao
.gov/products/GAO-04-393.

Garmahis, Michael. 2009. “Top 20 Wireframe Tools.“ http://garmahis.com/reviews/wireframe-tools.

Gause, Donald C., and Brian Lawrence. 1999. “User-Driven Design.” Software Testing & Quality
Engineering 1(1):22–28.

Gause, Donald C., and Gerald M. Weinberg. 1989. Exploring Requirements: Quality Before
Design. New York: Dorset House Publishing.

Gilb, Tom. 1988. Principles of Software Engineering Management. Harlow, England:
Addison-Wesley.

 . 1997. “Quantifying the Qualitative: How to Avoid Vague Requirements by Clear
Specification Language.” Requirenautics Quarterly 12:9–13.

 . 2005. Competitive Engineering: A Handbook for Systems Engineering, Requirements
Engineering, and Software Engineering Using Planguage. Oxford, England: Elsevier
Butterworth-Heinemann.

 . 2007. “Requirements for Outsourcing.“ Methods and Tools (Winter 2007).

Gilb, Tom, and Kai Gilb. 2011. “User Stories: A Skeptical View.“ Agile Record 6:52–54.

Gilb, Tom, and Dorothy Graham. 1993. Software Inspection. Wokingham, England:
Addison-Wesley.

Glass, Robert L. 1992. Building Quality Software. Englewood Cliffs, NJ: Prentice Hall.

Gomaa, Hassan. 2004. Designing Software Product Lines with UML: From Use Cases to
Pattern-Based Software Architectures. Boston: Addison-Wesley.

Gorman, Mary, and Ellen Gottesdiener. 2011. “It’s the Goal, Not the Role: The Value of Business
Analysis in Scrum.“ http://www.stickyminds.com/s.asp?F=S16902_COL_2.

http://searchsoftwarequality.techtarget.com/news/1354455/New-requirements-definition-tools-focus-on-chronic-flaws
http://searchsoftwarequality.techtarget.com/news/1354455/New-requirements-definition-tools-focus-on-chronic-flaws
http://www.gao.gov/products/GAO-04-393
http://garmahis.com/reviews/wireframe-tools
http://www.gao.gov/products/GAO-04-393
http://www.stickyminds.com/s.asp?F=S16902_COL_2

610 References

Gottesdiener, Ellen. 2001. “Decide How to Decide.” Software Development 9(1):65–70.

 . 2002. Requirements by Collaboration: Workshops for Defining Needs.
Boston: Addison-Wesley.

 . 2005. The Software Requirements Memory Jogger. Salem, NH: Goal/QPC.

 . 2009. “Agile Business Analysis in Flow: The Work of the Agile Analyst (Part 2).“
http://ebgconsulting.com/Pubs/Articles.

Grady, Robert B. 1999. “An Economic Release Decision Model: Insights into Software Project
Management.” In Proceedings of the Applications of Software Measurement Conference,
227–239. Orange Park, FL: Software Quality Engineering.

Grady, Robert B., and Tom Van Slack. 1994. “Key Lessons in Achieving Widespread Inspection
Use.” IEEE Software 11(4):46–57.

Graham, Dorothy. 2002. “Requirements and Testing: Seven Missing-Link Myths.” IEEE Software
19(5):15–17.

Grochow, Jerrold M. 2012. “IT Planning for Business Analytics.“ International Institute for
Analytics Brief.

Ham, Gary A. 1998. “Four Roads to Use Case Discovery: There Is a Use (and a Case) for Each
One.” CrossTalk 11(12):17–19.

Hammer, Michael, and Graham Champy. 2006. Reengineering the Corporation: A Manifesto for
Business Revolution. New York: HarperCollins.

Hardy, Terry L. 2011. Essential Questions in System Safety: A Guide for Safety Decision Makers.
Bloomington, IN: AuthorHouse.

Harmon, Paul. 2007. Business Process Change: A Guide for Business Managers and BPM and Six
Sigma Professionals, 2nd ed. Burlington, MA: Morgan Kaufmann Publishers, Inc.

Harrington, H. James. 1991. Business Process Improvement: The Breakthrough Strategy for Total
Quality, Productivity, and Competitiveness. New York: McGraw-Hill.

Haskins, B., J. Stecklein, D. Brandon, G. Moroney, R. Lovell, and J. Dabney. 2004. ‘‘Error
Cost Escalation through the Project Life Cycle.’’ In Proceedings of the 14th Annual
International Symposium of INCOSE. Toulouse, France. International Council on Systems
Engineering.

Hatley, Derek, Peter Hruschka, and Imtiaz Pirbhai. 2000. Process for System Architecture and
Requirements Engineering. New York: Dorset House Publishing.

Herrmann, Debra S. 1999. Software Safety and Reliability: Techniques, Approaches, and
Standards of Key Industrial Sectors. Los Alamitos, CA: IEEE Computer Society Press.

Hoffman, Cecilie, and Rebecca Burgess. 2009. “Use and Profit from Peer Reviews on Business
Requirements Documents.“ Business Analyst Times (September–December 2009).

Hofmann, Hubert F., and Franz Lehner. 2001. “Requirements Engineering as a Success Factor in
Software Projects.” IEEE Software 18(4):58–66.

http://ebgconsulting.com/Pubs/Articles

 References 611

Hooks, Ivy F., and Kristin A. Farry. 2001. Customer-Centered Products: Creating Successful
Products Through Smart Requirements Management. New York: AMACOM.

Hsia, Pei, David Kung, and Chris Sell. 1997. “Software Requirements and Acceptance Testing.”
In Annals of Software Engineering. 3:291–317.

Humphrey, Watts S. 1989. Managing the Software Process. Reading, MA: Addison-Wesley.

IEEE. 1998. “IEEE Std 1061-1998: IEEE Standard for a Software Quality Metrics Methodology.”
Los Alamitos, CA: IEEE Computer Society Press.

IFPUG. 2010. Function Point Counting Practices Manual, Version 4.3.1. Princeton Junction,
NJ: International Function Point Users Group.

IIBA. 2009. A Guide to the Business Analysis Body of Knowledge (BABOK Guide), Version 2.0.
Toronto: International Institute of Business Analysis.

 . 2010. IIBA Business Analysis Self-Assessment. Toronto: International Institute of
Business Analysis.

 . 2011. IIBA Business Analysis Competency Model, Version 3.0. Toronto: International
Institute of Business Analysis.

 . 2013. IIBA Agile Extension to the BABOK Guide, Version 1.0. Toronto: International
Institute of Business Analysis.

Imhoff, Claudia. 2005. “Charting a Smooth Course to BI Implementation.“ Intelligent Solutions,
Inc. http://www.sas.com/reg/wp/corp/3529.

INCOSE. 2010. “INCOSE Requirements Management Tools Survey.” http://www.incose.org/
productspubs/products/rmsurvey.aspx.

International Institute for Analytics. 2013. “Analytics 3.0.“ International Institute for Analytics.
http://iianalytics.com/a3.

ISO/IEC. 2007. “ISO/IEC 25030:2007, Software engineering—Software product Quality
Requirements and Evaluation (SQuaRE)—Quality Requirements.“ Geneva, Switzerland:
International Organization for Standardization.

 . 2011. “ISO/IEC 25010:2011, Systems and software engineering—Systems and software
Quality Requirements and Evaluation (SQuaRE)—System and software quality models.“
Geneva, Switzerland: International Organization for Standardization.

ISO/IEC/IEEE. 2011. “ISO/IEC/IEEE 29148:2011(E), Systems and software engineering—Life cycle
processes—Requirements engineering.“ Geneva, Switzerland: International Organization
for Standardization.

Jacobson, Ivar, Grady Booch, and James Rumbaugh. 1999. The Unified Software Development
Process. Reading, MA: Addison-Wesley.

Jacobson, Ivar, Magnus Christerson, Patrik Jonsson, and Gunnar Övergaard. 1992. Object-Oriented
Software Engineering: A Use Case Driven Approach. Harlow, England: Addison-Wesley.

Jarke, Matthias. 1998. “Requirements Tracing.” Communications of the ACM 41(12):32–36.

http://www.sas.com/reg/wp/corp/3529
http://www.incose.org/productspubs/products/rmsurvey.aspx
http://www.incose.org/productspubs/products/rmsurvey.aspx
http://iianalytics.com/a3

612 References

Jeffries, Ron, Ann Anderson, and Chet Hendrickson. 2001. Extreme Programming Installed.
Boston: Addison-Wesley.

Johnson, Jeff. 2010. Designing with the Mind in Mind: Simple Guide to Understanding User
Interface Design Rules. San Francisco, CA: Morgan Kaufmann Publishers, Inc.

Jones, Capers. 1994. Assessment and Control of Software Risks. Englewood Cliffs, NJ: Prentice
Hall PTR.

 . 1996a. “Strategies for Managing Requirements Creep.” IEEE Computer 29(6):92–94.

 . 1996b. Applied Software Measurement, 2nd ed. New York: McGraw-Hill.

 . 2006. “Social and Technical Reasons for Software Project Failures.“ CrossTalk 19(6):4–9.

Jung, Ho-Won. 1998. “Optimizing Value and Cost in Requirements Analysis.” IEEE Software
15(4):74–78.

Karlsson, Joachim, and Kevin Ryan. 1997. “A Cost-Value Approach for Prioritizing
Requirements.” IEEE Software 14(5):67–74.

Kavi, Krishna M., Robert Akl, and Ali R. Hurson. 2009. “Real-Time Systems: An Introduction
and the State-of-the-Art.“ Wiley Encyclopedia of Computer Science and Engineering,
2369–2377.

Keil, Mark, and Erran Carmel. 1995. “Customer-Developer Links in Software Development.”
Communications of the ACM 38(5):33–44.

Kelly, John C., Joseph S. Sherif, and Jonathon Hops. 1992. “An Analysis of Defect Densities
Found During Software Inspections.” Journal of Systems and Software 17(2):111–117.

Kerth, Norman L. 2001. Project Retrospectives: A Handbook for Team Reviews. New York: Dorset
House Publishing.

Kleidermacher, David, and Mike Kleidermacher. 2012. Embedded Systems Security: Practical
Methods for Safe and Secure Software and Systems Development. Waltham, MA: Elsevier Inc.

Koopman, Philip. 2010. Better Embedded Systems Software. Pittsburgh, PA: Drumnadrochit
Press.

Kosman, Robert J. 1997. “A Two-Step Methodology to Reduce Requirement Defects.” In Annals
of Software Engineering. 3:477–494.

Kovitz, Benjamin L. 1999. Practical Software Requirements: A Manual of Content and Style.
Greenwich, CT: Manning Publications Co.

Krug, Steve. 2006. Don‘t Make Me Think: A Common Sense Approach to Web Usability, 2nd ed.
Berkeley, CA: New Riders Publishing.

Kukreja, Nupul, Sheetal Swaroop Payyavula, Barry Boehm, and Srinivas Padmanabhuni. 2012.
“Selecting an Appropriate Framework for Value-Based Requirements Prioritization:
A Case Study.“ In Proceedings of the 20th IEEE International Requirements Engineering
Conference, 303–308. Los Alamitos, CA: IEEE Computer Society Press.

 References 613

Kulak, Daryl, and Eamonn Guiney. 2004. Use Cases: Requirements in Context, 2nd ed.
Boston: Addison-Wesley.

Larman, Craig. 1998. “The Use Case Model: What Are the Processes?” Java Report 3(8):62–72.

 . 2004. Agile and Iterative Development: A Manager‘s Guide. Boston: Addison-Wesley.

Larman, Craig, and Victor R. Basili. 2003. “Iterative and Incremental Development: A Brief
History.“ IEEE Computer 36(6):47–56.

Lauesen, Soren. 2002. Software Requirements: Styles and Techniques. London: Addison-Wesley.

Lavi, Jonah Z., and Joseph Kudish. 2005. Systems Modeling & Requirements Specification Using
ECSAM: An Analysis Method for Embedded and Computer-Based Systems. New York:
Dorset House Publishing.

Lawlis, Patricia K., Kathryn E. Mark, Deborah A. Thomas, and Terry Courtheyn. 2001. “A Formal
Process for Evaluating COTS Software Products.” IEEE Computer 34(5):58–63.

Lawrence, Brian. 1996. “Unresolved Ambiguity.” American Programmer 9(5):17–22.

 . 1997. “Requirements Happens. . .” American Programmer 10(4):3–9.

Lazar, Jonathan. 2001. User-Centered Web Development. Sudbury, MA: Jones and Bartlett
Publishers.

Leffingwell, Dean. 1997. “Calculating the Return on Investment from More Effective
Requirements Management.” American Programmer 10(4):13–16.

 . 2011. Agile Software Requirements: Lean Requirements Practices for Teams, Programs,
and the Enterprise. Upper Saddle River, NJ: Addison-Wesley.

Leffingwell, Dean, and Don Widrig. 2000. Managing Software Requirements: A Unified
Approach. Reading, MA: Addison-Wesley.

Leishman, Theron R., and David A. Cook. 2002. “Requirements Risks Can Drown Software
Projects.” CrossTalk 15(4):4–8.

Leveson, Nancy. 1995. Safeware: System Safety and Computers. Reading, MA: Addison-Wesley.

Lilly, Susan. 2000. “How to Avoid Use-Case Pitfalls.” Software Development 8(1):40–44.

Martin, Johnny, and W. T. Tsai. 1990. “N-fold Inspection: A Requirements Analysis Technique.”
Communications of the ACM 33(2):225–232.

Mavin, Alistair, Philip Wilkinson, Adrian Harwood, and Mark Novak. 2009. “EARS (Easy
Approach to Requirements Syntax).“ In Proceedings of the 17th International Conference
on Requirements Engineering, 317–322. Los Alamitos, CA: IEEE Computer Society Press.

McConnell, Steve. 1996. Rapid Development: Taming Wild Software Schedules. Redmond,
WA: Microsoft Press.

 . 1997. “Managing Outsourced Projects.“ Software Development 5(12):80, 78–79.

 . 1998. Software Project Survival Guide. Redmond, WA: Microsoft Press.

614 References

 . 2004. Code Complete: A Practical Handbook of Software Construction, 2nd ed.
Redmond, WA: Microsoft Press.

 . 2006. Software Estimation: Demystifying the Black Art. Redmond, WA: Microsoft Press.

McGraw, Karen L., and Karan Harbison. 1997. User-Centered Requirements: The Scenario-Based
Engineering Process. Mahwah, NJ: Lawrence Erlbaum Associates.

Miller, Roxanne E. 2009. The Quest for Software Requirements. Milwaukee, WI: MavenMark
Books.

Moore, Geoffrey A. 2002. Crossing the Chasm: Marketing and Selling High-Tech Products to
Mainstream Customers. New York: HarperBusiness.

Morgan, Matthew. 2009. “Requirements Definition for Outsourced Teams.“ Business Analyst
Times. http://www.batimes.com/articles/requirements-definition-for-outsourced-teams
.html.

Morgan, Tony. 2002. Business Rules and Information Systems: Aligning IT with Business Goals.
Boston: Addison-Wesley.

Musa, John D. 1996. “Software-Reliability-Engineered Testing.” IEEE Computer 29(11):61–68.

 . 1999. Software Reliability Engineering. New York: McGraw-Hill.

NASA. 2009. “NPR 7150.2A: NASA Software Engineering Requirements.“ http://nodis3.gsfc
.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_002A_&page_name=AppendixA.

Nejmeh, Brian A., and Ian Thomas. 2002. “Business-Driven Product Planning Using Feature
Vectors and Increments.” IEEE Software 19(6):34–42.

Nelsen, E. Dale. 1990. “System Engineering and Requirement Allocation.” In System and
Software Requirements Engineering, Richard H. Thayer and Merlin Dorfman, eds.
Los Alamitos, CA: IEEE Computer Society Press.

Nielsen, Jakob. 2000. Designing Web Usability. Indianapolis, IN: New Riders Publishing.

OMG. 2011. Business Process Model and Notation (BPMN) version 2.0. Object Management
Group. http://www.omg.org/spec/BPMN/2.0.

Pardee, William J. 1996. To Satisfy & Delight Your Customer: How to Manage for Customer
Value. New York: Dorset House Publishing.

Patel, T., and James Taylor. 2010. “Business Analytics 101: Unlock the Business Intelligence Hidden
in Company Databases.“ http://www.sas.com/resources/whitepaper/wp_28372.pdf.

Patterson, Kelly, Joseph Grenny, Ron McMillan, and Al Switzler. 2011. Crucial Conversations:
Tools for Talking When Stakes are High, 2nd ed. New York: McGraw-Hill.

Peterson, Gary. 2002. “Risqué Requirements.” CrossTalk 15(4):31.

Pichler, Roman. 2010. Agile Product Management with Scrum: Creating Products that Customers
Love. Upper Saddle River, NJ: Addison-Wesley.

http://www.batimes.com/articles/requirements-definition-for-outsourced-teams.html
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_002A_&page_name=AppendixA
http://www.omg.org/spec/BPMN/2.0
http://www.sas.com/resources/whitepaper/wp_28372.pdf
http://www.batimes.com/articles/requirements-definition-for-outsourced-teams.html
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_002A_&page_name=AppendixA

 References 615

PMI. 2013. A Guide to the Project Management Body of Knowledge: PMBOK Guide, 5th ed.
Newtown Square, PA: Project Management Institute.

Podeswa, Howard. 2009. The Business Analyst‘s Handbook. Boston: Course Technology.

 . 2010. UML for the IT Business Analyst: A Practical Guide to Requirements Gathering
Using the Unified Modeling Language, 2nd ed. Boston: Course Technology.

Porter, Adam A., Lawrence G. Votta, Jr., and Victor R. Basili. 1995. “Comparing Detection
Methods for Software Requirements Inspections: A Replicated Experiment.” IEEE
Transactions on Software Engineering 21(6):563–575.

Porter-Roth, Bud. 2002. Request for Proposal: A Guide to Effective RFP Development.
Boston: Addison-Wesley.

Poston, Robert M. 1996. Automating Specification-Based Software Testing. Los Alamitos,
CA: IEEE Computer Society Press.

Potter, Neil S., and Mary E. Sakry. 2002. Making Process Improvement Work: A Concise Action
Guide for Software Managers and Practitioners. Boston: Addison-Wesley.

Pugh, Ken. 2011. Lean-Agile Acceptance Test-Driven Development: Better Software Through
Collaboration. Upper Saddle River, NJ: Addison-Wesley.

Putnam, Lawrence H., and Ware Myers. 1997. Industrial Strength Software: Effective
Management Using Measurement. Los Alamitos, CA: IEEE Computer Society Press.

Radice, Ronald A. 2002. High Quality Low Cost Software Inspections. Andover, MA: Paradoxicon
Publishing.

Ramesh, Bala, Curtis Stubbs, Timothy Powers, and Michael Edwards. 1995. “Lessons Learned
from Implementing Requirements Traceability.” CrossTalk 8(4):11–15, 20.

Rettig, Marc. 1994. “Prototyping for Tiny Fingers.” Communications of the ACM 37(4):21–27.

Rierson, Leanna. 2013. Developing Safety-Critical Software: A Practical Guide for Aviation
Software and DO-178C Compliance. Boca Raton, FL: CRC Press.

Robertson, James. 2002. “Eureka! Why Analysts Should Invent Requirements.” IEEE Software
19(4):20–22.

Robertson, James, and Suzanne Robertson. 1994. Complete Systems Analysis: The Workbook,
the Textbook, the Answers. New York: Dorset House Publishing.

Robertson, Suzanne, and James Robertson. 2013. Mastering the Requirements Process: Getting
Requirements Right, 3rd ed. Upper Saddle River, NJ: Addison-Wesley.

Rose-Coutré, Robert. 2007. “Capturing Implied Requirements.“ http://www.stickyminds.com/s
.asp?F=S12998_ART_2.

Ross, Ronald G. 1997. The Business Rule Book: Classifying, Defining, and Modeling Rules, Version
4.0, 2nd ed. Houston: Business Rule Solutions, LLC.

 . 2001. “The Business Rules Classification Scheme.” DataToKnowledge Newsletter 29(5).

http://www.stickyminds.com/s.asp?F=S12998_ART_2
http://www.stickyminds.com/s.asp?F=S12998_ART_2

616 References

Ross, Ronald G., and Gladys S. W. Lam. 2011. Building Business Solutions: Business Analysis with
Business Rules. Houston: Business Rule Solutions, LLC.

Rothman, Johanna. 2000. Reflections Newsletter 3(1).

Royce, Winston. 1970. “Managing the Development of Large Software Systems.“ In Proceedings
of IEEE WESCON 26, 1–9.

Rozanski, Nick, and Eoin Woods. 2005. Software Systems Architecture: Working with
Stakeholders Using Viewpoints and Perspectives. Upper Saddle River, NJ: Pearson
Education, Inc.

Rubin, Jeffrey, and Dana Chisnell. 2008. Handbook of Usability Testing: How to Plan, Design, and
Conduct Effective Tests, 2nd ed. Indianapolis, IN: Wiley Publishing, Inc.

Scalable Systems. 2008. “How Big is Your Data?“ http://www.scalable-systems.com/whitepaper/
Scalable_WhitePaper_Big_Data.pdf.

Schneider, G. Michael, Johnny Martin, and W. T. Tsai. 1992. “An Experimental Study of Fault
Detection in User Requirements Documents.” ACM Transactions on Software Engineering
and Methodology 1(2):188–204.

Schonberger, Richard. J. 2008. Best Practices in Lean Six Sigma Process Improvement: A Deeper
Look. Hoboken, NJ: John Wiley & Sons, Inc.

Schwaber, Ken. 2004. Agile Project Management with Scrum. Redmond, WA: Microsoft Press.

Schwarz, Roger. 2002. The Skilled Facilitator: A Comprehensive Resource for Consultants,
Facilitators, Managers, Trainers, and Coaches. San Francisco, CA: Jossey-Bass.

Seilevel. 2011. “Seilevel Requirements Management Tool Evaluation Results.” http://www.seilevel
.com/wp-content/uploads/2011/09/Seilevel-RequirementsManagementToolEvalResults2.xls.

 . 2012. “Seilevel Project Assessment.” http://www.seilevel.com/wp-content/uploads/
Project_Assessments_Template.xls.

Sharp, Alec, and Patrick McDermott. 2008. Workflow Modeling: Tools for Process Improvement
and Application Development. Norwood, Massachusetts: Artec, Inc.

Shehata, Mohammed S., Armin Eberlein, and H. James Hoover. 2002. ”Requirements Reuse and
Feature Interaction Management.” In Proceedings of the 15th International Conference
on Software & Systems Engineering and their Applications. Paris.

Shull, F., V. Basili, B. Boehm., A. W. Brown, A. Costa, M. Lindvall, D. Port, I. Rus, R. Tesoriero, and
M. Zelkowitz. 2002. “What We Have Learned About Fighting Defects.” In Proceedings
of the Eighth IEEE Symposium on Software Metrics, 249–258. Ottawa, Canada. IEEE
Computer Society Press.

Sibbet, David. 1994. Effective Facilitation: Achieving Results with Groups. San Francisco, CA: The
Grove Consultants International.

http://www.scalable-systems.com/whitepaper/Scalable_WhitePaper_Big_Data.pdf
http://www.scalable-systems.com/whitepaper/Scalable_WhitePaper_Big_Data.pdf
http://www.seilevel.com/wp-content/uploads/2011/09/Seilevel-RequirementsManagementToolEvalResults2.xls
http://www.seilevel.com/wp-content/uploads/Project_Assessments_Template.xls
http://www.seilevel.com/wp-content/uploads/Project_Assessments_Template.xls
http://www.seilevel.com/wp-content/uploads/2011/09/Seilevel-RequirementsManagementToolEvalResults2.xls

 References 617

Simmons, Erik. 2001. “From Requirements to Release Criteria: Specifying, Demonstrating, and
Monitoring Product Quality.” In Proceedings of the 2001 Pacific Northwest Software
Quality Conference, 155–165. Portland, OR: Pacific Northwest Software Quality
Conference.

Smith, Larry W. 2000. “Project Clarity Through Stakeholder Analysis.” CrossTalk 13(12):4–9.

Sommerville, Ian, and Pete Sawyer. 1997. Requirements Engineering: A Good Practice Guide.
Chichester, England: John Wiley & Sons Ltd.

Sorensen, Reed. 1999. “CCB—An Acronym for ‘Chocolate Chip Brownies’? A Tutorial on Control
Boards.” CrossTalk 12(3):3–6.

The Standish Group. 2009. “Chaos Summary 2009.“ West Yarmouth, MA: The Standish Group
International, Inc.

Stevens, Richard, Peter Brook, Ken Jackson, and Stuart Arnold. 1998. Systems Engineering:
Coping with Complexity. London: Prentice Hall.

Taylor, James. 2012. “Decision Discovery for a Major Business Function.“ International Institute
for Analytics Research Brief.

 . 2013. “Using Decision Discovery to Manage Analytic Project Requirements.“
International Institute for Analytics Research Brief.

Thayer, Richard H. 2002. “Software System Engineering: A Tutorial.” IEEE Computer 35(4):68–73.

Thomas, Steven. 2008. “Agile Change Management.“ http://itsadeliverything.com/agile-change-
management.

Thompson, Bruce, and Karl Wiegers. 1995. “Creative Client/ Server for Evolving Enterprises.”
Software Development 3(2):34–44.

Van Veenendaal, Erik P. W. M. 1999. “Practical Quality Assurance for Embedded Software.“
Software Quality Professional 1(3):7–18.

Voas, Jeffrey. 1999. “Protecting Against What? The Achilles Heel of Information Assurance.”
IEEE Software 16(1):28–29.

Volere. 2013. “Requirements Tools.” http://www.volere.co.uk/tools.htm.

von Halle, Barbara. 2002. Business Rules Applied: Building Better Systems Using the Business
Rules Approach. New York: John Wiley & Sons, Inc.

von Halle, Barbara, and Larry Goldberg. 2010. The Decision Model: A Business Logic Framework
Linking Business and Technology. Boca Raton, FL: Auerbach Publications.

Wallace, Dolores R., and Laura M. Ippolito. 1997. “Verifying and Validating Software
Requirements Specifications.” In Software Requirements Engineering, 2nd ed., Richard
H. Thayer and Merlin Dorfman, eds., 389–404. Los Alamitos, CA: IEEE Computer Society
Press.

Wasserman, Anthony I. 1985. “Extending State Transition Diagrams for the Specification of Human-
Computer Interaction.” IEEE Transactions on Software Engineering SE-11(8):699–713.

http://itsadeliverything.com/agile-change-management
http://itsadeliverything.com/agile-change-management
http://www.volere.co.uk/tools.htm

618 References

Weinberg, Gerald M. 1995. “Just Say No! Improving the Requirements Process.” American
Programmer 8(10):19–23.

Wiegers, Karl E. 1996. Creating a Software Engineering Culture. New York: Dorset House
Publishing.

 . 1998a. “The Seven Deadly Sins of Software Reviews.” Software Development 6(3):44–47.

 . 1998b. “Improve Your Process With Online ‘Good Practices’.” Software Development
6(12):45–50.

 . 1999. “Software Process Improvement in Web Time.” IEEE Software 16(4):78–86.

 . 2000. “The Habits of Effective Analysts.” Software Development 8(10):62–65.

 . 2002. Peer Reviews in Software: A Practical Guide. Boston: Addison-Wesley.

 . 2003. “See You in Court.” Software Development 11(1):36–40.

 . 2006. More About Software Requirements: Thorny Issues and Practical Advice.
Redmond, WA: Microsoft Press.

 . 2007. Practical Project Initiation: A Handbook with Tools. Redmond, WA: Microsoft
Press.

 . 2011. Pearls from Sand: How Small Encounters Lead to Powerful Lessons.
New York: Morgan James Publishing.

Wiley, Bill. 2000. Essential System Requirements: A Practical Guide to Event-Driven Methods.
Reading, MA: Addison-Wesley.

Williams, Ray C., Julie A. Walker, and Audrey J. Dorofee. 1997. “Putting Risk Management into
Practice.” IEEE Software 14(3):75–82.

Wilson, Peter B. 1995. “Testable Requirements—An Alternative Sizing Measure.” The Journal of
the Quality Assurance Institute 9(4):3–11.

Withall, Stephen. 2007. Software Requirement Patterns. Redmond, WA: Microsoft Press.

Wood, Jane, and Denise Silver. 1995. Joint Application Development, 2nd ed. New York: John
Wiley & Sons, Inc.

Young, Ralph R. 2001. Effective Requirements Practices. Boston: Addison-Wesley.

 . 2004. The Requirements Engineering Handbook. Norwood, MA: Artech House.

Index

 619

A
acceptance criteria, defined, 597
acceptance criteria, defining, 53, 347–349, 420
acceptance tests, 330, 347, 348–349

agile projects, 146–147, 153, 161
defined, 597
project planning and, 377–379
quality attributes, 293–294
requirements and, 519

action enablers, 171–172
action plan, process improvement, 527–528
active voice, 210
activity diagrams, 153, 225, 243, 423, 597
actor, 144, 145, 147–148, 597
agile development

acceptance criteria, 348
acceptance tests, 377, 386
adapting requirements practices for, 390–391
backlog, 387, 489
business analyst role, 71–72
change management, 389, 488–490
customer involvement, 386
defined, 597
documentation, 386
epics, user stories, and features, 388–389
estimating effort, project planning, 370–371
evolutionary prototypes, 299–300, 309
modeling on, 243–244
overview of, 381–383, 385, 387–388
priorities, setting of, 314, 387
product backlog, 387, 489
product owner, 63, 71–72, 115–116, 386, 391, 601
quality attributes, 293–294
reaching agreement on requirements, 41
requirements management, 468–470
requirements specification, 199–201, 386

use cases, 152–153
user representation, 115–116
user stories, 145–147
vision and scope in, 98–99

agreement, reaching on requirements, 38–41
allocation, requirements, 51, 373, 440–441, 532
alternative flows, use case, 152–153, 155–156, 597
ambiguity, avoiding, 205, 213–216
analysis models, 199. See also models
analysis, requirements. See also models; also priorities,

setting of
defined, 597
good practices, 50–51
overview of, 15–16
risk factors, 544
troubleshooting problems, 567–569

analyst. See business analyst (BA)
application, 4
application analyst. See business analyst (BA)
architecture, 373–374

architecture diagram, real-time projects, 445–446
defined, 597
embedded and real-time systems projects, 440–441
requirements and, 373–374

assessment, current requirements practice, 551–557
assets, requirements engineering process, 530–533
assumption, defined, 597
assumptions, business requirements, 88, 577
assumed requirements, 140–141
assumptions, SRS document, 194, 586
atomic business rules, 174–175
attributes, requirement, 462–463. See also quality attributes

defined, 601
requirements management tools and, 507

augmentability requirements. See modifiability requirements
author, inspection team role, 334, 336–338
availability requirements, 267–269, 274–275, 594

620

BA

B
BA. See business analyst (BA)
backlog, 387, 460, 468–470, 489, 597
baseline, requirements, 39–41, 53, 185, 458, 459–460,

461–462, 463, 465, 597. See also change
management

Beatty, Joy, 225, 322, 495
Beizer, Boris, 379
best practices. See good practices
big data, 433, 597
Bill of Responsibilities for Software Customers,

Requirements, 30, 33–36
Bill of Rights for Software Customers, Requirements,

30–33
boundary values, ambiguity around, 215
Box, George E. P., 7
BPMN, 422
Brooks, Frederick, 18
Brosseau, Jim, 264
Brown, Nanette, 41
Burgess, Rebecca, 338
burndown chart, 466, 469–470
business analyst (BA). See also elicitation, requirements

development; also good practices; also
project planning

agile projects, 71–72
background of, 68–71
collaborative teams, creating, 72–73
decision makers, identifying, 38
defined, 598
knowledge and training, 54–55, 68–71
overview, 61
professional organizations for, xxv
reaching agreement on requirements, 38–41
roles and responsibilities, 12–13, 62–64, 459
skills required, 65–67
software requirements specification (SRS), 9
stakeholder analysis, 26–29
transitioning to agile projects, 390–391

business analytics projects
data needs, specifying, 432–435
data transformation analyses, 435–436
data, management of, 434–435
evolving nature of, 436–437
information use requirements, 431–432
overview, 427–429
prioritizing work, 430–431
requirement elicitation, overview, 429–430

business analytics system, defined, 598
business case document, 81. See also vision and

scope document
business context, 90–92
business events

as scoping tool, 96
defined, 240
event-response tables, 240–242
identifying, 48–49

business intelligence. See business analytics projects
business interests, 80
business objectives, 77–79

defined, 84–85, 598
business objectives model, defined, 598

example, 86
business opportunity, 83
business process automation projects, 421–426
business process, defined, 168

business process analysis (BPA), 422
business process improvement (BPI), 422
business process management (BPM), 422
business process model and notation (BPMN), 422
business process reengineering (BPR), 422
good requirements practices, 426
modeling, 422–424
overview, 421
performance metrics, modeling, 424–426

business process flows, 225, 423, 425
business reporting. See business analytics projects
business requirements. See also vision and scope

document
agile projects, scope and vision, 98–99
assumptions, and dependencies, 88
business context, 90–92
business objectives, 84–85
business opportunity, 83
business requirements section, vision and scope

document, 83–88
business risks, 88
conflicting, 80–81
defined, 7–8, 78, 598
identifying and defining requirements, 78–81
judging completion with, 99
overview, 77
scope and limitations, 88–90
scope management, 97–98
scope representation techniques, 92–96
success metrics, 85–86
vision and scope document, overview, 81–88

 621

 communication

vision and scope document, sample, 576–580
vision statement, 87–88
vs. business rules, 168

business requirements document (BRD). See software
requirements specification (SRS)

business risks, 88, 577
business rules

action enablers, 171–172
atomic business rules, 174–175
computations, 173–174
constraints, 170–173
customer input, 136
defined, 7, 10, 169, 598
discovering, 177–178
documenting, 175–177
enhancement and replacement projects, 395
facts, 170
good practices, 52
importance of, 167–169
inferences, 173
packaged solution projects, 407
requirements and, 178–180
safety requirements and, 276–277
sample, 595
taxonomy of, 169
use cases and, 156–157

business systems analyst. See business analyst (BA)

C
cardinality, 247, 598
cause-and-effect diagram, 525–526
change control. See change management
change control board (CCB)

charter for, 481
defined, 598
good practices, 53
overview of, 480–482, 533

change management
agile projects, 389, 488–490
change control board, overview of, 480–482
change control policies, 474
change control process, 474–479, 533
change impact analysis, 484–488, 494, 533
customer rights and responsibilities, 32, 36
frequency of changes, 483
good practices, 53–54
impact analysis, 53, 484–488, 494, 533
measuring change activity, 483–484
origin of changes, 483–484

outsourced projects, 419
overview, 471–472
requirements and, 519
scope management, 97–98, 472–473
tools for, 482, 506–510
troubleshooting problems, 572–574

change request, 474, 476–484
characteristics of excellent requirements, 203–207
charter, project, 81. See also vision and scope document
checklists

change impact analysis, 485–486
defects, for requirements reviews, 338–339
defined, 530

Chen, Anthony, 225, 322, 495
Chen, Peter, 246
class diagrams, 225, 243, 248, 598
class, defined, 598
classifying business rules, 169–174
classifying customer input, 135–138
cloud solutions. See packaged solution projects
coding, project planning for, 373–377
Cohn, Mike, 388
collaborative teams. See also communication; also

elicitation, requirements development
agile projects, 386
business analyst role, 72–73
customers and development, 29–30, 31, 35, 36–37
outsourced projects, 415–416, 418–419
workshops, 122–125

commercial off-the-shelf (COTS) products, defined,
598. See also packaged solution projects

commitment, to process change, 521–522
communication. See also customers; also

documenting requirements
adoption of new systems, promoting, 401–402
assumed and implied requirements, 140–141
business analyst role, 62–66
business analytics projects, 436–437
business process automation projects, 423–424
change control policies, 474
collaborative culture, creating, 36–37
conflicting requirements, resolution of, 116–117
elicitation activities, follow-up, 134–135
outsourced projects, 415–419
pathways for requirements, 108–109
product champions, 109–114
project planning estimates, 366–369
reaching agreement on requirements, 38–41
requirements development tools, 505–506
requirements management tools, 506–510

622

communications interfaces

requirements tools, 504–505, 511
tracking effort, 467–468

COTS (commercial off-the-shelf) products.
See packaged solution projects

defined, 598
cross-functional diagrams. See swimlane diagrams
CRUD matrix, 251–252, 598
cultural differences, outsourced projects, 418–419
culture, organizational

creating respect for requirements, 36–37
process improvement fundamentals, 522–524
requirements tools and, 513
resistance to change, 521–522

current practices, assessing, 526–527, 551–557
customer input, classifying, 135–138
customers. See also communication; also

stakeholders; also users
agile projects, 386
collaborative culture, creating, 36–37
customer input, classifying, 135–138
decision makers, identifying, 38
defining, 27–29, 598
expectation gap, 26–27
reaching agreement on requirements, 38–41
relationships with, overview, 25–26
Requirements Bill of Responsibilities for, 30, 33–36
Requirements Bill of Rights for, 30–33
stakeholders and, 27–29

cyclomatic complexity, 286

D
DAR (display-action-response) models, 375–377
dashboard reporting, 257–258, 431–432, 598
data analysis, requirements, 251–252. See also data

requirements
business analytics projects, 432–435
defining, business analytic projects, 435–436
enhancement and replacement projects, 400
packaged solution projects, 407

data definitions, models for, 225
data dictionaries, 248–251

business analytics projects, 433
defined, 598
good practices, 50
sample, 589
SRS document, 195
use cases and, 164

communication. See also customers; also documenting
requirements, continued

software requirement specification (SRS), good
practices, 185–186

tracking requirements status, 464–466
troubleshooting problems, 564
user representatives, 108–109
writing style, requirement documentation, 208–211

communications interfaces, 197
communication protocols, requirements for, 271–272
completeness

of requirement sets, 206
of requirement statements, 204

composition, data element, 249–250
computations, business rules, 173–174
configuration requirements, COTS, 411
conflict management, 125
conflicts

resolving between stakeholder groups, 116–117
resolving between user classes, 103, 117

consistent requirements, 206
Constantine, Larry, 235
constraints

business rules, 170–173
customer input, 137
defined, 7, 10, 91, 598
design and implementation, 193, 586
quality attributes and, 291–292
real-time and embedded projects, 453

construction, requirements and, 519
context diagrams

data flow diagrams and, 227–230
defined, 598
enhancement and replacement projects, 395,

400–401
real-time projects, 442
scope representation techniques, 92–93
system external interfaces, 225

correct requirements, 204
cost. See also priorities, setting of

change impact analysis, 484–488
feasibility analysis, 50
of correcting defects, 19–20
outsourced projects, 416, 418–419
prioritizing requirements and, 315, 317, 322–326
quality attribute requirements, 268, 288–290
requirement reuse, benefits of, 351–352
requirements management, 463

 623

 documenting requirements

dialog maps
defined, 599
enhancement and replacement projects, 395,

400–401
good practices, 51
overview of, 235–238
testing and, 344–346
wireframes, 299

disfavored user classes, 103–104
display-action-response (DAR) model, 375–377
document analysis, 128–129, 177
document, use of term, 8
documentation. See also data dictionary; also vision

and scope document
agile projects, 386
business analyst task, 64
business rules, documenting, 175–177
document analysis, good practices, 49
elicitation activities, follow-up, 134–135
elicitation activities, notes from, 133
enhancement and replacement projects,

395, 398–401
interface specifications, 446–447
outsourced projects, requirements details, 416–417
project risks, 539–541
requirement patterns, 358–359
requirements engineering process assets,

530–533
requirements process and, 518–520
requirements repositories, 359–360, 362–364
requirements reuse, 354–355
requirements, good practices, 51–52
templates, requirements documents, 51
user documentation, 519–520

documenting requirements. See also models
agile projects, 199–201
ambiguity, avoiding, 213–216
before and after examples, 217–220
characteristics of excellent requirements, 204–207
labeling requirements, 186–188
level of detail, 211–212
overview, 181–183
representation techniques, 212–213
software requirements specification (SRS),

183–190
SRS template, 190–199
system or user perspective, 207–208
use case template, 150

data field definitions, 226
data flow diagrams (DFD), 226–230

defined, 598
enhancement and replacement projects, 400–401
uses for, 225

data modeling, 245–248
enhancement and replacement projects, 395

data object relationships, models for, 225
data requirements. See also business analytics

projects
COTS implementation, 412
customer input, 137
dashboard reporting, 257–258
data analysis, overview, 251–252
data dictionary, overview of, 248–251
data integrity requirements, 270–271
management and use requirements, 434–435
modeling data relationships, 245–248
overview, 245
packaged solution projects, 412
sample, 589–592
security requirements, 277–279
specifying reports, 252–256
SRS document, 195

Davis, Alan, 315
decision makers, identifying, 38
decision rule, 38, 598
decision tables, 226, 239–240, 598
decision trees, 51, 226, 239–240, 599
defect checklist for requirements reviews, 338–339
defects, cost of correcting, 19–20
degree of freedom, defined, 91
delivery dates, 372
dependencies, business requirements, 88, 577
dependencies, SRS document, 194, 586
dependency, defined, 599
deployment considerations, vision and scope

document, 92, 580
deriving requirements

from business rules, 178–180
from models, 223
from nonfunctional requirements, 290
from system requirements, 440–441
from use cases, 160, 162

design, requirements and, 373–377
detail, level of requirements, 211–212, 386
development life cycle, good practices, 56
DFD. See data flow diagrams

624

documents, limitations of

risk factors, 543–544
robustness requirements, 275
safety requirements, 277
scalability requirements, 285
scope creep, managing, 473
security requirements, 277–279
system interface analysis, 127–128
tips for performing, 132–134
tools for, 505
troubleshooting problems, 565–566
usability requirements, 280
user interface analysis, 128
verifiability requirements, 287
workshops, 122–125

embedded systems projects
defined, 599
interfaces, 446–447
modeling, 441–446
overview, 439, 453–454
quality attributes, 449–453
system requirements, architecture, and

allocation, 440–441
timing requirements, 447–449

end users. See users
enhancement projects

adoption of new system, 401–402
iteration and, 402–403
lack of existing documentation, 398–401
overview of, 393–394
prioritizing using business objectives, 396–397
requirements techniques, 394–395

entity, 246–247, 251–252, 599
entity-relationship diagrams

business analytics projects, 433
defined, 599
enhancement and replacement projects, 400–401
good practices, 51
modeling data relationships, 225, 245–248

entry criteria
for change control, 475, 478
for inspections, 335

environment, real-time systems, 449–453
epics, 388–389, 599
error handling, real-time systems, 450–452
estimation. See also project planning

project size and effort, 370–372
requirements effort, 366–369

evaluating packaged solutions, 408–410
evaluating process improvement efforts, 529–530

documenting requirements. See also models, continued
vision and scope document template, 81–92
writing style, 208–211

documents, limitations of, 1–2, 503–504
driver, defined, 91
Dyché, Jill, 433

E
ecosystem maps, 50, 94, 225, 395, 599
educating stakeholders and developers, 44, 55, 58
efficiency requirements, 281–282, 450
effort estimates, 370–372, 467–468. See also project

planning
electronic prototypes, 301–303
elicitation, requirements, 16, 119–142. See also use

cases; also user stories
assumed and implied requirements, 140–141
availability requirements, 268–269
business analytics projects, 429–430
business process automation, 422–424
business rules, discovering, 177
cautions about, 139–140
completion of process, 138–139
customer input, classifying, 135–138
defined, 599
document analysis, 128–129
efficiency requirements, 282
focus groups, 124–125
follow-up activities, 134–135
framework for, 45–47
good practices, 44, 48–49
installability requirements, 270
interoperability requirements, 272
interviews, 121–122
missing requirements, identifying, 141–142, 222,

225, 227, 236, 238, 346
observations, 125–126
overview, 119–121
performance requirements, 266
planning for, 129–130
portability requirements, 284
preparing for, 130–132
quality attributes, 263–266
questionnaires, 127
reliability requirements, 274–275
reporting requirements, 253–254
reusability requirements, 284–285

 625

 functional requirements

recovery, 451
tolerance, 275–276, 450–452

fault tree analysis, 452
favored user classes, 103, 117
feasibility analysis, 50
feasible requirements, 204
Feature Driven Development. See agile development
feature trees, 11, 95–96, 395, 599
features

agile projects, 388–389
defined, 7, 11, 599
enhancement and replacement projects, 395–397
example, 95, 578
gap analysis, 396–397
packaged solution projects, 406–410
prioritizing, 50
requirements reuse, 356–358
risk management, 544
SRS document, 194
SRS document, sample, 586–588
vision and scope document, 89–90

finding missing requirements, 141–142, 222, 225, 227,
236, 238, 346

fishbone diagram, 525–526
fit criteria, 267, 330
flexibility requirements. See modifiability

requirements
flow diagrams, business process, 225, 423, 425
flowcharts, 153, 225, 226, 230, 236, 425, 599
flows, data, 92–93, 226–229
focus groups, 48, 108–109, 124–125
formal reviews. See inspections
function point, 370, 599
functional requirements

architecture design, project planning and, 373–374
business analytic projects, 435–436
business rules and, 180
customer input, 136
defined, 7, 9, 599
deriving, from business rules, 178–180
deriving, from models, 223
deriving, from nonfunctional requirements, 290
deriving, from system requirements, 440–441
deriving, from use cases, 160, 162
enhancement and replacement projects, 396–397
missing, 141–142, 222, 225, 227, 236, 238, 346
prioritizing, 50, 315, 318, 319, 324
requirement levels and types, 7–13
reusing, 356–358
specification of, 209–219

events
as scoping tool, 96
defined, 599
event list, 96

event-response tables, 9, 226, 240–242, 443–444,
599. See also user requirements

identifying, good practices, 48–49
evolutionary prototypes, 298–300, 342, 599. See also

prototypes
excellent requirements, characteristics of, 203–207
exception handling, 152–153, 275
exceptions, use cases, 147, 151, 152–153, 159
exception, defined, 599
execution time, 447
exit criteria

for change control, 475, 479
for inspections, 338

expectation gap, 26–27, 102, 295
extend relationship, use cases, 155–156, 599
extensibility requirements. See modifiability

requirements
extension requirements, COTS, 412
external entities, 92–93, 227–228, 271–272, 599
external events, 48–49, 92–93
external interface requirements

customer input, 137
defined, 7, 599
SRS document, 196–197
SRS document, sample, 592–593

Extreme Programming. See agile development

F
facilitation

business analyst skills, 66
completing elicitation sessions, 138–139
elicitation activities, cautions about, 139–140
elicitation activities, follow-up, 134–135
elicitation activities, performing, 132–134
focus groups, 124–125
preparing for elicitation, 130–132
workshops, 122–125

facilitator, defined, 599
facts, business rules, 170
Fagan, Michael, 333
fault

detection, 451
logging, 451
prevention, 451

626

functional specification

Hardy, Terry, 452
hazard analysis, 452
Herrmann, Debra, 452
hierarchical textual tags, 179, 187–188, 288, 587–588
high-resolution prototypes, 226
history of requirements changes, 54
Hoffman, Cecilie, 338
horizontal prototype, 297–298, 600. See also

prototypes
hundred-dollar approach, prioritization, 321–322

I
identifiers, SRS documents, 186–188
IIBA (International Institute for Business Analysis), xxv
impact analysis, requirements changes, 53, 484–488,

494, 533
implied requirements, 140
in-or-out prioritization, 318
include relationships, use cases, 155–156, 600
incompleteness, in requirements documents,

188–189, 216–217
inferences, business rules, 173
initial release, scope of, 89–90
inspections, 52, 332–342, 600. See also peer reviews
installability requirements, 269–270
integration requirements, COTS, 412
integrity requirements, 270–271, 408
interfaces

analyzing, good practices, 51
architecture diagrams, 445–446
customer input, 137
dialog maps, 235–238
embedded projects, 446–447, 453
enhancement and replacement projects, 400–401
external interface requirements, 7, 10, 196–197,

592–593, 599
functional requirements, defined, 10
interface specification document, 447
mock-ups, 297–298
models for, 225–226
prototypes, 50, 299
real-time projects, 446–447, 453
SRS document, 189–190, 196–197
SRS document, sample, 592–593
system interface analysis, 127–128
user interface analysis, 128

internationalization requirements, 198

functional requirements, continued
use cases and, 160, 161–163
writing, 209–219

functional specification. See software requirements
specification (SRS)

G
gap analysis, 396–397, 412, 599
Gause, Donald, 105
Gilb, Tom, 187, 287, 600
glossary

good practices, 55, 199
reuse of, 353, 356, 364

goals, business. See business objectives
goals, requirements process improvement, 533–535
gold plating, 21, 600
good practices

ambiguous terms, avoiding, 213–216
analysis, 50–51
application of, 57–58
elicitation, 48–49
inspections, 333, 339–342
knowledge, 54–55
overview, 43–45
project management, 56–57
project planning, 379–380
prototypes, 310
reporting specifications, 254–255
requirement statements, documenting, 204–207
requirements development process framework,

45–47
requirements management, 53–54
requirements reuse, 360–364
specification, 51–52
validation, 52–53
writing style, requirements documentation, 208–211

Gottesdiener, Ellen, 72, 105, 122–123
government regulations. See business rules
Graham, Dorothy, 377
green-field project, 393, 600

H
hard real-time systems, 439. See also real-time

systems projects
hardware interfaces, 197
hardware requirements, 441

 627

 models

Lockwood, Lucy, 235
logging, faults, 451–452
logical data model, 195
low-fidelity prototypes, 301–303
low-resolution prototypes, 226

M
maintainability requirements, 267, 282, 283
management, project. See project management
management, requirements. See requirements

management
management commitment to excellent

requirements, signs of 521–522
market requirements document (MRD), 81. See also

vision and scope document
Martin, James, 247
mean time between failures (MTBF), 267, 274
mean time to repair (MTTR), 267
measuring

change activity, 483–484
requirements management effort, 467–468

metadata, 433
metrics

business performance, 424–426
key performance indicators, 425, 533–535
process improvement, 533–535
project size, 370
requirements change activity, 483–484
requirements process improvements, 533–535
success, 78, 85–86

Miller, Roxanne, 266–267
minimum marketable feature (MMF), 389
missing requirements, identifying, 141–142, 222, 225,

227, 236, 238, 346
mitigation, risk, 539, 541–542
mock-ups, 300, 342, 600. See also prototypes
models

agile projects, 243–244
business analyst role, 67
business analytics projects, 433
business objectives models, 86, 598
business process automation, 422–424
business process model and notation (BPMN), 422
business rules, discovering, 177
context diagrams, 92–93, 598
customer comments, use of, 223–224
DAR (display-action-response) model, 375–377
data flow diagrams, 226–230, 598
data relationship modeling, 245–248

interoperability requirements, 271–272, 408
interviews

elicitation of requirements, 49, 121–122
skills required, 65

Ishikawa diagram, 525–526
issue, requirements, defined, 600
issue tracking, 54, 466–467
IT business analyst. See business analyst (BA)
iteration,

agile projects, 21, 56, 370, 371, 385–389,
468–470, 489

defined, 600
design, 374
requirements development, 13, 17
specifying requirements for, 46, 47

J
Joint Application Design (JAD), 49

K
Kanban. See agile development
key performance indicator model (KPIM), 397, 423–426
key performance indicators (KPIs), 425, 533–535
knowledge, business analyst role, 68–71
knowledge, good practices around, 54–55
Koopman, Philip, 448, 452
Kudish, Joseph, 442–443

L
labeling requirements, 186–188
latency, 447
Lauesen, Soren, 267
Lavi, Johan, 442–443
Lawrence, Brian, 6
lean software development. See agile development
learning curve, process improvement efforts, 529–530
Leffingwell, Dean, 348
legacy systems. See also enhancement projects; also

replacement projects
business rules and, 177
requirements reuse, 357–358

levels and types of requirements, 7–13
Leveson, Nancy, 452
life cycles, development, 46–47, 330. See also agile

development; also waterfall development
listening skills, 65
localization requirements, 10, 198

628

moderator, inspection team role

risk management, 543
specifications, good practices, 52

non-human users, 104
normal flow, use cases, 152–153, 155–156, 600
numbering requirements, SRS documents, 186–188

O
object state models, 226
objectives, business

business objectives model, 86, 598
business objectives, defined, 598
completion decisions and, 99
success metrics, 85–86
vision and scope document, 84–87

observational skills, 66
observations, requirements elicitation, 125–126
on-site customer, 25, 115–116
operating environment, SRS document, 193
operational profile, 287, 409, 600
organization chart analysis, 105
organizational culture

creating respect for requirements, 36–37
process improvement fundamentals, 522–524
requirements tools and, 513
resistance to change, 521–522

organizational policies. See business rules
out-of-scope requirements, 78, 90, 97
outsourced projects

acceptance criteria, 420
acquirer-supplier interactions, 418–419
change management, 419
level of requirements detail, 416–417
overview of, 415–416

P
packaged solution projects

common challenges, 413–414
configuration requirements, 412
costs, 406, 408–409
evaluating candidates, 408–409
extension requirements, 412
identifying requirements, 406–410
implementation requirements, 411–413
integration requirements, 412
overview, 405–406
solution selection, 406, 408–409

models, continued
decision tables and decision trees, 239–240,

598–599
dialog maps, 235–238, 599
ecosystem maps, 95, 599
embedded projects, 441–446
enhancement and replacement projects, 395,

400–401
entity-relationship diagrams, 245–248, 599
event-response tables, 240–242, 599
feature trees, 95–96, 599
good practices, 51
missing requirements, identifying, 141–142, 222,

225, 227, 236, 238, 346
outsourced projects, 417–418
overview of, 222–223
real-time projects, 441–446
requirements elicitation, 122, 131–132
scope representation techniques, 92–96
selection of appropriate, 225–226
simulations, good practices, 53
SRS document, 199
state tables, 232–234, 602
state-transition diagrams, 232–234, 602
swimlane diagrams, 230–231, 602
tools for drawing, 506
UML diagrams, 243

moderator, inspection team role, 334, 336, 338
modifiability requirements, 282–283, 408
modifiable requirements, 206
MoSCoW prioritization, 320–321

N
NAH (not applicable here), 362
navigation map, 235. See also dialog maps
necessary requirements, 204
negative requirements, clarifying, 216
NIH (not invented here), 362
nonfunctional requirements, 261–294. See also

constraints; also external interface
requirements; also quality attributes

agile projects, 293–294
COTS projects, 208
defined, 7, 10–11, 600
packaged solution projects, 208
real-time and embedded systems, 449–453
requirement levels and types, 7–13
requirements traceability, 497–498

 629

 project requirements, vs. product requirements

prioritization. See priorities, setting of
priority, as a requirement attribute, 319, 462
problem reports as source of requirements, 49
procedure, defined, 530, 600
process assets, 530–533, 600
process description, defined, 531
process flows, 225, 423, 425, 600
process improvement action plan, 527–528
process improvement. See requirements process

improvement
process, defined, 600
product backlog, 387, 406, 468–470, 597
product champions, 109–114, 117, 601
product features. See features
product line, 352, 356–357
product owner, 63, 71–72, 115–116, 386, 391, 601
product requirements vs. project requirements,

14–15
product vision, 78–79, 87–88, 577, 603
product, defined, 4, 600
product-centric strategy, 16
project charter, 81. See also vision and scope

document
project management. See also good practices; also

project planning; also risk management
collaborative teams, creating, 72–73
good practices for, 56–57
outsourced projects, 418–419
reaching agreement on requirements, 38–41
requirement process improvement and, 518–520
stakeholder analysis, 27–29

project manager, as business analyst, 70
project planning. See also project management

designing and coding, 373–377
estimating project size and effort, 370–372
estimating requirements effort, 366–369
good practices, 56–57, 379–380
outsourced projects, 418–419
overview of, 365–366
requirements and, 519
requirements effort, estimating, 366–369
risk management, 543, 545
scheduling, requirements and, 372
scope creep, managing, 472–473
testing, 377–379
tracking effort, 467–468
tracking requirements status, 464–466

project priorities, 91–92. See also priorities, setting of
project requirements, vs. product requirements,

14–15

pairwise comparisons for prioritization, 264–265, 318
paper prototypes, 301–303, 600
parking lots, 123
passaround review, 332–333
peer reviews. See also inspections

challenges, 340–342
defect checklist for requirements, 338–339
defined, 600
during elicitation, 160–161
good practices, 52
outsourced projects, 418
review process, 332–338
tips for performing, 339–340

performance. See also quality attributes
efficiency requirements, 281–282
enhancement and replacement projects, 397
packaged solution projects, 408
real-time and embedded systems, 449–453
requirements, 266, 272–273, 408, 449, 593
SRS document, 197–198
timing requirements, real-time systems, 447–449

personas, user, 107–108
pilot, defined, 600
pilots, process improvement, 526, 528–529
plan, defined, 530
Planguage, 226, 266–267, 287–288

defined, 600
policies, company. See business rules
policy, defined, 530
portability requirements, 283–284
postconditions, use cases, 151, 156, 158–159

defined, 600
preconditions, use cases, 151, 156, 158–159, 600
predictability, timing requirements, 448
primary actor, 148
primitive data elements, 250. See also data dictionary
priorities, setting of

agile projects, 387
business analytics projects, 430–431
enhancement and replacement projects,

396–397
importance of, 313–315
prioritization, defined, 600
project, 91–92
quality attributes, 263–267
Quality Function Deployment (QFD), 322
requirements prioritization procedure,

322–327, 532
risk factors, 544
strategies and techniques for, 315–322

630

project scope

tools for creating, 505
user interfaces, 189–190, 226
vertical prototype, defined, 298, 603
working with, 303–306

Pugh, Ken, 348

Q
QFD. See quality function deployment
quality assurance. See also testing

nonfunctional requirements, defined, 10
requirements reuse, 364
software requirements specification (SRS), 9

quality attributes. See also performance
agile projects, 293–294
availability, 267–269, 594
constraints on, 291–292
customer input, 137
defined, 7, 10, 261–263, 601
defining, overview, 267
efficiency, 281–282, 450
embedded systems, 449–453
enhancement and replacement projects, 395
identifying and prioritizing, 263–267
implementation of, 290–291
installability, 269–270
integrity, 270–271, 408
interoperability, 271–272, 408
modifiability, 282–283, 408
overview of, 261–263
packaged solution projects, 408
performance, 266, 272–273, 408, 449, 593
Planguage, 287–288
prioritizing, 264–265
real-time systems, 449–453
reliability, 274–275, 450
requirements traceability, 497–498
reusability, 284–285
robustness, 275–276, 450, 594
safety, 276–277, 452, 593
scalability, 285–286
security, 277–279, 408, 452–453, 593
SRS document, 197–198
SRS document, sample, 593–594
timing requirements, real-time systems,

447–449
trade-offs, 288–290
usability, 279–281, 453, 593
verifiability, 286–287, 453, 593

project scope. See also change management; also
project planning; also vision and scope
document

agile projects, change management, 389
assumed and implied requirements, 140–141
change control policies, 474
completion decisions, 99
defined, 79, 602
defining for project, 13, 139–140
elicitation, good practices, 48–49
enhancement and replacement projects,

396–397
estimating effort, 370–372
good practices, 53–54
identifying and defining requirements, 78–81
outsourced projects, 419
packaged solution projects, 406–410
product vision and, 78–80
project management good practices, 56–57
requirements baseline, 459–460
requirements elicitation, 122–123
scope creep, 20–21, 472–473, 602
scope management, 97–98
scope representation techniques, 92–96
troubleshooting change management

problems, 572–574
vision and scope document, overview,

81–83
vision and scope document, sample, 576–580

project tracking, requirements and, 519
proof-of-concept prototypes, 297–298, 300, 342, 601
prototypes

dashboard reporting, 258
defined, 601
electronic prototype, 302–303
enhancement and replacement projects, 395
evaluating, 306–307
evolutionary prototype, 599, 299–300
good practices, 50, 310
horizontal prototype, defined, 297, 600
mock-up, 297–298, 600
outsourced projects, 417–418
overview of, 295–297
paper prototype, 301–302, 600
proof-of-concept, 298, 601
real-time projects, 446
reporting specifications, 255
requirement validation and, 342
risks of, 307–310
throwaway prototype, 298–299, 602–603

 631

 requirements management

Requirements Bill of Rights for customers, 30–33
requirements development. See also analysis,

requirements; also elicitation,
requirements; also specification,
requirements; also validation,
requirements

common problems, 19–22
defined, 15, 601
overview, 15–17
process assets for, 531–532
process framework for, 45–47
requirements management, boundary between, 18
tools for, 503–506

requirements document. See software requirements
specification (SRS)

requirements elicitation. See elicitation, requirements
requirements engineer. See business analyst (BA)
requirements engineering

common problems, 19–22
defined, 15, 601
framework for, 45–47
process assets for, 530–533
requirements development, 15
requirements management, 17–19
subdisciplines of, 15
tools for, 503–514

requirements levels and types, 7–13
requirements management. See also change

management; also tracing, requirements
agile projects, 468–470
baselining, 459–460
common problems, 19–22
defined, 17–18, 458, 601
good practices, 53–54
measuring effort, 467–468
overview, 15, 17–19, 46–47, 470
process assets for, 531–533
process overview, 457–459
product backlog, 387
project planning estimates, 366–372
requirements attributes, 462–463
requirements development, boundary between, 18
requirements repositories, 359–360
resolving issues, 466–467
risk factors, 546
tools for, 503–510
tools, selecting and using, 510–513
tracking status, 464–466
troubleshooting problems, 571
version control, 460–462

Quality Function Deployment (QFD), 322
quality of service requirements. See quality attributes
questionnaires, good practices, 49, 127

R
rank ordering, prioritization, 318
Rational Unified Process, 47
rationale, as a requirements attribute, 462, 463
reader, inspection team role, 335, 337
real-time systems projects

defined, 601
interfaces, 446–447
modeling, 441–446
overview, 439, 453–454
quality attributes, 449–453
system requirements, architecture, and

allocation, 440–441
timing requirements, 447–449

recorder, inspection team role, 335
recoverability, 275–276
reengineering project. See replacement projects
regulations, government. See business rules
relationship, 247
reliability requirements, 274–275, 450
repeating group, data elements, 251. See also data

dictionary
replacement projects

adoption of new system, 401–402
iteration and, 402–403
lack of existing documentation, 398–401
overview of, 393–394
prioritizing using business objectives, 396–397
requirements techniques, 394–395

reports. See also business analytics projects
business analytics projects, 431–432
dashboard reporting, 257–258
enhancement and replacement projects, 395
report layouts, 225
specifications for, 252–256
SRS document, 195, 591

representation techniques, 212–213
requirement, defined, 5–6, 601
requirement attributes, 462–463, 51, 54, 601
requirement pattern, defined, 601
requirements allocation procedure, 532, 601
requirements analysis. See analysis, requirements
requirements analyst. See business analyst (BA)
Requirements Bill of Responsibilities for customers,

30, 33–36

632

requirements manager

specification issues, 569–570
validation issues, 570–571

response time, 266, 287–288
retrospective, 337, 601
reusability requirements, 284–285
reuse. See requirements, reuse of
reviewing requirements. See peer reviews
rework, 19, 521, 534
risk, 537, 602
risk management

documenting project risks, 539–541
overview, 537–539, 546
planning for, 542
requirements analysis, 544
requirements elicitation, 543–544
requirements management, 546
requirements specification, 545
requirements validation, 545
risk assessment, 539
risk avoidance, 539

risk mitigation, 539, 541–542
risks, business, 88, 577
risks, technical, and requirements prioritization,

322–323, 325–326
road map, for process improvement, 535
Robertson, James, 267
Robertson, Suzanne, 267
robustness requirements, 275–276, 450–452, 594
roles and permissions matrix, 171–172
root cause analysis, 524–526, 602
Rothman, Johanna, 326
Royce, Winston, 384

S
SaaS. See software as a service
safety requirements, 276–277, 452, 593
sample documents

business rules, 595
software requirements specification (SRS), 584–594
use cases, 581–583
vision and scope document, 576–580

Sawyer, Pete, 6
scalability requirements, 285–286, 290–291
scenarios, 149, 602
schedule. See project planning
scope creep, 20–21, 472–473
scope, project. See also change management; also

product vision; also project planning; also
vision and scope document

requirements manager. See business analyst (BA)
requirements mapping matrix, 495
requirements practices self-assessment, 551–557
requirements prioritization procedure, 532
requirements process improvement

action planning for, 527–528
assessment of current practices, 526–527, 551–557
fundamentals of, 522–524
learning curve, 529–530
management commitment to, 522
metrics for, 533–535
overview, 517–520
process assets, 530–533
process improvement cycle, 526–530
resistance to change, 521–522
road map for, 535
root cause analysis, 524–526

requirements review checklist, 338–339, 532
requirements specification. See specification,

requirements; also software requirements
specification (SRS)

requirements status tracking procedure, 532
requirements traceability matrix, 54, 495–498, 601.

See also tracing, requirements
requirements tracing. See tracing, requirements
requirements validation. See validation, requirements
requirements, characteristics of excellent, 203–207
requirements, reuse of

benefits of, 351–352
common scenarios for, 356–358
defined, 602
dimensions of, 352–355
good practices for, 360–364
quality attributes, reusability, 284–285
requirement patterns, 358–359
tools for, 359–360, 508
tracing requirements, 495
types of information to reuse, 355–356

requirements, troubleshooting problems with
analysis issues, 567–569
barriers to solution implementation, 560
change management issues, 572–574
communication issues, 564
elicitation issues, 565–566
overview, 559
planning issues, 562–564
process issues, 561–562
product issues, 562
requirements management issues, 571
signs of problems, 559–560

 633

 stakeholders

software design, requirements and, 373–377
software development life cycle, defined, 602
software interfaces, SRS document, 197, 592–593.

See also interfaces
software process improvement. See requirements

process improvement
software requirements

defined, 5–6
deriving from system requirements, 440–441
levels and types, 7–13

Software Requirements Bill of Responsibilities for
customers, 30, 33–36

Software Requirements Bill of Rights for customers,
30–33

software requirements specification (SRS). See also
documenting requirements

audiences for, 184
defined, 9, 183, 602
labeling requirements, 186–188
lack of, on enhancement and replacement

projects, 398–401
outsourced projects, 416–417
overview, 13, 183–186, 532
product vs. project requirements, 14–15
requirements baseline, 459–460
requirements traceability matrix, 495–498
sample document, 584–594
template for, 190–199
user classes, 106
user interfaces and, 189–190, 196–197

solution ideas, customer input, 138
solution, defined, 602
Sommerville, Ian, 6
specification, requirements. See also software

requirements specification (SRS)
agile projects, 201–202
defined, 602
good practices summary chart, 44
good practices, 51–52
requirements development framework, 45–47
requirements development, 15, 17
risk factors, 545
troubleshooting problems, 569

SRS. See software requirements specification (SRS)
stakeholder, defined, 602
stakeholders. See also customers; and also users

business context, vision and scope document,
90–92

decision makers, identifying, 38
elicitation session, preparing for, 131

agile projects, change management, 389
change control policies, 474
completion decisions, 99
defined, 79, 602
defining for project, 13, 139–140
elicitation, good practices, 48–49
enhancement and replacement projects, 396–397
estimating effort, 370–372
good practices, 53–54
identifying and defining requirements, 78–81
outsourced projects, 419
packaged solution projects, 406–410
project management good practices, 56–57
requirements baseline, 459–460
requirements elicitation, 122–123
requirements process improvement, 519
risk management, 543–544
scope creep, defined, 602
scope management, 20–22, 97–98, 472–473
scope representation techniques, 92–96
vision and scope document, overview, 81–83, 532
vision and scope document, sample, 576–580

Scrum. See agile development
secondary actor, 148
secondary scenarios, 152–153
security

data integrity requirements, 270–271
packaged solution projects, 408
real-time and embedded systems, 452–453
requirements for, 277–279, 408, 452–453, 593
requirements reuse, 355–356
SRS document, 198

self-assessment, current requirements practices,
551–557

shall, as keyword in requirements, 9, 209
sign-off, 39–41. See also baseline, requirements
signal events

defined, 241
event-response tables, 240–242
identifying, 48–49

simulations. See also prototypes
good practices, 53
mock-ups and proofs of concept, 297–298
user interfaces, 189–190

skill development, good practices, 54–55
SMART, 266, 347
soft real-time systems, 439. See also real-time

systems projects
software as a service (SaaS) projects. See packaged

solution projects

634

standards, industry

system state models, 226
system testing, requirements and, 519

T
taxonomy, business rules, 169
TBD (to be determined), 206, 208, 216, 221, 602
team building, 72–73
templates

change control board charter, 481, 533
change control process, 475–479
change impact analysis, 488
defined, 602
functional requirements, 207–208
interface specification document, 446–447
project risk documentation, 539–541
reporting specifications, 255–256
requirement patterns, 358–359
software requirements specification (SRS),

190–199, 532
tips for using, 82–83
use case, 146, 532
user story, 145
vision and scope document, 81–83, 532
vision statement, 87

temporal events
defined, 241
event-response tables, 241–242
identifying, 48–49

terminators, context diagrams, 92–93. See also
external entities

terminology, good practices, 55, 364
testability. See verifiability
testing

acceptance criteria, 347–349
creating validation tests, 342–347
dialog maps and, 344–347
enhancement and replacement projects, 400–401
fit criteria, 267
outsourced projects, 416, 420
packaged solution projects, 408–409
project planning and, 365–366, 377–379
prototype evaluations, 306–307
requirements process improvement, 518–520
requirements reuse and, 362
software requirements specification (SRS), 9
tracing requirements to tests, 495
troubleshooting issues, 570
use cases and functional requirements, 163

stakeholders. See also customers; also users,
continued

knowledge and training, good practices, 54–55
list of potential, 28
overlooked, 22
reaching agreement on requirements, 38–41
Requirements Bill of Responsibilities for customers,

30, 33–36
Requirements Bill of Rights for customers, 30–33
requirements process improvement, 520
resistance to change, 521–522
stakeholder analysis, 27–29

standards, industry. See business rules
state diagrams, 243
state machine diagrams, 232–234, 602
state tables, 226, 232–234, 602
statechart diagrams, 443
state-transition diagrams, 51, 226, 232–234,

442–443, 594, 602
status tracking, requirements, 457–459, 464–466,

469–470, 532
story points, 325, 370, 469
storyboards, 226, 301–303
straw man models, 122, 132
structure, data, 250. See also data dictionary
subject matter expert, 62, 70–71, 110, 602
success metrics, 85–86, 577
supportability requirements. See modifiability

requirements
surveys, good practices, 49
survivability, 275
swimlane diagrams

business process automation projects, 423
business process flow, 225
defined, 230, 602
enhancement and replacement projects, 400–401
overview of, 230–231
system external interfaces, 225
user task descriptions, 226

system, defined, 9–10, 439, 602
system analyst. See business analyst (BA)
system interface analysis, 127–128, 225
system requirements

allocation, 9–10, 440–441
architecture design, project planning and, 373–374
defined, 7, 9–10, 602
embedded and real-time systems projects,

440–441
partitioning of, 440–441

system requirements specification, 440

 635

 use cases

process issues, 561–562
product issues, 562
requirements management issues, 571
signs of requirements problems, 559–560
specification issues, 569–570
validation issues, 570–571

U
understandability requirements. See modifiability

requirements
UML diagrams, 243
Unified Modeling Language (UML), 148–149, 232,

243, 445–446, 603
usability. See also quality attributes

embedded systems, 453
packaged solution projects, 408
prototype evaluations, 306–307
requirements, 279–281
SRS document, 197–198

usage-centric strategy, 16
usage scenarios, 149
use cases. See also user requirements

actors and roles, 147–148
benefits of, 164–165
business rules and, 156–157
chaining together, 156
defined, 144, 603
diagrams, 148–149
elements of, 149–150
eliciting use cases, 158–160
enhancement and replacement projects, 400–401
extend and include relationships, 155–156
functional requirements and, 161–163
identifying, 157–158
labeling conventions, 151
normal flow, alternative flows, and exceptions,

152–153
overview, 9, 143–147
pre- and postconditions, 151, 156
sample document, 581–583
setting priorities, 50
template for, 146, 150, 532
testing and, 144, 146–147, 343–344, 347
traps to avoid, 163–164
usage scenarios and, 149
use case diagrams, 148, 243, 395, 603
user stories and, 144–147, 152–153
users and actors, 147–148
validating, 160–161

use cases and user stories, 146–147
use cases and, 160–161, 346–348
validating use cases, 160–161
validation, good practices, 52–53
verifiability requirements, 286–287

textual tags, requirement labeling, 187–188
three-level scale, prioritization, 319–320
throwaway prototypes, 298–300, 602. See also

prototypes
time-based events. See temporal events
timeboxed development, 98–99. See also agile

development
timeboxing discussions, workshops, 124
timing requirements, on embedded and other

real-time systems, 447–449
to be determined. See TBD
tools for requirements engineering

overview, 503–505
requirements development tools, 505–506
requirements management tools, 506–510
selecting and using, 510–513

traceable requirements, 206
tracing requirements

allocated requirements, 441
defined, 603
levels and types, 7–13
missing requirements, identifying, 141–142, 222,

225, 227, 236, 238, 346
motivations for, 494–495, 500–501
overview, 491–493
packaged solution projects, 407, 410
procedure for, 499–501, 533
requirements management overview, 457–459
requirements traceability matrix, 495–498
tools for, 498–499
traceability data, 400
traceability table, 495

tracking changes, 461–462, 474
tracking effort on requirements activities, 467–468
tracking requirements status, 458, 464–466, 469
training and skills development, 54–55, 68–71
transition requirements, 14, 22, 402
troubleshooting

analysis issues, 567–569
barriers to implementing solutions, 560
change management issues, 572–574
communication issues, 564
elicitation issues, 565–566
overview, 559
planning issues, 562–564

636

user acceptance testing

features and, 388–389
overview, 143–147, 388–389
quality attributes, agile projects, 293–294
setting and changing priorities, 50, 314, 489
use cases and, 144–147, 152–153
user requirements, 9

user task models, 226
users. See also customers; also stakeholders

agile projects and, 115–116
classifying users, 102–104
conflicting requirements, resolution of, 116–117
customer comments, use in models, 223–224
enhancement and replacement projects, 395
importance of, 101–102
product champions, 109–114
SRS document, 193
user classes, identifying, 105–107
user observations, 125–126
user personas, 107–108
user representatives, 108–109

V
V model of software development, 330
validation, requirements. See also testing

acceptance criteria, 347–349
business analyst role, 64
defect checklist for requirements reviews,

338–339
defined, 331, 603
good practices, 44, 52–53
inspections, 332–338
outsourced projects, 420
overview of, 329–331
packaged solution projects, 408–409
peer reviews, 332–342
prototyping requirements, 342
requirements development, 15, 17, 45–47
requirements review tips and challenges, 339–342
requirements testing, 342–347
reviewing requirements, 332–342
risk factors, 545
testing requirements, 342–347
troubleshooting problems, 570
use cases, 160–161

verifiability requirements, 286–287
verifiable requirements, 205

user, defined, 603
user acceptance testing, 377–379
user classes, defined, 603. See also user analysis
user documentation, requirements and, 519–520
user goals. See user requirements
user interfaces

analyzing, good practices, 51
architecture diagrams, 445–446
control descriptions, 226
customer input, 137
design of, requirements and, 375–377
dialog maps, 235–238
embedded projects, 446–447, 453
flow, 235
interface specification document, 447
mock-ups, 297–298
models for, 226
prototypes, 50
real-time projects, 446–447, 453
requirements analysis, 128
SRS and, 189–190, 196–197
SRS document, sample, 592–593
user interface analysis, 128
wireframe prototype, 299

user involvement in requirements, 101–116
user requirements. See also use cases; also user

stories
business analytics projects, 431–432
business process automation requirements,

423–424
customer input, 136
defined, 7, 9, 603
elicitation, good practices, 48–49
packaged solution projects, 406–407
requirement levels and types, 7–13
requirements development, 16–17
stakeholder analysis, 28–29
techniques for identifying, overview, 143–144
user requirements document, 13, 400–401

user role. See actor
user stories. See also use cases; also user

requirements
agile projects, 199–201, 386–389, 489
defined, 145, 603
enhancement and replacement projects, 395,

400–401
epics and, 388–389

 637

 Young, Ralph

voice of the user, 101, 108, 109
von Halle, Barbara, 177

W
walkthrough, 332–333
waterfall development, defined, 384, 603
waterfall development, limitations of, 384–385
Weinberg, Gerald, 105
Wiegers, Karl, 78, 225, 339, 366, 467
wireframe, 299, 603. See also prototypes
Withall, Stephen, 267, 358
work product, defined, 603
workshops

good practices, 49
requirements elicitation, 122–125

writing requirements documents, 203–220
writing style, requirements documentation, 207–211

Y
Young, Ralph, 61

verification, defined, 331, 603. See also validation
version control

good practices, 53
overview of, 460–462
requirements management tools, 506–510
requirements management, overview, 457–459

vertical prototype, 298, 603. See also prototypes
vision and scope document

agile projects, 98–99
business context, 90–92
business requirements, 83–88
defined, 8, 81, 603
deliverables, 13
good practices, 51–52
overview, 81–83
sample document, 576–580
scope and limitations section, 88–90
template for, 81–83, 532
vision statement, 87–88, 577

vision, product, 78–79, 603
vision statement, 87–88, 577
visual representations. See models

About the authors
KARL WIEGERS is principal consultant with Process Impact, a software
process consulting and education company in Portland, Oregon. His interests
include requirements engineering, peer reviews, project management, and
process improvement. Previously, he spent 18 years at Eastman Kodak
Company as a photographic research scientist, software developer,
software manager, and software process and quality improvement leader.
Karl received a PhD degree in organic chemistry from the University
of Illinois. When he’s not on the computer, Karl enjoys wine tasting, playing

guitar, writing and recording songs, and doing volunteer work.

Karl is the author of numerous books and articles on software development,
chemistry, self-help, and military history. His books include the two previous editions
of Software Requirements (Microsoft Press, 1999 and 2003), More About Software
 Requirements (Microsoft Press, 2006), Practical Project Initiation (Microsoft Press,
2007), Peer Reviews in Software (Addison-Wesley, 2002), and Creating a Software
 Engineering Culture (Dorset House Publishing, 1996). He is also the author of a
 memoir of life lessons, Pearls from Sand (Morgan James Publishing, 2011). Karl has
served on the editorial board for IEEE Software magazine and as a contributing editor
for Software Development magazine. He has delivered more than 300 seminars and
training courses on software requirements. You can reach Karl at www.processimpact
.com and www.karlwiegers.com. (Photo credit: Emily Down, Jama Software)

JOY BEATTY is a vice president at Seilevel, a professional services and
 training company in Austin, Texas, that helps redefine the way customers
 create software requirements. With 15 years of experience in business
analysis, Joy evolves new methods and helps customers implement best
practices that improve requirements elicitation and modeling. She assists
Fortune 500 companies as they build business analysis centers of excellence.
Joy has provided training to thousands of business analysts and is a
 Certified Business Analysis Professional (CBAP). Joy graduated from Purdue

University with BS degrees in both computer science and mathematics. Joy’s passions
beyond requirements include rowing, swimming, and being outside with her family.

Joy is actively involved as a leader in the requirements community. She has
worked with the International Institute of Business Analysis (IIBA) on A Guide to the
Business Analysis Body of Knowledge (BABOK Guide). Additionally, she writes about
 requirements methodologies in journals, white papers, and blog posts and presents
at requirements-related conferences. She also co-authored Visual Models for Software
Requirements (Microsoft Press, 2012). Joy can be reached at www.seilevel.com and
joy.beatty@seilevel.com.

http://www.seilevel.com
http://www.processimpact
http://www.karlwiegers.com

 Now that
you’ve
read the
book...

Was it useful?
Did it teach you what you wanted to learn?
Was there room for improvement?

Let us know at http://aka.ms/tellpress

Your feedback goes directly to the staff at Microsoft Press,
and we read every one of your responses. Thanks in advance!

Tell us what you think!

http://aka.ms/tellpress

	Cover
	Praise for this book
	Title Page
	Copyright
	Dedication
	Contents at a glance
	Contents
	Introduction
	Benefits this book provides
	Who should read this book
	Looking ahead
	Case studies
	From principles to practice
	Errata & book support
	We want to hear from you
	Stay in touch

	Acknowledgments
	PART I: Software requirements: What, why, and who
	CHAPTER 1: The essential software requirement

	Software requirements defined
	Some interpretations of ”requirement”
	Levels and types of requirements
	Working with the three levels
	Product vs. project requirements

	Requirements development and management
	Requirements development
	Requirements management

	Every project has requirements
	When bad requirements happen to good people
	Insufficient user involvement
	Inaccurate planning
	Creeping user requirements
	Ambiguous requirements
	Gold plating
	Overlooked stakeholders

	Benefits from a high-quality requirements process

	CHAPTER 2: Requirements from the customer’s perspective

	The expectation gap
	Who is the customer?
	The customer-development partnership
	Requirements Bill of Rights for Software Customers
	Requirements Bill of Responsibilities for Software Customers

	Creating a culture that respects requirements
	Identifying decision makers
	Reaching agreement on requirements
	The requirements baseline
	What if you don’t reach agreement?
	Agreeing on requirements on agile projects

	CHAPTER 3: Good practices for requirements engineering

	A requirements development process framework
	Good practices: Requirements elicitation
	Good practices: Requirements analysis
	Good practices: Requirements specification
	Good practices: Requirements validation
	Good practices: Requirements management
	Good practices: Knowledge
	Good practices: Project management
	Getting started with new practices

	CHAPTER 4: The business analyst

	The business analyst role
	The business analyst’s tasks
	Essential analyst skills
	Essential analyst knowledge
	The making of a business analyst
	The former user
	The former developer or tester
	The former (or concurrent) project manager
	The subject matter expert
	The rookie

	The analyst role on agile projects
	Creating a collaborative team

	PART II: Requirements development
	CHAPTER 5: Establishing the business requirements
	Defining business requirements
	Identifying desired business benefits
	Product vision and project scope
	Conflicting business requirements

	Vision and scope document
	1. Business requirements
	2. Scope and limitations
	3. Business context

	Scope representation techniques
	Context diagram
	Ecosystem map
	Feature tree
	Event list

	Keeping the scope in focus
	Using business objectives to make scoping decisions
	Assessing the impact of scope changes

	Vision and scope on agile projects
	Using business objectives to determine completion

	CHAPTER 6: Finding the voice of the user
	User classes
	Classifying users
	Identifying your user classes

	User personas
	Connecting with user representatives
	The product champion

	External product champions
	Product champion expectations
	Multiple product champions
	Selling the product champion idea
	Product champion traps to avoid

	User representation on agile projects
	Resolving conflicting requirements

	CHAPTER 7: Requirements elicitation
	Requirements elicitation techniques
	Interviews
	Workshops
	Focus groups
	Observations
	Questionnaires
	System interface analysis
	User interface analysis
	Document analysis

	Planning elicitation on your project
	Preparing for elicitation
	Performing elicitation activities
	Following up after elicitation
	Organizing and sharing the notes
	Documenting open issues

	Classifying customer input
	How do you know when you’re done?
	Some cautions about elicitation
	Assumed and implied requirements
	Finding missing requirements

	CHAPTER 8: Understanding user requirements
	Use cases and user stories
	The use case approach
	Use cases and usage scenarios
	Identifying use cases
	Exploring use cases
	Validating use cases
	Use cases and functional requirements
	Use case traps to avoid

	Benefits of usage-centric requirements

	CHAPTER 9: Playing by the rules
	A business rules taxonomy
	Facts
	Constraints
	Action enablers
	Inferences
	Computations
	Atomic business rules

	Documenting business rules
	Discovering business rules
	Business rules and requirements
	Tying everything together

	CHAPTER 10: Documenting the requirements
	The software requirements specification
	Labeling requirements
	Dealing with incompleteness
	User interfaces and the SRS
	A software requirements specification template
	1. Introduction
	2. Overall description
	3. System features
	4. Data requirements
	5. External interface requirements
	6. Quality attributes
	7. Internationalization and localization requirements
	8. [Other requirements]
	Appendix A: Glossary
	Appendix B: Analysis models

	Requirements specification on agile projects

	CHAPTER 11: Writing excellent requirements
	Characteristics of excellent requirements
	Characteristics of requirement statements
	Characteristics of requirements collections

	Guidelines for writing requirements
	System or user perspective
	Writing style
	Level of detail
	Representation techniques
	Avoiding ambiguity
	Avoiding incompleteness

	Sample requirements, before and after

	CHAPTER 12: A picture is worth 1024 words
	Modeling the requirements
	From voice of the customer to analysis models
	Selecting the right representations
	Data flow diagram
	Swimlane diagram
	State-transition diagram and state table
	Dialog map
	Decision tables and decision trees
	Event-response tables
	A few words about UML diagrams
	Modeling on agile projects
	A final reminder

	CHAPTER 13: Specifying data requirements
	Modeling data relationships
	The data dictionary
	Data analysis
	Specifying reports
	Eliciting reporting requirements
	Report specification considerations
	A report specification template

	Dashboard reporting

	CHAPTER 14: Beyond functionality
	Software quality attributes
	Exploring quality attributes
	Defining quality requirements
	External quality attributes
	Internal quality attributes

	Specifying quality requirements with Planguage
	Quality attribute trade-offs
	Implementing quality attribute requirements
	Constraints
	Handling quality attributes on agile projects

	CHAPTER 15: Risk reduction through prototyping
	Prototyping: What and why
	Mock-ups and proofs of concept
	Throwaway and evolutionary prototypes
	Paper and electronic prototypes
	Working with prototypes
	Prototype evaluation
	Risks of prototyping
	Pressure to release the prototype
	Distraction by details
	Unrealistic performance expectations
	Investing excessive effort in prototypes

	Prototyping success factors

	CHAPTER 16: First things first: Setting requirement priorities
	Why prioritize requirements?
	Some prioritization pragmatics
	Games people play with priorities
	Some prioritization techniques
	In or out
	Pairwise comparison and rank ordering
	Three-level scale
	MoSCoW
	$100

	Prioritization based on value, cost, and risk

	CHAPTER 17: Validating the requirements
	Validation and verification
	Reviewing requirements
	The inspection process
	Defect checklist
	Requirements review tips
	Requirements review challenges

	Prototyping requirements
	Testing the requirements
	Validating requirements with acceptance criteria
	Acceptance criteria
	Acceptance tests

	CHAPTER 18: Requirements reuse
	Why reuse requirements?
	Dimensions of requirements reuse
	Extent of reuse
	Extent of modification
	Reuse mechanism

	Types of requirements information to reuse
	Common reuse scenarios
	Software product lines
	Reengineered and replacement systems
	Other likely reuse opportunities

	Requirement patterns
	Tools to facilitate reuse
	Making requirements reusable
	Requirements reuse barriers and success factors
	Reuse barriers
	Reuse success factors

	CHAPTER 19: Beyond requirements development
	Estimating requirements effort
	From requirements to project plans
	Estimating project size and effort from requirements
	Requirements and scheduling

	From requirements to designs and code
	Architecture and allocation
	Software design
	User interface design

	From requirements to tests
	From requirements to success

	PART III: Requirements for specific project classes
	CHAPTER 20: Agile projects
	Limitations of the waterfall
	The agile development approach
	Essential aspects of an agile approach to requirements
	Customer involvement
	Documentation detail
	The backlog and prioritization
	Timing
	Epics, user stories, and features, oh my!
	Expect change

	Adapting requirements practices to agile projects
	Transitioning to agile: Now what?

	CHAPTER 21: Enhancement and replacement projects
	Expected challenges
	Requirements techniques when there is an existing system
	Prioritizing by using business objectives
	Mind the gap
	Maintaining performance levels

	When old requirements don’t exist
	Which requirements should you specify?
	How to discover the requirements of an existing system

	Encouraging new system adoption
	Can we iterate?

	CHAPTER 22: Packaged solution projects
	Requirements for selecting packaged solutions
	Developing user requirements
	Considering business rules
	Identifying data needs
	Defining quality requirements
	Evaluating solutions

	Requirements for implementing packaged solutions
	Configuration requirements
	Integration requirements
	Extension requirements
	Data requirements
	Business process changes

	Common challenges with packaged solutions

	CHAPTER 23: Outsourced projects
	Appropriate levels of requirements detail
	Acquirer-supplier interactions
	Change management
	Acceptance criteria

	CHAPTER 24: Business process automation projects
	Modeling business processes
	Using current processes to derive requirements
	Designing future processes first

	Modeling business performance metrics
	Good practices for business process automation projects

	CHAPTER 25: Business analytics projects
	Overview of business analytics projects
	Requirements development for business analytics projects
	Prioritizing work by using decisions
	Defining how information will be used
	Specifying data needs
	Defining analyses that transform the data

	The evolutionary nature of analytics

	CHAPTER 26: Embedded and other real-time systems projects
	System requirements, architecture, and allocation
	Modeling real-time systems
	Context diagram
	State-transition diagram
	Event-response table
	Architecture diagram
	Prototyping

	Interfaces
	Timing requirements
	Quality attributes for embedded systems
	The challenges of embedded systems

	PART IV: Requirements
management
	CHAPTER 27: Requirements management practices
	Requirements management process
	The requirements baseline
	Requirements version control
	Requirement attributes
	Tracking requirements status
	Resolving requirements issues
	Measuring requirements effort
	Managing requirements on agile projects
	Why manage requirements?

	CHAPTER 28: Change happens
	Why manage changes?
	Managing scope creep
	Change control policy
	Basic concepts of the change control process
	A change control process description
	1. Purpose and scope
	2. Roles and responsibilities
	3. Change request status
	4. Entry criteria
	5. Tasks
	6. Exit criteria
	7. Change control status reporting
	Appendix: Attributes stored for each request

	The change control board
	CCB composition
	CCB charter
	Renegotiating commitments

	Change control tools
	Measuring change activity
	Change impact analysis
	Impact analysis procedure
	Impact analysis template

	Change management on agile projects

	CHAPTER 29: Links in the requirements chain
	Tracing requirements
	Motivations for tracing requirements
	The requirements traceability matrix
	Tools for requirements tracing
	A requirements tracing procedure
	Is requirements tracing feasible? Is it necessary?

	CHAPTER 30: Tools for requirements engineering
	Requirements development tools
	Elicitation tools
	Prototyping tools
	Modeling tools

	Requirements management tools
	Benefits of using an RM tool
	RM tool capabilities

	Selecting and implementing a requirements tool
	Selecting a tool
	Setting up the tool and processes
	Facilitating user adoption

	PART V: Implementing requirements engineering
	CHAPTER 31: Improving your requirements processes
	How requirements relate to other project processes
	Requirements and various stakeholder groups
	Gaining commitment to change
	Fundamentals of software process improvement
	Root cause analysis
	The process improvement cycle
	Assess current practices
	Plan improvement actions
	Create, pilot, and roll out processes
	Evaluate results

	Requirements engineering process assets
	Requirements development process assets
	Requirements management process assets

	Are we there yet?
	Creating a requirements process improvement road map

	CHAPTER 32: Software requirements and risk management
	Fundamentals of software risk management
	Elements of risk management
	Documenting project risks
	Planning for risk management

	Requirements-related risks
	Requirements elicitation
	Requirements analysis
	Requirements specification
	Requirements validation
	Requirements management

	Risk management is your friend

	Epilogue
	APPENDIX A: Current requirements practice self-assessment
	APPENDIX B: Requirements troubleshooting guide
	Common signs of requirements problems
	Common barriers to implementing solutions
	Requirements troubleshooting guide
	Process issues
	Product issues
	Planning issues
	Communication issues
	Elicitation issues
	Analysis issues
	Specification issues
	Validation issues
	Requirements management issues
	Change management issues

	APPENDIX C: Sample requirements documents
	Vision and Scope Document
	1. Business Requirements
	2. Scope and Limitations
	3. Business Context

	Use Cases
	1. Introduction
	2. Overall Description
	3. System Features
	4. Data Requirements
	5. External Interface Requirements
	6. Quality Attributes
	Appendix A: Analysis Models

	Business Rules

	Glossary
	References
	Index
	About the authors
	Survey

